mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-15 12:40:35 +00:00
Merge branch 'next' of https://github.com/carlesfernandez/gnss-sdr into next
This commit is contained in:
commit
864c81b082
@ -299,7 +299,6 @@ Acquisition_GPS.max_dwells=1
|
|||||||
;######### TRACKING GLOBAL CONFIG ############
|
;######### TRACKING GLOBAL CONFIG ############
|
||||||
|
|
||||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||||
;Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
|
||||||
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
Tracking_GPS.item_type=gr_complex
|
Tracking_GPS.item_type=gr_complex
|
||||||
|
@ -299,7 +299,7 @@ Acquisition_GPS.max_dwells=1
|
|||||||
;######### TRACKING GLOBAL CONFIG ############
|
;######### TRACKING GLOBAL CONFIG ############
|
||||||
|
|
||||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
||||||
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
Tracking_GPS.item_type=gr_complex
|
Tracking_GPS.item_type=gr_complex
|
||||||
|
|
||||||
|
87
conf/gnss-sdr_GPS_L1_ishort.conf
Normal file
87
conf/gnss-sdr_GPS_L1_ishort.conf
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
; You can define your own receiver and invoke it by doing
|
||||||
|
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
|
||||||
|
;
|
||||||
|
|
||||||
|
[GNSS-SDR]
|
||||||
|
|
||||||
|
;######### GLOBAL OPTIONS ##################
|
||||||
|
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||||
|
GNSS-SDR.internal_fs_hz=4000000
|
||||||
|
|
||||||
|
;######### CONTROL_THREAD CONFIG ############
|
||||||
|
ControlThread.wait_for_flowgraph=false
|
||||||
|
|
||||||
|
;######### SIGNAL_SOURCE CONFIG ############
|
||||||
|
SignalSource.implementation=File_Signal_Source
|
||||||
|
SignalSource.filename=/media/javier/SISTEMA/signals/test gestalt 22_1_2016/signal_source_gr_complex_4MSPS.dat
|
||||||
|
SignalSource.item_type=gr_complex
|
||||||
|
SignalSource.sampling_frequency=4000000
|
||||||
|
SignalSource.freq=1575420000
|
||||||
|
SignalSource.samples=250000000
|
||||||
|
SignalSource.repeat=false
|
||||||
|
SignalSource.dump=false
|
||||||
|
SignalSource.dump_filename=../data/signal_source.dat
|
||||||
|
SignalSource.enable_throttle_control=false
|
||||||
|
|
||||||
|
|
||||||
|
;######### SIGNAL_CONDITIONER CONFIG ############
|
||||||
|
SignalConditioner.implementation=Pass_Through
|
||||||
|
|
||||||
|
|
||||||
|
;######### CHANNELS GLOBAL CONFIG ############
|
||||||
|
Channels_1C.count=8
|
||||||
|
Channels.in_acquisition=1
|
||||||
|
Channel.signal=1C
|
||||||
|
|
||||||
|
|
||||||
|
;######### ACQUISITION GLOBAL CONFIG ############
|
||||||
|
Acquisition_1C.dump=false
|
||||||
|
Acquisition_1C.dump_filename=./acq_dump.dat
|
||||||
|
Acquisition_1C.item_type=gr_complex
|
||||||
|
Acquisition_1C.if=0
|
||||||
|
Acquisition_1C.sampled_ms=1
|
||||||
|
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||||
|
Acquisition_1C.threshold=0.006
|
||||||
|
;Acquisition_1C.pfa=0.01
|
||||||
|
Acquisition_1C.doppler_max=10000
|
||||||
|
Acquisition_1C.doppler_step=500
|
||||||
|
|
||||||
|
;######### TRACKING GLOBAL CONFIG ############
|
||||||
|
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||||
|
Tracking_1C.item_type=gr_complex
|
||||||
|
Tracking_1C.if=0
|
||||||
|
Tracking_1C.dump=false
|
||||||
|
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||||
|
Tracking_1C.pll_bw_hz=45.0;
|
||||||
|
Tracking_1C.dll_bw_hz=2.0;
|
||||||
|
Tracking_1C.order=3;
|
||||||
|
|
||||||
|
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||||
|
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||||
|
TelemetryDecoder_1C.dump=false
|
||||||
|
TelemetryDecoder_1C.decimation_factor=1;
|
||||||
|
|
||||||
|
;######### OBSERVABLES CONFIG ############
|
||||||
|
Observables.implementation=GPS_L1_CA_Observables
|
||||||
|
Observables.dump=false
|
||||||
|
Observables.dump_filename=./observables.dat
|
||||||
|
|
||||||
|
|
||||||
|
;######### PVT CONFIG ############
|
||||||
|
PVT.implementation=GPS_L1_CA_PVT
|
||||||
|
PVT.averaging_depth=100
|
||||||
|
PVT.flag_averaging=false
|
||||||
|
PVT.output_rate_ms=10
|
||||||
|
PVT.display_rate_ms=500
|
||||||
|
PVT.dump_filename=./PVT
|
||||||
|
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
|
||||||
|
PVT.flag_nmea_tty_port=false;
|
||||||
|
PVT.nmea_dump_devname=/dev/pts/4
|
||||||
|
PVT.flag_rtcm_server=false
|
||||||
|
PVT.flag_rtcm_tty_port=false
|
||||||
|
PVT.rtcm_dump_devname=/dev/pts/1
|
||||||
|
PVT.dump=false
|
||||||
|
|
||||||
|
;######### OUTPUT_FILTER CONFIG ############
|
||||||
|
OutputFilter.implementation=Null_Sink_Output_Filter
|
||||||
|
OutputFilter.item_type=gr_complex
|
@ -210,7 +210,7 @@ Acquisition_1C.max_dwells=15
|
|||||||
;######### TRACKING GLOBAL CONFIG ############
|
;######### TRACKING GLOBAL CONFIG ############
|
||||||
|
|
||||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] [GPS_L1_CA_DLL_PLL_Optim_Tracking]
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] [GPS_L1_CA_DLL_PLL_Optim_Tracking]
|
||||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
Tracking_1C.item_type=gr_complex
|
Tracking_1C.item_type=gr_complex
|
||||||
|
|
||||||
|
@ -104,7 +104,7 @@ Acquisition_1C.max_dwells=15
|
|||||||
|
|
||||||
|
|
||||||
;######### TRACKING GLOBAL CONFIG ############
|
;######### TRACKING GLOBAL CONFIG ############
|
||||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
|
||||||
Tracking_1C.item_type=gr_complex
|
Tracking_1C.item_type=gr_complex
|
||||||
Tracking_1C.if=0
|
Tracking_1C.if=0
|
||||||
Tracking_1C.dump=false
|
Tracking_1C.dump=false
|
||||||
|
@ -7,29 +7,28 @@
|
|||||||
|
|
||||||
;######### GLOBAL OPTIONS ##################
|
;######### GLOBAL OPTIONS ##################
|
||||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||||
GNSS-SDR.internal_fs_hz=4000000
|
GNSS-SDR.internal_fs_hz=4092000
|
||||||
|
|
||||||
;######### CONTROL_THREAD CONFIG ############
|
;######### CONTROL_THREAD CONFIG ############
|
||||||
ControlThread.wait_for_flowgraph=false
|
ControlThread.wait_for_flowgraph=false
|
||||||
|
|
||||||
;######### SIGNAL_SOURCE CONFIG ############
|
;######### SIGNAL_SOURCE CONFIG ############
|
||||||
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||||
SignalSource.implementation=File_Signal_Source
|
SignalSource.implementation=File_Signal_Source
|
||||||
|
|
||||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||||
SignalSource.filename=../data/agilent_cap2.dat
|
SignalSource.filename=/home/javier/signals/GPS_sim1.dat
|
||||||
|
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
SignalSource.item_type=gr_complex
|
SignalSource.item_type=gr_complex
|
||||||
|
|
||||||
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||||
SignalSource.sampling_frequency=4000000
|
SignalSource.sampling_frequency=4092000
|
||||||
|
|
||||||
;#freq: RF front-end center frequency in [Hz]
|
;#freq: RF front-end center frequency in [Hz]
|
||||||
SignalSource.freq=1575420000
|
SignalSource.freq=1575420000
|
||||||
|
|
||||||
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
||||||
SignalSource.samples=250000000
|
SignalSource.samples=0
|
||||||
|
|
||||||
;#repeat: Repeat the processing file. Disable this option in this version
|
;#repeat: Repeat the processing file. Disable this option in this version
|
||||||
SignalSource.repeat=false
|
SignalSource.repeat=false
|
||||||
@ -51,24 +50,21 @@ SignalSource.enable_throttle_control=false
|
|||||||
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
||||||
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||||
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||||
;SignalConditioner.implementation=Signal_Conditioner
|
|
||||||
SignalConditioner.implementation=Pass_Through
|
SignalConditioner.implementation=Pass_Through
|
||||||
|
|
||||||
;######### DATA_TYPE_ADAPTER CONFIG ############
|
;######### DATA_TYPE_ADAPTER CONFIG ############
|
||||||
;## Changes the type of input data. Please disable it in this version.
|
;## Changes the type of input data.
|
||||||
;#implementation: [Pass_Through] disables this block
|
;#implementation: [Pass_Through] disables this block
|
||||||
DataTypeAdapter.implementation=Pass_Through
|
DataTypeAdapter.implementation=Pass_Through
|
||||||
|
DataTypeAdapter.item_type=gr_complex
|
||||||
|
|
||||||
;######### INPUT_FILTER CONFIG ############
|
;######### INPUT_FILTER CONFIG ############
|
||||||
;## Filter the input data. Can be combined with frequency translation for IF signals
|
;## Filter the input data. Can be combined with frequency translation for IF signals
|
||||||
|
|
||||||
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
||||||
;#[Pass_Through] disables this block
|
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
|
||||||
;#[Fir_Filter] enables a FIR Filter
|
;# that shifts IF down to zero Hz.
|
||||||
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
|
|
||||||
|
|
||||||
;InputFilter.implementation=Fir_Filter
|
|
||||||
;InputFilter.implementation=Freq_Xlating_Fir_Filter
|
|
||||||
InputFilter.implementation=Pass_Through
|
InputFilter.implementation=Pass_Through
|
||||||
|
|
||||||
;#dump: Dump the filtered data to a file.
|
;#dump: Dump the filtered data to a file.
|
||||||
@ -79,7 +75,9 @@ InputFilter.dump_filename=../data/input_filter.dat
|
|||||||
|
|
||||||
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
||||||
;#These options are based on parameters of gnuradio's function: gr_remez.
|
;#These options are based on parameters of gnuradio's function: gr_remez.
|
||||||
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
|
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
|
||||||
|
;#reponse given a set of band edges, the desired reponse on those bands,
|
||||||
|
;#and the weight given to the error in those bands.
|
||||||
|
|
||||||
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
||||||
InputFilter.input_item_type=gr_complex
|
InputFilter.input_item_type=gr_complex
|
||||||
@ -125,12 +123,16 @@ InputFilter.filter_type=bandpass
|
|||||||
;The minimum value is 16; higher values are slower to compute the filter.
|
;The minimum value is 16; higher values are slower to compute the filter.
|
||||||
InputFilter.grid_density=16
|
InputFilter.grid_density=16
|
||||||
|
|
||||||
|
;# Original sampling frequency stored in the signal file
|
||||||
|
InputFilter.sampling_frequency=4092000
|
||||||
|
|
||||||
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||||
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||||
|
|
||||||
InputFilter.sampling_frequency=4000000
|
InputFilter.IF=5499998.47412109
|
||||||
InputFilter.IF=0
|
|
||||||
|
|
||||||
|
;# Decimation factor after the frequency tranaslating block
|
||||||
|
InputFilter.decimation_factor=8
|
||||||
|
|
||||||
|
|
||||||
;######### RESAMPLER CONFIG ############
|
;######### RESAMPLER CONFIG ############
|
||||||
@ -139,35 +141,43 @@ InputFilter.IF=0
|
|||||||
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
||||||
;#[Pass_Through] disables this block
|
;#[Pass_Through] disables this block
|
||||||
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
||||||
;Resampler.implementation=Direct_Resampler
|
|
||||||
Resampler.implementation=Pass_Through
|
Resampler.implementation=Pass_Through
|
||||||
|
|
||||||
;#dump: Dump the resamplered data to a file.
|
|
||||||
Resampler.dump=false
|
|
||||||
;#dump_filename: Log path and filename.
|
|
||||||
Resampler.dump_filename=../data/resampler.dat
|
|
||||||
|
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
|
||||||
Resampler.item_type=gr_complex
|
|
||||||
|
|
||||||
;#sample_freq_in: the sample frequency of the input signal
|
|
||||||
Resampler.sample_freq_in=8000000
|
|
||||||
|
|
||||||
;#sample_freq_out: the desired sample frequency of the output signal
|
|
||||||
Resampler.sample_freq_out=4000000
|
|
||||||
|
|
||||||
_1C
|
|
||||||
;######### CHANNELS GLOBAL CONFIG ############
|
;######### CHANNELS GLOBAL CONFIG ############
|
||||||
;#count: Number of available GPS satellite channels.
|
;#count: Number of available GPS satellite channels.
|
||||||
Channels_1C.count=8
|
Channels_1C.count=1
|
||||||
|
;#count: Number of available Galileo satellite channels.
|
||||||
|
Channels_1B.count=0
|
||||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||||
Channels.in_acquisition=1
|
Channels.in_acquisition=1
|
||||||
|
|
||||||
;#signal:
|
;#signal:
|
||||||
|
;# "1C" GPS L1 C/A
|
||||||
|
;# "2S" GPS L2 L2C (M)
|
||||||
|
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
|
||||||
|
;# "5X" GALILEO E5a I+Q
|
||||||
|
|
||||||
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
||||||
Channel.signal=1C
|
Channel0.signal=1C
|
||||||
|
Channel1.signal=1B
|
||||||
|
Channel2.signal=1B
|
||||||
|
Channel3.signal=1B
|
||||||
|
Channel4.signal=1B
|
||||||
|
Channel5.signal=1B
|
||||||
|
Channel6.signal=1B
|
||||||
|
Channel7.signal=1B
|
||||||
|
Channel8.signal=1B
|
||||||
|
Channel9.signal=1B
|
||||||
|
Channel10.signal=1B
|
||||||
|
Channel11.signal=1B
|
||||||
|
Channel12.signal=1B
|
||||||
|
Channel13.signal=1B
|
||||||
|
Channel14.signal=1B
|
||||||
|
Channel15.signal=1B
|
||||||
|
|
||||||
|
|
||||||
;######### ACQUISITION GLOBAL CONFIG ############
|
;######### GPS ACQUISITION CONFIG ############
|
||||||
|
|
||||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||||
Acquisition_1C.dump=false
|
Acquisition_1C.dump=false
|
||||||
;#filename: Log path and filename
|
;#filename: Log path and filename
|
||||||
@ -180,20 +190,44 @@ Acquisition_1C.if=0
|
|||||||
Acquisition_1C.sampled_ms=1
|
Acquisition_1C.sampled_ms=1
|
||||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||||
|
Acquisition_1C.use_CFAR_algorithm=false;
|
||||||
;#threshold: Acquisition threshold
|
;#threshold: Acquisition threshold
|
||||||
Acquisition_1C.threshold=0.008
|
Acquisition_1C.threshold=30
|
||||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
;Acquisition_1C.pfa=0.01
|
;Acquisition_1C.pfa=0.01
|
||||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||||
Acquisition_1C.doppler_max=10000
|
Acquisition_1C.doppler_max=5000
|
||||||
;#doppler_max: Doppler step in the grid search [Hz]
|
;#doppler_max: Doppler step in the grid search [Hz]
|
||||||
Acquisition_1C.doppler_step=500
|
Acquisition_1C.doppler_step=100
|
||||||
|
|
||||||
|
|
||||||
|
;######### GALILEO ACQUISITION CONFIG ############
|
||||||
|
|
||||||
;######### TRACKING GLOBAL CONFIG ############
|
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
|
Acquisition_1B.dump=false
|
||||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
|
;#filename: Log path and filename
|
||||||
|
Acquisition_1B.dump_filename=./acq_dump.dat
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
|
Acquisition_1B.item_type=gr_complex
|
||||||
|
;#if: Signal intermediate frequency in [Hz]
|
||||||
|
Acquisition_1B.if=0
|
||||||
|
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||||
|
Acquisition_1B.sampled_ms=4
|
||||||
|
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
|
||||||
|
;#threshold: Acquisition threshold
|
||||||
|
;Acquisition_1B.threshold=0
|
||||||
|
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
Acquisition_1B.pfa=0.0000002
|
||||||
|
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||||
|
Acquisition_1B.doppler_max=15000
|
||||||
|
;#doppler_max: Doppler step in the grid search [Hz]
|
||||||
|
Acquisition_1B.doppler_step=125
|
||||||
|
|
||||||
|
;######### TRACKING GPS CONFIG ############
|
||||||
|
|
||||||
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||||
|
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
Tracking_1C.item_type=gr_complex
|
Tracking_1C.item_type=gr_complex
|
||||||
|
|
||||||
@ -201,36 +235,83 @@ Tracking_1C.item_type=gr_complex
|
|||||||
Tracking_1C.if=0
|
Tracking_1C.if=0
|
||||||
|
|
||||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||||
Tracking_1C.dump=false
|
Tracking_1C.dump=true
|
||||||
|
|
||||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||||
Tracking_1C.dump_filename=./tracking_ch_
|
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||||
|
|
||||||
|
;# Extended correlation after telemetry bit synchronization
|
||||||
|
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
|
||||||
|
;# Longer integration period require more stable front-end LO
|
||||||
|
|
||||||
|
Tracking_1C.extend_correlation_ms=10
|
||||||
|
|
||||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.pll_bw_hz=50.0;
|
Tracking_1C.pll_bw_hz=40;
|
||||||
|
Tracking_1C.pll_bw_narrow_hz=25;
|
||||||
|
|
||||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.dll_bw_hz=2.0;
|
Tracking_1C.dll_bw_hz=2.0;
|
||||||
|
|
||||||
|
Tracking_1C.dll_bw_narrow_hz=2.0;
|
||||||
|
|
||||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.fll_bw_hz=10.0;
|
Tracking_1C.fll_bw_hz=2.0;
|
||||||
|
|
||||||
;#order: PLL/DLL loop filter order [2] or [3]
|
;#order: PLL/DLL loop filter order [2] or [3]
|
||||||
Tracking_1C.order=3;
|
Tracking_1C.order=3;
|
||||||
|
|
||||||
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
|
;######### TRACKING GALILEO CONFIG ############
|
||||||
Tracking_1C.early_late_space_chips=0.5;
|
|
||||||
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||||
|
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
|
Tracking_1B.item_type=gr_complex
|
||||||
|
|
||||||
|
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||||
|
Tracking_1B.if=0
|
||||||
|
|
||||||
|
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||||
|
Tracking_1B.dump=false
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||||
|
Tracking_1B.dump_filename=../data/veml_tracking_ch_
|
||||||
|
|
||||||
|
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.pll_bw_hz=15.0;
|
||||||
|
|
||||||
|
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.dll_bw_hz=2.0;
|
||||||
|
|
||||||
|
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.fll_bw_hz=10.0;
|
||||||
|
|
||||||
|
;#order: PLL/DLL loop filter order [2] or [3]
|
||||||
|
Tracking_1B.order=3;
|
||||||
|
|
||||||
|
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
|
||||||
|
Tracking_1B.early_late_space_chips=0.15;
|
||||||
|
|
||||||
|
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
|
||||||
|
Tracking_1B.very_early_late_space_chips=0.6;
|
||||||
|
|
||||||
|
|
||||||
;######### TELEMETRY DECODER GPS CONFIG ############
|
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||||
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
|
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
|
||||||
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||||
TelemetryDecoder_1C.dump=false
|
TelemetryDecoder_1C.dump=false
|
||||||
;#decimation factor
|
;#decimation factor
|
||||||
TelemetryDecoder_1C.decimation_factor=1;
|
TelemetryDecoder_1C.decimation_factor=4;
|
||||||
|
|
||||||
|
;######### TELEMETRY DECODER GALILEO CONFIG ############
|
||||||
|
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
|
||||||
|
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
|
||||||
|
TelemetryDecoder_1B.dump=false
|
||||||
|
TelemetryDecoder_1B_factor=4;
|
||||||
|
|
||||||
;######### OBSERVABLES CONFIG ############
|
;######### OBSERVABLES CONFIG ############
|
||||||
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
||||||
Observables.implementation=GPS_L1_CA_Observables
|
Observables.implementation=Hybrid_Observables
|
||||||
|
|
||||||
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
||||||
Observables.dump=false
|
Observables.dump=false
|
||||||
@ -241,40 +322,29 @@ Observables.dump_filename=./observables.dat
|
|||||||
|
|
||||||
;######### PVT CONFIG ############
|
;######### PVT CONFIG ############
|
||||||
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
||||||
PVT.implementation=GPS_L1_CA_PVT
|
PVT.implementation=Hybrid_PVT
|
||||||
|
|
||||||
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
||||||
PVT.averaging_depth=100
|
PVT.averaging_depth=10
|
||||||
|
|
||||||
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
||||||
PVT.flag_averaging=false
|
PVT.flag_averaging=false
|
||||||
|
|
||||||
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
||||||
PVT.output_rate_ms=10
|
PVT.output_rate_ms=10;
|
||||||
|
|
||||||
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
||||||
PVT.display_rate_ms=500
|
PVT.display_rate_ms=500;
|
||||||
|
|
||||||
;# KML, GeoJSON, NMEA and RTCM output configuration
|
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||||
|
PVT.dump=false
|
||||||
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
|
||||||
PVT.dump_filename=./PVT
|
|
||||||
|
|
||||||
;#nmea_dump_filename: NMEA log path and filename
|
|
||||||
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
|
|
||||||
|
|
||||||
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
|
|
||||||
PVT.flag_nmea_tty_port=false;
|
|
||||||
|
|
||||||
;#nmea_dump_devname: serial device descriptor for NMEA logging
|
|
||||||
PVT.nmea_dump_devname=/dev/pts/4
|
|
||||||
|
|
||||||
PVT.flag_rtcm_server=false
|
PVT.flag_rtcm_server=false
|
||||||
PVT.flag_rtcm_tty_port=false
|
PVT.flag_rtcm_tty_port=false
|
||||||
PVT.rtcm_dump_devname=/dev/pts/1
|
PVT.rtcm_dump_devname=/dev/pts/1
|
||||||
|
|
||||||
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||||
PVT.dump=true
|
PVT.dump_filename=./PVT
|
||||||
|
|
||||||
;######### OUTPUT_FILTER CONFIG ############
|
;######### OUTPUT_FILTER CONFIG ############
|
||||||
;# Receiver output filter: Leave this block disabled in this version
|
;# Receiver output filter: Leave this block disabled in this version
|
@ -19,7 +19,7 @@ ControlThread.wait_for_flowgraph=false
|
|||||||
SignalSource.implementation=Nsr_File_Signal_Source
|
SignalSource.implementation=Nsr_File_Signal_Source
|
||||||
|
|
||||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||||
SignalSource.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
|
SignalSource.filename=/media/javier/SISTEMA/signals/ifen/E1L1_FE0_Band0.stream
|
||||||
|
|
||||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
SignalSource.item_type=byte
|
SignalSource.item_type=byte
|
||||||
@ -150,7 +150,7 @@ Resampler.implementation=Pass_Through
|
|||||||
;#count: Number of available GPS satellite channels.
|
;#count: Number of available GPS satellite channels.
|
||||||
Channels_1C.count=8
|
Channels_1C.count=8
|
||||||
;#count: Number of available Galileo satellite channels.
|
;#count: Number of available Galileo satellite channels.
|
||||||
Channels_1B.count=8
|
Channels_1B.count=0
|
||||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||||
Channels.in_acquisition=1
|
Channels.in_acquisition=1
|
||||||
|
|
||||||
@ -198,7 +198,7 @@ Acquisition_1C.threshold=0.0075
|
|||||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
;Acquisition_1C.pfa=0.01
|
;Acquisition_1C.pfa=0.01
|
||||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||||
Acquisition_1C.doppler_max=10000
|
Acquisition_1C.doppler_max=5000
|
||||||
;#doppler_max: Doppler step in the grid search [Hz]
|
;#doppler_max: Doppler step in the grid search [Hz]
|
||||||
Acquisition_1C.doppler_step=500
|
Acquisition_1C.doppler_step=500
|
||||||
|
|
||||||
@ -242,11 +242,20 @@ Tracking_1C.dump=false
|
|||||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||||
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||||
|
|
||||||
|
;# Extended correlation after telemetry bit synchronization
|
||||||
|
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
|
||||||
|
;# Longer integration period require more stable front-end LO
|
||||||
|
|
||||||
|
Tracking_1C.extend_correlation_ms=10
|
||||||
|
|
||||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.pll_bw_hz=45.0;
|
|
||||||
|
Tracking_1C.pll_bw_hz=40;
|
||||||
|
Tracking_1C.pll_bw_narrow_hz=40;
|
||||||
|
|
||||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.dll_bw_hz=2.0;
|
Tracking_1C.dll_bw_hz=2.0;
|
||||||
|
Tracking_1C.dll_bw_narrow_hz=2.0;
|
||||||
|
|
||||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||||
Tracking_1C.fll_bw_hz=10.0;
|
Tracking_1C.fll_bw_hz=10.0;
|
||||||
|
@ -57,7 +57,7 @@ galileo_e1_ls_pvt::galileo_e1_ls_pvt(int nchannels, std::string dump_filename, b
|
|||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||||
}
|
}
|
||||||
@ -164,7 +164,7 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
|||||||
DLOG(INFO) << "obs="<< obs;
|
DLOG(INFO) << "obs="<< obs;
|
||||||
DLOG(INFO) << "W=" << W;
|
DLOG(INFO) << "W=" << W;
|
||||||
|
|
||||||
mypos = galileo_e1_ls_pvt::leastSquarePos(satpos, obs, W);
|
mypos = leastSquarePos(satpos, obs, W);
|
||||||
|
|
||||||
// Compute Gregorian time
|
// Compute Gregorian time
|
||||||
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
|
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
|
||||||
@ -176,7 +176,8 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
|||||||
|
|
||||||
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||||
|
|
||||||
galileo_e1_ls_pvt::cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||||
|
d_rx_dt_m = mypos(3)/GALILEO_C_m_s; // Convert RX time offset from meters to seconds
|
||||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||||
if (d_height_m > 50000)
|
if (d_height_m > 50000)
|
||||||
{
|
{
|
||||||
@ -185,10 +186,10 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
|
|||||||
}
|
}
|
||||||
DLOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
|
DLOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
|
||||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||||
<< " [deg], Height= " << d_height_m << " [m]";
|
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||||
|
|
||||||
// ###### Compute DOPs ########
|
// ###### Compute DOPs ########
|
||||||
galileo_e1_ls_pvt::compute_DOP();
|
compute_DOP();
|
||||||
|
|
||||||
// ######## LOG FILE #########
|
// ######## LOG FILE #########
|
||||||
if(d_flag_dump_enabled == true)
|
if(d_flag_dump_enabled == true)
|
||||||
|
@ -58,7 +58,7 @@ gps_l1_ca_ls_pvt::gps_l1_ca_ls_pvt(int nchannels, std::string dump_filename, boo
|
|||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||||
}
|
}
|
||||||
@ -167,11 +167,12 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
|||||||
DLOG(INFO) << "obs=" << obs;
|
DLOG(INFO) << "obs=" << obs;
|
||||||
DLOG(INFO) << "W=" << W;
|
DLOG(INFO) << "W=" << W;
|
||||||
|
|
||||||
mypos = gps_l1_ca_ls_pvt::leastSquarePos(satpos, obs, W);
|
mypos = leastSquarePos(satpos, obs, W);
|
||||||
|
|
||||||
DLOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
DLOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||||
|
|
||||||
gps_l1_ca_ls_pvt::cart2geo(mypos(0), mypos(1), mypos(2), 4);
|
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||||
|
|
||||||
|
d_rx_dt_m = mypos(3)/GPS_C_m_s; // Convert RX time offset from meters to seconds
|
||||||
|
|
||||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||||
if (d_height_m > 50000)
|
if (d_height_m > 50000)
|
||||||
@ -188,10 +189,10 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
|||||||
|
|
||||||
LOG(INFO) << "(new)Position at " << boost::posix_time::to_simple_string(p_time)
|
LOG(INFO) << "(new)Position at " << boost::posix_time::to_simple_string(p_time)
|
||||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||||
<< " [deg], Height= " << d_height_m << " [m]";
|
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||||
|
|
||||||
// ###### Compute DOPs ########
|
// ###### Compute DOPs ########
|
||||||
gps_l1_ca_ls_pvt::compute_DOP();
|
compute_DOP();
|
||||||
|
|
||||||
// ######## LOG FILE #########
|
// ######## LOG FILE #########
|
||||||
if(d_flag_dump_enabled == true)
|
if(d_flag_dump_enabled == true)
|
||||||
@ -225,14 +226,14 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
|
|||||||
tmp_double = d_height_m;
|
tmp_double = d_height_m;
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
|
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// MOVING AVERAGE PVT
|
// MOVING AVERAGE PVT
|
||||||
gps_l1_ca_ls_pvt::pos_averaging(flag_averaging);
|
pos_averaging(flag_averaging);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
@ -60,7 +60,7 @@ hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag
|
|||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||||
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
|
||||||
}
|
}
|
||||||
@ -98,8 +98,8 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
|||||||
int GPS_week = 0;
|
int GPS_week = 0;
|
||||||
double utc = 0.0;
|
double utc = 0.0;
|
||||||
double GST = 0.0;
|
double GST = 0.0;
|
||||||
double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
|
//double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
|
||||||
double TX_time_corrected_s;
|
double TX_time_corrected_s = 0.0;
|
||||||
double SV_clock_bias_s = 0.0;
|
double SV_clock_bias_s = 0.0;
|
||||||
|
|
||||||
d_flag_averaging = flag_averaging;
|
d_flag_averaging = flag_averaging;
|
||||||
@ -239,8 +239,8 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
|||||||
DLOG(INFO) << "obs="<< obs;
|
DLOG(INFO) << "obs="<< obs;
|
||||||
DLOG(INFO) << "W=" << W;
|
DLOG(INFO) << "W=" << W;
|
||||||
|
|
||||||
mypos = hybrid_ls_pvt::leastSquarePos(satpos, obs, W);
|
mypos = leastSquarePos(satpos, obs, W);
|
||||||
|
d_rx_dt_m = mypos(3)/GPS_C_m_s; // Convert RX time offset from meters to seconds
|
||||||
// Compute GST and Gregorian time
|
// Compute GST and Gregorian time
|
||||||
if( GST != 0.0)
|
if( GST != 0.0)
|
||||||
{
|
{
|
||||||
@ -251,30 +251,27 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
|||||||
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);
|
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);
|
||||||
}
|
}
|
||||||
// get time string Gregorian calendar
|
// get time string Gregorian calendar
|
||||||
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
|
double secondsperweek = 604800.0; // number of seconds in one week (7*24*60*60)
|
||||||
|
boost::posix_time::time_duration t = boost::posix_time::seconds(utc + secondsperweek * static_cast<double>(GPS_week));
|
||||||
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
|
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
|
||||||
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
|
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
|
||||||
d_position_UTC_time = p_time;
|
d_position_UTC_time = p_time;
|
||||||
DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
|
||||||
|
|
||||||
hybrid_ls_pvt::cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
|
||||||
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
//ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
|
||||||
if (d_height_m > 50000)
|
if (d_height_m > 50000)
|
||||||
{
|
{
|
||||||
b_valid_position = false;
|
b_valid_position = false;
|
||||||
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
||||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||||
<< " [deg], Height= " << d_height_m << " [m]";
|
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << mypos(3) << " [s]";
|
||||||
|
|
||||||
//std::cout << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
|
||||||
// << " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
|
||||||
// << " [deg], Height= " << d_height_m << " [m]" << std::endl;
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
|
||||||
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
|
||||||
<< " [deg], Height= " << d_height_m << " [m]";
|
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
|
||||||
|
|
||||||
// ###### Compute DOPs ########
|
// ###### Compute DOPs ########
|
||||||
hybrid_ls_pvt::compute_DOP();
|
hybrid_ls_pvt::compute_DOP();
|
||||||
@ -318,7 +315,7 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, do
|
|||||||
}
|
}
|
||||||
|
|
||||||
// MOVING AVERAGE PVT
|
// MOVING AVERAGE PVT
|
||||||
hybrid_ls_pvt::pos_averaging(flag_averaging);
|
pos_averaging(flag_averaging);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
@ -48,9 +48,10 @@ class Pvt_Solution
|
|||||||
public:
|
public:
|
||||||
Pvt_Solution();
|
Pvt_Solution();
|
||||||
|
|
||||||
double d_latitude_d;
|
double d_latitude_d; //!< RX position Latitude WGS84 [deg]
|
||||||
double d_longitude_d;
|
double d_longitude_d; //!< RX position Longitude WGS84 [deg]
|
||||||
double d_height_m;
|
double d_height_m; //!< RX position height WGS84 [m]
|
||||||
|
double d_rx_dt_m; //!< RX time offset [s]
|
||||||
|
|
||||||
boost::posix_time::ptime d_position_UTC_time;
|
boost::posix_time::ptime d_position_UTC_time;
|
||||||
|
|
||||||
|
@ -119,12 +119,17 @@ void Channel::connect(gr::top_block_sptr top_block)
|
|||||||
trk_->connect(top_block);
|
trk_->connect(top_block);
|
||||||
nav_->connect(top_block);
|
nav_->connect(top_block);
|
||||||
|
|
||||||
|
//Synchronous ports
|
||||||
top_block->connect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
|
top_block->connect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
|
||||||
DLOG(INFO) << "pass_through_ -> acquisition";
|
DLOG(INFO) << "pass_through_ -> acquisition";
|
||||||
top_block->connect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0);
|
top_block->connect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0);
|
||||||
DLOG(INFO) << "pass_through_ -> tracking";
|
DLOG(INFO) << "pass_through_ -> tracking";
|
||||||
top_block->connect(trk_->get_right_block(), 0, nav_->get_left_block(), 0);
|
top_block->connect(trk_->get_right_block(), 0, nav_->get_left_block(), 0);
|
||||||
DLOG(INFO) << "tracking -> telemetry_decoder";
|
DLOG(INFO) << "tracking -> telemetry_decoder";
|
||||||
|
|
||||||
|
// Message ports
|
||||||
|
top_block->msg_connect(nav_->get_left_block(),pmt::mp("preamble_timestamp_s"),trk_->get_right_block(),pmt::mp("preamble_timestamp_s"));
|
||||||
|
DLOG(INFO) << "MSG FEEDBACK CHANNEL telemetry_decoder -> tracking";
|
||||||
connected_ = true;
|
connected_ = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -23,7 +23,6 @@ set(GNSS_SPLIBS_SOURCES
|
|||||||
gnss_sdr_valve.cc
|
gnss_sdr_valve.cc
|
||||||
gnss_signal_processing.cc
|
gnss_signal_processing.cc
|
||||||
gps_sdr_signal_processing.cc
|
gps_sdr_signal_processing.cc
|
||||||
nco_lib.cc
|
|
||||||
pass_through.cc
|
pass_through.cc
|
||||||
galileo_e5_signal_processing.cc
|
galileo_e5_signal_processing.cc
|
||||||
complex_byte_to_float_x2.cc
|
complex_byte_to_float_x2.cc
|
||||||
|
@ -1,106 +0,0 @@
|
|||||||
/*!
|
|
||||||
* \file nco_lib.cc
|
|
||||||
* \brief A set of Numeric Controlled Oscillator (NCO) functions to generate the carrier wipeoff signal,
|
|
||||||
* regardless of system used
|
|
||||||
*
|
|
||||||
* \author Javier Arribas 2012, jarribas(at)cttc.es
|
|
||||||
*
|
|
||||||
* Detailed description of the file here if needed.
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
|
||||||
*
|
|
||||||
* GNSS-SDR is a software defined Global Navigation
|
|
||||||
* Satellite Systems receiver
|
|
||||||
*
|
|
||||||
* This file is part of GNSS-SDR.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
||||||
* it under the terms of the GNU General Public License as published by
|
|
||||||
* the Free Software Foundation, either version 3 of the License, or
|
|
||||||
* (at your option) any later version.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
||||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
* GNU General Public License for more details.
|
|
||||||
*
|
|
||||||
* You should have received a copy of the GNU General Public License
|
|
||||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "nco_lib.h"
|
|
||||||
#include <cmath>
|
|
||||||
|
|
||||||
|
|
||||||
void fxp_nco(std::complex<float> *dest, int n_samples, float start_phase_rad, float phase_step_rad)
|
|
||||||
{
|
|
||||||
int phase_rad_i;
|
|
||||||
phase_rad_i = gr::fxpt::float_to_fixed(start_phase_rad);
|
|
||||||
int phase_step_rad_i;
|
|
||||||
phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
|
||||||
float sin_f,cos_f;
|
|
||||||
|
|
||||||
for(int i = 0; i < n_samples; i++)
|
|
||||||
{
|
|
||||||
//using temp variables
|
|
||||||
gr::fxpt::sincos(-phase_rad_i,&sin_f,&cos_f);
|
|
||||||
dest[i] = gr_complex(cos_f, sin_f);
|
|
||||||
phase_rad_i += phase_step_rad_i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void fxp_nco_cpyref(std::complex<float> *dest, int n_samples, float start_phase_rad, float phase_step_rad)
|
|
||||||
{
|
|
||||||
int phase_rad_i;
|
|
||||||
phase_rad_i = gr::fxpt::float_to_fixed(start_phase_rad);
|
|
||||||
int phase_step_rad_i;
|
|
||||||
phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
|
||||||
|
|
||||||
float* vector_cpx;
|
|
||||||
vector_cpx = (float*)dest;
|
|
||||||
for(int i = 0; i < n_samples; i++)
|
|
||||||
{
|
|
||||||
//using references (maybe it can be a problem for c++11 ?)
|
|
||||||
//gr_fxpt::sincos(phase_rad_i,&d_carr_sign[i].imag(),&d_carr_sign[i].real());
|
|
||||||
gr::fxpt::sincos(-phase_rad_i, &vector_cpx[i*2+1], &vector_cpx[i*2]);
|
|
||||||
phase_rad_i += phase_step_rad_i;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void fxp_nco_IQ_split(float* I, float* Q , int n_samples,float start_phase_rad, float phase_step_rad)
|
|
||||||
{
|
|
||||||
int phase_rad_i;
|
|
||||||
phase_rad_i = gr::fxpt::float_to_fixed(start_phase_rad);
|
|
||||||
int phase_step_rad_i;
|
|
||||||
phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
|
||||||
|
|
||||||
float sin_f,cos_f;
|
|
||||||
for(int i = 0; i < n_samples; i++)
|
|
||||||
{
|
|
||||||
gr::fxpt::sincos(-phase_rad_i,&sin_f,&cos_f);
|
|
||||||
I[i] = cos_f;
|
|
||||||
Q[i] = sin_f;
|
|
||||||
phase_rad_i += phase_step_rad_i;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void std_nco(std::complex<float> *dest, int n_samples, float start_phase_rad, float phase_step_rad)
|
|
||||||
{
|
|
||||||
float phase_rad;
|
|
||||||
phase_rad = start_phase_rad;
|
|
||||||
|
|
||||||
for(int i = 0; i < n_samples; i++)
|
|
||||||
{
|
|
||||||
// Using std::cos and std::sin
|
|
||||||
dest[i] = gr_complex(std::cos(phase_rad), -std::sin(phase_rad));
|
|
||||||
phase_rad = phase_rad+phase_step_rad;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,87 +0,0 @@
|
|||||||
/*!
|
|
||||||
* \file nco_lib.h
|
|
||||||
* \brief A set of Numeric Controlled Oscillator (NCO) functions to generate the carrier wipeoff signal,
|
|
||||||
* regardless of system used
|
|
||||||
*
|
|
||||||
* \author Javier Arribas 2012, jarribas(at)cttc.es
|
|
||||||
*
|
|
||||||
* Detailed description of the file here if needed.
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
|
||||||
*
|
|
||||||
* GNSS-SDR is a software defined Global Navigation
|
|
||||||
* Satellite Systems receiver
|
|
||||||
*
|
|
||||||
* This file is part of GNSS-SDR.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
||||||
* it under the terms of the GNU General Public License as published by
|
|
||||||
* the Free Software Foundation, either version 3 of the License, or
|
|
||||||
* (at your option) any later version.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
||||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
* GNU General Public License for more details.
|
|
||||||
*
|
|
||||||
* You should have received a copy of the GNU General Public License
|
|
||||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#ifndef GNSS_SDR_NCO_LIB_CC_H_
|
|
||||||
#define GNSS_SDR_NCO_LIB_CC_H_
|
|
||||||
|
|
||||||
#include <gnuradio/fxpt.h>
|
|
||||||
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
|
|
||||||
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
|
|
||||||
* float phase_step_rad. This function uses a SSE CORDIC implementation.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void sse_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
|
|
||||||
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
|
|
||||||
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
|
|
||||||
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
|
|
||||||
* float phase_step_rad. This function uses the stdlib sin() and cos() implementation.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
|
|
||||||
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
|
|
||||||
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
void fxp_nco_cpyref(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
|
|
||||||
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Implements a complex conjugate exponential vector in two separated float arrays (In-phase and Quadrature)
|
|
||||||
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
|
|
||||||
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
void fxp_nco_IQ_split(float* I, float* Q, int n_samples,float start_phase_rad, float phase_step_rad);
|
|
||||||
|
|
||||||
#endif //NCO_LIB_CC_H
|
|
@ -45,7 +45,7 @@
|
|||||||
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
||||||
{
|
{
|
||||||
float code_phase_step_chips = 0.1;
|
float code_phase_step_chips = 0.1;
|
||||||
int code_length_chips = 1023;
|
int code_length_chips = 2046;
|
||||||
int num_out_vectors = 3;
|
int num_out_vectors = 3;
|
||||||
float* rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
float* rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
|
||||||
@ -73,7 +73,7 @@ static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_generic(lv_16sc_t* r
|
|||||||
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_a_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_a_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
||||||
{
|
{
|
||||||
float code_phase_step_chips = 0.1;
|
float code_phase_step_chips = 0.1;
|
||||||
int code_length_chips = 1023;
|
int code_length_chips = 2046;
|
||||||
int num_out_vectors = 3;
|
int num_out_vectors = 3;
|
||||||
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
@ -100,7 +100,7 @@ static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_a_sse2(lv_16sc_t* re
|
|||||||
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_u_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_u_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
||||||
{
|
{
|
||||||
float code_phase_step_chips = 0.1;
|
float code_phase_step_chips = 0.1;
|
||||||
int code_length_chips = 1023;
|
int code_length_chips = 2046;
|
||||||
int num_out_vectors = 3;
|
int num_out_vectors = 3;
|
||||||
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
@ -127,7 +127,7 @@ static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_u_sse2(lv_16sc_t* re
|
|||||||
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_resamplerxnpuppet_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, unsigned int num_points)
|
||||||
{
|
{
|
||||||
float code_phase_step_chips = 0.1;
|
float code_phase_step_chips = 0.1;
|
||||||
int code_length_chips = 1023;
|
int code_length_chips = 2046;
|
||||||
int num_out_vectors = 3;
|
int num_out_vectors = 3;
|
||||||
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
float * rem_code_phase_chips = (float*)volk_gnsssdr_malloc(sizeof(float) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
lv_16sc_t** result_aux = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
@ -0,0 +1,248 @@
|
|||||||
|
/*!
|
||||||
|
* \file volk_gnsssdr_32fc_resamplerxnpuppet_32fc.h
|
||||||
|
* \brief VOLK_GNSSSDR puppet for the multiple 16-bit complex vector resampler kernel.
|
||||||
|
* \authors <ul>
|
||||||
|
* <li> Carles Fernandez Prades 2016 cfernandez at cttc dot cat
|
||||||
|
* </ul>
|
||||||
|
*
|
||||||
|
* VOLK_GNSSSDR puppet for integrating the multiple resampler into the test system
|
||||||
|
*
|
||||||
|
* -------------------------------------------------------------------------
|
||||||
|
*
|
||||||
|
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||||
|
*
|
||||||
|
* GNSS-SDR is a software defined Global Navigation
|
||||||
|
* Satellite Systems receiver
|
||||||
|
*
|
||||||
|
* This file is part of GNSS-SDR.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
* -------------------------------------------------------------------------
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef INCLUDED_volk_gnsssdr_32fc_resamplerxnpuppet_32fc_H
|
||||||
|
#define INCLUDED_volk_gnsssdr_32fc_resamplerxnpuppet_32fc_H
|
||||||
|
|
||||||
|
#include "volk_gnsssdr/volk_gnsssdr_32fc_xn_resampler_32fc_xn.h"
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_generic(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_GENERIC */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_a_sse3(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_sse3(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE4_1
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_sse4_1(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE4_1
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_a_sse4_1(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_AVX
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_a_avx(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_AVX
|
||||||
|
static inline void volk_gnsssdr_32fc_resamplerxnpuppet_32fc_u_avx(lv_32fc_t* result, const lv_32fc_t* local_code, unsigned int num_points)
|
||||||
|
{
|
||||||
|
float code_phase_step_chips = 0.6;
|
||||||
|
int code_length_chips = 2046;
|
||||||
|
int num_out_vectors = 3;
|
||||||
|
float rem_code_phase_chips = -0.234;
|
||||||
|
|
||||||
|
float shifts_chips[3] = { -0.1, 0.0, 0.1 };
|
||||||
|
|
||||||
|
lv_32fc_t** result_aux = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_out_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
result_aux[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
|
||||||
|
|
||||||
|
memcpy((lv_32fc_t*)result, (lv_32fc_t*)result_aux[0], sizeof(lv_32fc_t) * num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_out_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(result_aux[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(result_aux);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // INCLUDED_volk_gnsssdr_32fc_resamplerpuppet_32fc_H
|
@ -0,0 +1,290 @@
|
|||||||
|
/*!
|
||||||
|
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
|
||||||
|
* \brief VOLK_GNSSSDR kernel: Resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||||
|
* \authors <ul>
|
||||||
|
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||||
|
* </ul>
|
||||||
|
*
|
||||||
|
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||||
|
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
|
||||||
|
* (i.e. it creates the Early, Prompt, and Late code replicas)
|
||||||
|
*
|
||||||
|
* -------------------------------------------------------------------------
|
||||||
|
*
|
||||||
|
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||||
|
*
|
||||||
|
* GNSS-SDR is a software defined Global Navigation
|
||||||
|
* Satellite Systems receiver
|
||||||
|
*
|
||||||
|
* This file is part of GNSS-SDR.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
* -------------------------------------------------------------------------
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* \page volk_gnsssdr_16ic_xn_resampler_16ic_xn
|
||||||
|
*
|
||||||
|
* \b Overview
|
||||||
|
*
|
||||||
|
* Resamples a complex vector (16-bit integer each component), providing \p num_out_vectors outputs.
|
||||||
|
*
|
||||||
|
* <b>Dispatcher Prototype</b>
|
||||||
|
* \code
|
||||||
|
* void volk_gnsssdr_16ic_xn_resampler_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||||
|
* \endcode
|
||||||
|
*
|
||||||
|
* \b Inputs
|
||||||
|
* \li local_code: One of the vectors to be multiplied.
|
||||||
|
* \li rem_code_phase_chips: Remnant code phase [chips].
|
||||||
|
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
|
||||||
|
* \li code_length_chips: Code length in chips.
|
||||||
|
* \li num_out_vectors Number of output vectors.
|
||||||
|
* \li num_output_samples: The number of data values to be in the resampled vector.
|
||||||
|
*
|
||||||
|
* \b Outputs
|
||||||
|
* \li result: Pointer to a vector of pointers where the results will be stored.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef INCLUDED_volk_gnsssdr_32fc_xn_resampler_32fc_xn_H
|
||||||
|
#define INCLUDED_volk_gnsssdr_32fc_xn_resampler_32fc_xn_H
|
||||||
|
|
||||||
|
#include <math.h>
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||||
|
|
||||||
|
//#pragma STDC FENV_ACCESS ON
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||||
|
{
|
||||||
|
int local_code_chip_index;
|
||||||
|
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||||
|
{
|
||||||
|
for (int n = 0; n < num_output_samples; n++)
|
||||||
|
{
|
||||||
|
// resample code for current tap
|
||||||
|
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||||
|
local_code_chip_index = local_code_chip_index % code_length_chips;
|
||||||
|
//Take into account that in multitap correlators, the shifts can be negative!
|
||||||
|
if (local_code_chip_index < 0) local_code_chip_index += code_length_chips;
|
||||||
|
result[current_correlator_tap][n] = local_code[local_code_chip_index];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /*LV_HAVE_GENERIC*/
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
#include <pmmintrin.h>
|
||||||
|
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||||
|
{
|
||||||
|
lv_32fc_t** _result = result;
|
||||||
|
const unsigned int quarterPoints = num_output_samples / 4;
|
||||||
|
|
||||||
|
const __m128 ones = _mm_set1_ps(1.0f);
|
||||||
|
const __m128 fours = _mm_set1_ps(4.0f);
|
||||||
|
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||||
|
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||||
|
|
||||||
|
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||||
|
int local_code_chip_index_;
|
||||||
|
|
||||||
|
const __m128i zeros = _mm_setzero_si128();
|
||||||
|
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
|
||||||
|
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
|
||||||
|
__m128i local_code_chip_index_reg, aux_i, negatives, i;
|
||||||
|
__m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
|
||||||
|
|
||||||
|
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||||
|
{
|
||||||
|
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
|
||||||
|
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||||
|
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
|
||||||
|
for(unsigned int n = 0; n < quarterPoints; n++)
|
||||||
|
{
|
||||||
|
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
|
||||||
|
aux = _mm_add_ps(aux, aux2);
|
||||||
|
// floor
|
||||||
|
i = _mm_cvttps_epi32(aux);
|
||||||
|
fi = _mm_cvtepi32_ps(i);
|
||||||
|
igx = _mm_cmpgt_ps(fi, aux);
|
||||||
|
j = _mm_and_ps(igx, ones);
|
||||||
|
aux = _mm_sub_ps(fi, j);
|
||||||
|
// fmod
|
||||||
|
c = _mm_div_ps(aux, code_length_chips_reg_f);
|
||||||
|
i = _mm_cvttps_epi32(c);
|
||||||
|
cTrunc = _mm_cvtepi32_ps(i);
|
||||||
|
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||||
|
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
|
||||||
|
|
||||||
|
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
|
||||||
|
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
|
||||||
|
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
|
||||||
|
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
|
||||||
|
for(unsigned int k = 0; k < 4; ++k)
|
||||||
|
{
|
||||||
|
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||||
|
}
|
||||||
|
indexn = _mm_add_ps(indexn, fours);
|
||||||
|
}
|
||||||
|
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||||
|
{
|
||||||
|
// resample code for current tap
|
||||||
|
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||||
|
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||||
|
//Take into account that in multitap correlators, the shifts can be negative!
|
||||||
|
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||||
|
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE4_1
|
||||||
|
#include <smmintrin.h>
|
||||||
|
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||||
|
{
|
||||||
|
lv_32fc_t** _result = result;
|
||||||
|
const unsigned int quarterPoints = num_output_samples / 4;
|
||||||
|
|
||||||
|
const __m128 fours = _mm_set1_ps(4.0f);
|
||||||
|
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||||
|
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||||
|
|
||||||
|
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||||
|
int local_code_chip_index_;
|
||||||
|
|
||||||
|
const __m128i zeros = _mm_setzero_si128();
|
||||||
|
const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
|
||||||
|
const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
|
||||||
|
__m128i local_code_chip_index_reg, aux_i, negatives, i;
|
||||||
|
__m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
|
||||||
|
|
||||||
|
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||||
|
{
|
||||||
|
shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
|
||||||
|
aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||||
|
__m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
|
||||||
|
for(unsigned int n = 0; n < quarterPoints; n++)
|
||||||
|
{
|
||||||
|
aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
|
||||||
|
aux = _mm_add_ps(aux, aux2);
|
||||||
|
// floor
|
||||||
|
aux = _mm_floor_ps(aux);
|
||||||
|
|
||||||
|
// fmod
|
||||||
|
c = _mm_div_ps(aux, code_length_chips_reg_f);
|
||||||
|
i = _mm_cvttps_epi32(c);
|
||||||
|
cTrunc = _mm_cvtepi32_ps(i);
|
||||||
|
base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||||
|
local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
|
||||||
|
|
||||||
|
negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
|
||||||
|
aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
|
||||||
|
local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
|
||||||
|
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
|
||||||
|
for(unsigned int k = 0; k < 4; ++k)
|
||||||
|
{
|
||||||
|
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||||
|
}
|
||||||
|
indexn = _mm_add_ps(indexn, fours);
|
||||||
|
}
|
||||||
|
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||||
|
{
|
||||||
|
// resample code for current tap
|
||||||
|
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||||
|
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||||
|
//Take into account that in multitap correlators, the shifts can be negative!
|
||||||
|
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||||
|
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_AVX
|
||||||
|
#include <immintrin.h>
|
||||||
|
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||||
|
{
|
||||||
|
lv_32fc_t** _result = result;
|
||||||
|
const unsigned int avx_iters = num_output_samples / 8;
|
||||||
|
|
||||||
|
const __m256 eights = _mm256_set1_ps(8.0f);
|
||||||
|
const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
|
||||||
|
const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
|
||||||
|
|
||||||
|
__attribute__((aligned(32))) int local_code_chip_index[8];
|
||||||
|
int local_code_chip_index_;
|
||||||
|
|
||||||
|
const __m256 zeros = _mm256_setzero_ps();
|
||||||
|
const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
|
||||||
|
|
||||||
|
__m256i local_code_chip_index_reg, i;
|
||||||
|
__m256 aux, aux2, shifts_chips_reg, c, cTrunc, base, negatives;
|
||||||
|
|
||||||
|
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||||
|
{
|
||||||
|
shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
|
||||||
|
aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||||
|
__m256 indexn = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
|
||||||
|
for(unsigned int n = 0; n < avx_iters; n++)
|
||||||
|
{
|
||||||
|
aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
|
||||||
|
aux = _mm256_add_ps(aux, aux2);
|
||||||
|
// floor
|
||||||
|
aux = _mm256_floor_ps(aux);
|
||||||
|
|
||||||
|
// fmod
|
||||||
|
c = _mm256_div_ps(aux, code_length_chips_reg_f);
|
||||||
|
i = _mm256_cvttps_epi32(c);
|
||||||
|
cTrunc = _mm256_cvtepi32_ps(i);
|
||||||
|
base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
|
||||||
|
aux = _mm256_sub_ps(aux, base);
|
||||||
|
|
||||||
|
negatives = _mm256_cmp_ps(aux, zeros, 0x01);
|
||||||
|
aux2 = _mm256_and_ps(code_length_chips_reg_f, negatives);
|
||||||
|
local_code_chip_index_reg = _mm256_cvtps_epi32(_mm256_add_ps(aux, aux2));
|
||||||
|
_mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
|
||||||
|
for(unsigned int k = 0; k < 8; ++k)
|
||||||
|
{
|
||||||
|
_result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
|
||||||
|
}
|
||||||
|
indexn = _mm256_add_ps(indexn, eights);
|
||||||
|
}
|
||||||
|
_mm256_zeroupper();
|
||||||
|
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
|
||||||
|
{
|
||||||
|
// resample code for current tap
|
||||||
|
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||||
|
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||||
|
//Take into account that in multitap correlators, the shifts can be negative!
|
||||||
|
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||||
|
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_H*/
|
||||||
|
|
@ -87,6 +87,7 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
|
|||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params_int1))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params_int1))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
|
||||||
|
(VOLK_INIT_PUPP(volk_gnsssdr_32fc_resamplerxnpuppet_32fc, volk_gnsssdr_32fc_xn_resampler_32fc_xn, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc, volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn, test_params_int1))
|
(VOLK_INIT_PUPP(volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc, volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn, test_params_int1))
|
||||||
|
@ -120,6 +120,8 @@ galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
|
|||||||
gr::block("galileo_e1b_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
gr::block("galileo_e1b_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry Bit transition synchronization port out
|
||||||
|
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
|
@ -197,6 +197,8 @@ galileo_e5a_telemetry_decoder_cc::galileo_e5a_telemetry_decoder_cc(
|
|||||||
gr::block("galileo_e5a_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
gr::block("galileo_e5a_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry Bit transition synchronization port out
|
||||||
|
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
|
@ -29,11 +29,6 @@
|
|||||||
* -------------------------------------------------------------------------
|
* -------------------------------------------------------------------------
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*!
|
|
||||||
* \todo Clean this code and move the telemetry definitions to GPS_L1_CA system definitions file
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
#include "gps_l1_ca_telemetry_decoder_cc.h"
|
#include "gps_l1_ca_telemetry_decoder_cc.h"
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <boost/lexical_cast.hpp>
|
#include <boost/lexical_cast.hpp>
|
||||||
@ -47,29 +42,17 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
using google::LogMessage;
|
using google::LogMessage;
|
||||||
/*!
|
|
||||||
* \todo name and move the magic numbers to GPS_L1_CA.h
|
|
||||||
*/
|
|
||||||
gps_l1_ca_telemetry_decoder_cc_sptr
|
gps_l1_ca_telemetry_decoder_cc_sptr
|
||||||
gps_l1_ca_make_telemetry_decoder_cc(Gnss_Satellite satellite, boost::shared_ptr<gr::msg_queue> queue, bool dump)
|
gps_l1_ca_make_telemetry_decoder_cc(Gnss_Satellite satellite, boost::shared_ptr<gr::msg_queue> queue, bool dump)
|
||||||
{
|
{
|
||||||
return gps_l1_ca_telemetry_decoder_cc_sptr(new gps_l1_ca_telemetry_decoder_cc(satellite, queue, dump));
|
return gps_l1_ca_telemetry_decoder_cc_sptr(new gps_l1_ca_telemetry_decoder_cc(satellite, queue, dump));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
|
void gps_l1_ca_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
|
||||||
{
|
{
|
||||||
if (noutput_items != 0)
|
ninput_items_required[0] = GPS_CA_PREAMBLE_LENGTH_SYMBOLS; //set the required sample history
|
||||||
{
|
|
||||||
for (unsigned i = 0; i < 3; i++)
|
|
||||||
{
|
|
||||||
ninput_items_required[i] = d_samples_per_bit * 8; //set the required sample history
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
||||||
Gnss_Satellite satellite,
|
Gnss_Satellite satellite,
|
||||||
@ -78,24 +61,24 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
|||||||
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry Bit transition synchronization port out
|
||||||
|
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||||
d_samples_per_bit = ( GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS ) / GPS_CA_TELEMETRY_RATE_BITS_SECOND;
|
|
||||||
//d_preamble_duration_seconds = (1.0 / GPS_CA_TELEMETRY_RATE_BITS_SECOND) * GPS_CA_PREAMBLE_LENGTH_BITS;
|
|
||||||
//std::cout<<"d_preamble_duration_seconds="<<d_preamble_duration_seconds<<"\r\n";
|
|
||||||
// set the preamble
|
// set the preamble
|
||||||
unsigned short int preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE;
|
unsigned short int preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE;
|
||||||
|
|
||||||
memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GPS_CA_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
|
memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GPS_CA_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
|
||||||
|
|
||||||
// preamble bits to sampled symbols
|
// preamble bits to sampled symbols
|
||||||
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_BITS * d_samples_per_bit);
|
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_SYMBOLS);
|
||||||
int n = 0;
|
int n = 0;
|
||||||
for (int i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++)
|
for (int i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++)
|
||||||
{
|
{
|
||||||
for (unsigned int j = 0; j < d_samples_per_bit; j++)
|
for (unsigned int j = 0; j < GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; j++)
|
||||||
{
|
{
|
||||||
if (d_preambles_bits[i] == 1)
|
if (d_preambles_bits[i] == 1)
|
||||||
{
|
{
|
||||||
@ -108,10 +91,7 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
|||||||
n++;
|
n++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
d_sample_counter = 0;
|
|
||||||
//d_preamble_code_phase_seconds = 0;
|
|
||||||
d_stat = 0;
|
d_stat = 0;
|
||||||
d_preamble_index = 0;
|
|
||||||
d_symbol_accumulator = 0;
|
d_symbol_accumulator = 0;
|
||||||
d_symbol_accumulator_counter = 0;
|
d_symbol_accumulator_counter = 0;
|
||||||
d_frame_bit_index = 0;
|
d_frame_bit_index = 0;
|
||||||
@ -130,7 +110,6 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
|
|||||||
d_channel = 0;
|
d_channel = 0;
|
||||||
Prn_timestamp_at_preamble_ms = 0.0;
|
Prn_timestamp_at_preamble_ms = 0.0;
|
||||||
flag_PLL_180_deg_phase_locked = false;
|
flag_PLL_180_deg_phase_locked = false;
|
||||||
//set_history(d_samples_per_bit*8); // At least a history of 8 bits are needed to correlate with the preamble
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -140,8 +119,6 @@ gps_l1_ca_telemetry_decoder_cc::~gps_l1_ca_telemetry_decoder_cc()
|
|||||||
d_dump_file.close();
|
d_dump_file.close();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
bool gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(unsigned int gpsword)
|
bool gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(unsigned int gpsword)
|
||||||
{
|
{
|
||||||
unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity;
|
unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity;
|
||||||
@ -169,88 +146,94 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
|
|||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||||
{
|
{
|
||||||
int corr_value = 0;
|
int corr_value = 0;
|
||||||
int preamble_diff = 0;
|
int preamble_diff_ms = 0;
|
||||||
|
|
||||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||||
d_sample_counter++; //count for the processed samples
|
|
||||||
|
|
||||||
// ########### Output the tracking data to navigation and PVT ##########
|
// ########### Output the tracking data to navigation and PVT ##########
|
||||||
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
|
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
|
||||||
|
|
||||||
// TODO Optimize me!
|
|
||||||
//******* preamble correlation ********
|
//******* preamble correlation ********
|
||||||
for (unsigned int i = 0; i < d_samples_per_bit*8; i++)
|
for (unsigned int i = 0; i < GPS_CA_PREAMBLE_LENGTH_SYMBOLS; i++)
|
||||||
|
{
|
||||||
|
if (in[0][i].Flag_valid_symbol_output == true)
|
||||||
{
|
{
|
||||||
if (in[0][i].Prompt_I < 0) // symbols clipping
|
if (in[0][i].Prompt_I < 0) // symbols clipping
|
||||||
{
|
{
|
||||||
corr_value -= d_preambles_symbols[i];
|
corr_value -= d_preambles_symbols[i] * in[0][i].correlation_length_ms;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
corr_value += d_preambles_symbols[i];
|
corr_value += d_preambles_symbols[i] * in[0][i].correlation_length_ms;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
if (corr_value >= GPS_CA_PREAMBLE_LENGTH_SYMBOLS) break;
|
||||||
|
}
|
||||||
d_flag_preamble = false;
|
d_flag_preamble = false;
|
||||||
|
|
||||||
//******* frame sync ******************
|
//******* frame sync ******************
|
||||||
if (abs(corr_value) >= 160)
|
if (abs(corr_value) == GPS_CA_PREAMBLE_LENGTH_SYMBOLS)
|
||||||
{
|
{
|
||||||
//TODO: Rewrite with state machine
|
|
||||||
if (d_stat == 0)
|
if (d_stat == 0)
|
||||||
{
|
{
|
||||||
d_GPS_FSM.Event_gps_word_preamble();
|
d_GPS_FSM.Event_gps_word_preamble();
|
||||||
d_preamble_index = d_sample_counter;//record the preamble sample stamp
|
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs; // record the preamble sample stamp
|
||||||
LOG(INFO) << "Preamble detection for SAT " << this->d_satellite;
|
DLOG(INFO) << "Preamble detection for SAT " << this->d_satellite << "in[0][0].Tracking_timestamp_secs=" << round(in[0][0].Tracking_timestamp_secs * 1000.0);
|
||||||
d_symbol_accumulator = 0; //sync the symbol to bits integrator
|
//sync the symbol to bits integrator
|
||||||
|
d_symbol_accumulator = 0;
|
||||||
d_symbol_accumulator_counter = 0;
|
d_symbol_accumulator_counter = 0;
|
||||||
d_frame_bit_index = 8;
|
d_frame_bit_index = 0;
|
||||||
d_stat = 1; // enter into frame pre-detection status
|
d_stat = 1; // enter into frame pre-detection status
|
||||||
}
|
}
|
||||||
else if (d_stat == 1) //check 6 seconds of preamble separation
|
else if (d_stat == 1) //check 6 seconds of preamble separation
|
||||||
{
|
{
|
||||||
preamble_diff = d_sample_counter - d_preamble_index;
|
preamble_diff_ms = round((in[0][0].Tracking_timestamp_secs - d_preamble_time_seconds) * 1000.0);
|
||||||
if (abs(preamble_diff - 6000) < 1)
|
if (abs(preamble_diff_ms - GPS_SUBFRAME_MS) < 1)
|
||||||
{
|
{
|
||||||
|
DLOG(INFO) << "Preamble confirmation for SAT " << this->d_satellite << "in[0][0].Tracking_timestamp_secs=" << round(in[0][0].Tracking_timestamp_secs * 1000.0);
|
||||||
d_GPS_FSM.Event_gps_word_preamble();
|
d_GPS_FSM.Event_gps_word_preamble();
|
||||||
d_flag_preamble = true;
|
d_flag_preamble = true;
|
||||||
d_preamble_index = d_sample_counter; //record the preamble sample stamp (t_P)
|
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs; // record the PRN start sample index associated to the preamble
|
||||||
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;// - d_preamble_duration_seconds; //record the PRN start sample index associated to the preamble
|
|
||||||
|
|
||||||
if (!d_flag_frame_sync)
|
if (!d_flag_frame_sync)
|
||||||
{
|
{
|
||||||
|
// send asynchronous message to tracking to inform of frame sync and extend correlation time
|
||||||
|
pmt::pmt_t value = pmt::from_double(d_preamble_time_seconds - 0.001);
|
||||||
|
this->message_port_pub(pmt::mp("preamble_timestamp_s"), value);
|
||||||
|
|
||||||
d_flag_frame_sync = true;
|
d_flag_frame_sync = true;
|
||||||
if (corr_value < 0)
|
if (corr_value < 0)
|
||||||
{
|
{
|
||||||
flag_PLL_180_deg_phase_locked = true; // PLL is locked to opposite phase!
|
flag_PLL_180_deg_phase_locked = true; // PLL is locked to opposite phase!
|
||||||
LOG(INFO) << " PLL in opposite phase for Sat "<< this->d_satellite.get_PRN();
|
DLOG(INFO) << " PLL in opposite phase for Sat "<< this->d_satellite.get_PRN();
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
flag_PLL_180_deg_phase_locked = false;
|
flag_PLL_180_deg_phase_locked = false;
|
||||||
}
|
}
|
||||||
LOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
|
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if (d_stat == 1)
|
if (preamble_diff_ms > GPS_SUBFRAME_MS+1)
|
||||||
{
|
{
|
||||||
preamble_diff = d_sample_counter - d_preamble_index;
|
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff_ms= " << preamble_diff_ms;
|
||||||
if (preamble_diff > 6001)
|
|
||||||
{
|
|
||||||
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff;
|
|
||||||
d_stat = 0; // lost of frame sync
|
d_stat = 0; // lost of frame sync
|
||||||
d_flag_frame_sync = false;
|
d_flag_frame_sync = false;
|
||||||
flag_TOW_set = false;
|
flag_TOW_set = false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
//******* SYMBOL TO BIT *******
|
//******* SYMBOL TO BIT *******
|
||||||
d_symbol_accumulator += in[0][d_samples_per_bit*8 - 1].Prompt_I; // accumulate the input value in d_symbol_accumulator
|
|
||||||
d_symbol_accumulator_counter++;
|
if (in[0][0].Flag_valid_symbol_output == true)
|
||||||
|
{
|
||||||
|
// extended correlation to bit period is enabled in tracking!
|
||||||
|
d_symbol_accumulator += in[0][0].Prompt_I; // accumulate the input value in d_symbol_accumulator
|
||||||
|
d_symbol_accumulator_counter += in[0][0].correlation_length_ms;
|
||||||
|
}
|
||||||
if (d_symbol_accumulator_counter == 20)
|
if (d_symbol_accumulator_counter == 20)
|
||||||
{
|
{
|
||||||
if (d_symbol_accumulator > 0)
|
if (d_symbol_accumulator > 0)
|
||||||
@ -356,7 +339,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
|
|||||||
tmp_double = d_TOW_at_Preamble;
|
tmp_double = d_TOW_at_Preamble;
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure & e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
||||||
}
|
}
|
||||||
@ -425,4 +408,3 @@ void gps_l1_ca_telemetry_decoder_cc::set_channel(int channel)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -100,13 +100,12 @@ private:
|
|||||||
// class private vars
|
// class private vars
|
||||||
|
|
||||||
int *d_preambles_symbols;
|
int *d_preambles_symbols;
|
||||||
unsigned int d_samples_per_bit;
|
|
||||||
long unsigned int d_sample_counter;
|
|
||||||
long unsigned int d_preamble_index;
|
|
||||||
unsigned int d_stat;
|
unsigned int d_stat;
|
||||||
bool d_flag_frame_sync;
|
bool d_flag_frame_sync;
|
||||||
|
|
||||||
// symbols
|
// symbols
|
||||||
|
std::deque<double> d_symbol_history;
|
||||||
|
std::deque<int> d_correlation_length_ms_history;
|
||||||
double d_symbol_accumulator;
|
double d_symbol_accumulator;
|
||||||
short int d_symbol_accumulator_counter;
|
short int d_symbol_accumulator_counter;
|
||||||
|
|
||||||
@ -132,16 +131,10 @@ private:
|
|||||||
Gnss_Satellite d_satellite;
|
Gnss_Satellite d_satellite;
|
||||||
int d_channel;
|
int d_channel;
|
||||||
|
|
||||||
//std::deque<double> d_prn_start_sample_history;
|
|
||||||
|
|
||||||
double d_preamble_time_seconds;
|
double d_preamble_time_seconds;
|
||||||
|
|
||||||
double d_TOW_at_Preamble;
|
double d_TOW_at_Preamble;
|
||||||
double d_TOW_at_current_symbol;
|
double d_TOW_at_current_symbol;
|
||||||
std::deque<double> d_symbol_TOW_queue_s;
|
|
||||||
// Doppler and Phase accumulator queue for interpolation in Observables
|
|
||||||
std::deque<double> d_carrier_doppler_queue_hz;
|
|
||||||
std::deque<double> d_acc_carrier_phase_queue_rads;
|
|
||||||
|
|
||||||
double Prn_timestamp_at_preamble_ms;
|
double Prn_timestamp_at_preamble_ms;
|
||||||
bool flag_TOW_set;
|
bool flag_TOW_set;
|
||||||
|
@ -63,6 +63,8 @@ gps_l2_m_telemetry_decoder_cc::gps_l2_m_telemetry_decoder_cc(
|
|||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry Bit transition synchronization port out
|
||||||
|
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||||
|
@ -63,6 +63,8 @@ sbas_l1_telemetry_decoder_cc::sbas_l1_telemetry_decoder_cc(
|
|||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry Bit transition synchronization port out
|
||||||
|
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
|
||||||
|
@ -60,7 +60,9 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
|||||||
std::string dump_filename;
|
std::string dump_filename;
|
||||||
std::string default_item_type = "gr_complex";
|
std::string default_item_type = "gr_complex";
|
||||||
float pll_bw_hz;
|
float pll_bw_hz;
|
||||||
|
float pll_bw_narrow_hz;
|
||||||
float dll_bw_hz;
|
float dll_bw_hz;
|
||||||
|
float dll_bw_narrow_hz;
|
||||||
float early_late_space_chips;
|
float early_late_space_chips;
|
||||||
item_type_ = configuration->property(role + ".item_type", default_item_type);
|
item_type_ = configuration->property(role + ".item_type", default_item_type);
|
||||||
//vector_length = configuration->property(role + ".vector_length", 2048);
|
//vector_length = configuration->property(role + ".vector_length", 2048);
|
||||||
@ -69,6 +71,11 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
|||||||
dump = configuration->property(role + ".dump", false);
|
dump = configuration->property(role + ".dump", false);
|
||||||
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
||||||
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
|
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
|
||||||
|
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 20.0);
|
||||||
|
dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 2.0);
|
||||||
|
int extend_correlation_ms;
|
||||||
|
extend_correlation_ms = configuration->property(role + ".extend_correlation_ms", 1);
|
||||||
|
|
||||||
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
||||||
std::string default_dump_filename = "./track_ch";
|
std::string default_dump_filename = "./track_ch";
|
||||||
dump_filename = configuration->property(role + ".dump_filename",
|
dump_filename = configuration->property(role + ".dump_filename",
|
||||||
@ -88,6 +95,9 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
|||||||
dump_filename,
|
dump_filename,
|
||||||
pll_bw_hz,
|
pll_bw_hz,
|
||||||
dll_bw_hz,
|
dll_bw_hz,
|
||||||
|
pll_bw_narrow_hz,
|
||||||
|
dll_bw_narrow_hz,
|
||||||
|
extend_correlation_ms,
|
||||||
early_late_space_chips);
|
early_late_space_chips);
|
||||||
DLOG(INFO) << "tracking(" << tracking_cc->unique_id() << ")";
|
DLOG(INFO) << "tracking(" << tracking_cc->unique_id() << ")";
|
||||||
}else if(item_type_.compare("cshort") == 0)
|
}else if(item_type_.compare("cshort") == 0)
|
||||||
@ -102,6 +112,8 @@ GpsL1CaDllPllCAidTracking::GpsL1CaDllPllCAidTracking(
|
|||||||
dump_filename,
|
dump_filename,
|
||||||
pll_bw_hz,
|
pll_bw_hz,
|
||||||
dll_bw_hz,
|
dll_bw_hz,
|
||||||
|
pll_bw_narrow_hz,
|
||||||
|
dll_bw_narrow_hz,
|
||||||
early_late_space_chips);
|
early_late_space_chips);
|
||||||
DLOG(INFO) << "tracking(" << tracking_sc->unique_id() << ")";
|
DLOG(INFO) << "tracking(" << tracking_sc->unique_id() << ")";
|
||||||
}else
|
}else
|
||||||
|
@ -41,9 +41,8 @@
|
|||||||
#include <sstream>
|
#include <sstream>
|
||||||
#include <boost/lexical_cast.hpp>
|
#include <boost/lexical_cast.hpp>
|
||||||
#include <gnuradio/io_signature.h>
|
#include <gnuradio/io_signature.h>
|
||||||
#include <gnuradio/fxpt.h> // fixed point sine and cosine
|
|
||||||
#include <glog/logging.h>
|
#include <glog/logging.h>
|
||||||
#include <volk/volk.h>
|
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||||
#include "galileo_e1_signal_processing.h"
|
#include "galileo_e1_signal_processing.h"
|
||||||
#include "tracking_discriminators.h"
|
#include "tracking_discriminators.h"
|
||||||
#include "lock_detectors.h"
|
#include "lock_detectors.h"
|
||||||
@ -105,6 +104,8 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
|||||||
gr::block("galileo_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("galileo_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
this->set_relative_rate(1.0 / vector_length);
|
this->set_relative_rate(1.0 / vector_length);
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
@ -128,11 +129,11 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
||||||
d_ca_code = static_cast<gr_complex*>(volk_malloc((2*Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
|
d_ca_code = static_cast<gr_complex*>(volk_gnsssdr_malloc((2*Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
d_n_correlator_taps = 5; // Very-Early, Early, Prompt, Late, Very-Late
|
d_n_correlator_taps = 5; // Very-Early, Early, Prompt, Late, Very-Late
|
||||||
d_correlator_outs = static_cast<gr_complex*>(volk_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_get_alignment()));
|
d_correlator_outs = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||||
{
|
{
|
||||||
d_correlator_outs[n] = gr_complex(0,0);
|
d_correlator_outs[n] = gr_complex(0,0);
|
||||||
@ -144,7 +145,7 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
|||||||
d_Late = &d_correlator_outs[3];
|
d_Late = &d_correlator_outs[3];
|
||||||
d_Very_Late = &d_correlator_outs[4];
|
d_Very_Late = &d_correlator_outs[4];
|
||||||
|
|
||||||
d_local_code_shift_chips = static_cast<float*>(volk_malloc(d_n_correlator_taps*sizeof(float), volk_get_alignment()));
|
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||||
// Set TAPs delay values [chips]
|
// Set TAPs delay values [chips]
|
||||||
d_local_code_shift_chips[0] = - d_very_early_late_spc_chips * 2.0;
|
d_local_code_shift_chips[0] = - d_very_early_late_spc_chips * 2.0;
|
||||||
d_local_code_shift_chips[1] = - d_very_early_late_spc_chips;
|
d_local_code_shift_chips[1] = - d_very_early_late_spc_chips;
|
||||||
@ -252,9 +253,9 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
|
|||||||
{
|
{
|
||||||
d_dump_file.close();
|
d_dump_file.close();
|
||||||
|
|
||||||
volk_free(d_local_code_shift_chips);
|
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||||
volk_free(d_correlator_outs);
|
volk_gnsssdr_free(d_correlator_outs);
|
||||||
volk_free(d_ca_code);
|
volk_gnsssdr_free(d_ca_code);
|
||||||
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
multicorrelator_cpu.free();
|
multicorrelator_cpu.free();
|
||||||
|
@ -108,6 +108,9 @@ Galileo_E1_Tcp_Connector_Tracking_cc::Galileo_E1_Tcp_Connector_Tracking_cc(
|
|||||||
gr::block("Galileo_E1_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Galileo_E1_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
|
|
||||||
this->set_relative_rate(1.0/vector_length);
|
this->set_relative_rate(1.0/vector_length);
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
|
@ -108,6 +108,9 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
|||||||
gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
|
|
||||||
this->set_relative_rate(1.0 / vector_length);
|
this->set_relative_rate(1.0 / vector_length);
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
|
@ -72,7 +72,6 @@ gps_l1_ca_dll_fll_pll_tracking_cc_sptr gps_l1_ca_dll_fll_pll_make_tracking_cc(
|
|||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
float early_late_space_chips)
|
float early_late_space_chips)
|
||||||
{
|
{
|
||||||
|
|
||||||
return gps_l1_ca_dll_fll_pll_tracking_cc_sptr(new Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(if_freq,
|
return gps_l1_ca_dll_fll_pll_tracking_cc_sptr(new Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(if_freq,
|
||||||
fs_in, vector_length, queue, dump, dump_filename, order, fll_bw_hz, pll_bw_hz,dll_bw_hz,
|
fs_in, vector_length, queue, dump, dump_filename, order, fll_bw_hz, pll_bw_hz,dll_bw_hz,
|
||||||
early_late_space_chips));
|
early_late_space_chips));
|
||||||
@ -105,6 +104,8 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
|
|||||||
gr::block("Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -289,17 +290,6 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_code()
|
|||||||
|
|
||||||
memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
|
memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
|
||||||
memcpy(d_late_code, &d_early_code[early_late_spc_samples*2], d_current_prn_length_samples * sizeof(gr_complex));
|
memcpy(d_late_code, &d_early_code[early_late_spc_samples*2], d_current_prn_length_samples * sizeof(gr_complex));
|
||||||
|
|
||||||
// for (int i=0; i<d_current_prn_length_samples; i++)
|
|
||||||
// {
|
|
||||||
// associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
|
|
||||||
// d_early_code[i] = d_ca_code[associated_chip_index];
|
|
||||||
// associated_chip_index = 1 + round(fmod(tcode_chips, code_length_chips));
|
|
||||||
// d_prompt_code[i] = d_ca_code[associated_chip_index];
|
|
||||||
// associated_chip_index = 1 + round(fmod(tcode_chips + d_early_late_spc_chips, code_length_chips));
|
|
||||||
// d_late_code[i] = d_ca_code[associated_chip_index];
|
|
||||||
// tcode_chips = tcode_chips + code_phase_step_chips;
|
|
||||||
// }
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -340,7 +330,6 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||||
{
|
{
|
||||||
@ -555,6 +544,8 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_tracking = true;
|
current_synchro_data.Flag_valid_tracking = true;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
@ -583,6 +574,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
|||||||
|
|
||||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
|
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
|
||||||
d_acquisition_gnss_synchro->Flag_valid_pseudorange = false;
|
d_acquisition_gnss_synchro->Flag_valid_pseudorange = false;
|
||||||
|
d_acquisition_gnss_synchro->Flag_valid_symbol_output = false;
|
||||||
*out[0] = *d_acquisition_gnss_synchro;
|
*out[0] = *d_acquisition_gnss_synchro;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -34,7 +34,9 @@
|
|||||||
#include <memory>
|
#include <memory>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
#include <boost/lexical_cast.hpp>
|
#include <boost/lexical_cast.hpp>
|
||||||
|
#include <boost/bind.hpp>
|
||||||
#include <gnuradio/io_signature.h>
|
#include <gnuradio/io_signature.h>
|
||||||
|
#include <pmt/pmt.h>
|
||||||
#include <volk/volk.h>
|
#include <volk/volk.h>
|
||||||
#include <glog/logging.h>
|
#include <glog/logging.h>
|
||||||
#include "gps_sdr_signal_processing.h"
|
#include "gps_sdr_signal_processing.h"
|
||||||
@ -65,14 +67,16 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_cc(
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
|
int extend_correlation_ms,
|
||||||
float early_late_space_chips)
|
float early_late_space_chips)
|
||||||
{
|
{
|
||||||
return gps_l1_ca_dll_pll_c_aid_tracking_cc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_cc(if_freq,
|
return gps_l1_ca_dll_pll_c_aid_tracking_cc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_cc(if_freq,
|
||||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz,pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_cc::forecast (int noutput_items,
|
void gps_l1_ca_dll_pll_c_aid_tracking_cc::forecast (int noutput_items,
|
||||||
gr_vector_int &ninput_items_required)
|
gr_vector_int &ninput_items_required)
|
||||||
{
|
{
|
||||||
@ -83,6 +87,18 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::forecast (int noutput_items,
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void gps_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index(pmt::pmt_t msg)
|
||||||
|
{
|
||||||
|
//pmt::print(msg);
|
||||||
|
DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
|
||||||
|
if (d_enable_extended_integration == false) //avoid re-setting preamble indicator
|
||||||
|
{
|
||||||
|
d_preamble_timestamp_s = pmt::to_double(msg);
|
||||||
|
d_enable_extended_integration = true;
|
||||||
|
d_preamble_synchronized = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
||||||
long if_freq,
|
long if_freq,
|
||||||
@ -93,10 +109,20 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
|
int extend_correlation_ms,
|
||||||
float early_late_space_chips) :
|
float early_late_space_chips) :
|
||||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
|
|
||||||
|
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
|
||||||
|
boost::bind(&gps_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index, this, _1));
|
||||||
|
|
||||||
|
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -107,8 +133,13 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
|||||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||||
|
|
||||||
// Initialize tracking ==========================================
|
// Initialize tracking ==========================================
|
||||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
d_pll_bw_hz = pll_bw_hz;
|
||||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
d_dll_bw_hz = dll_bw_hz;
|
||||||
|
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
|
||||||
|
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
|
||||||
|
d_extend_correlation_ms = extend_correlation_ms;
|
||||||
|
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
|
||||||
|
d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz,2);
|
||||||
|
|
||||||
//--- DLL variables --------------------------------------------------------
|
//--- DLL variables --------------------------------------------------------
|
||||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||||
@ -141,7 +172,8 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
|||||||
d_rem_carrier_phase_rad = 0.0;
|
d_rem_carrier_phase_rad = 0.0;
|
||||||
|
|
||||||
// sample synchronization
|
// sample synchronization
|
||||||
d_sample_counter = 0;
|
d_sample_counter = 0; //(from trk to tlm)
|
||||||
|
|
||||||
//d_sample_counter_seconds = 0;
|
//d_sample_counter_seconds = 0;
|
||||||
d_acq_sample_stamp = 0;
|
d_acq_sample_stamp = 0;
|
||||||
|
|
||||||
@ -168,6 +200,7 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
|||||||
d_acq_code_phase_samples = 0.0;
|
d_acq_code_phase_samples = 0.0;
|
||||||
d_acq_carrier_doppler_hz = 0.0;
|
d_acq_carrier_doppler_hz = 0.0;
|
||||||
d_carrier_doppler_hz = 0.0;
|
d_carrier_doppler_hz = 0.0;
|
||||||
|
d_code_error_filt_chips_Ti = 0.0;
|
||||||
d_acc_carrier_phase_cycles = 0.0;
|
d_acc_carrier_phase_cycles = 0.0;
|
||||||
d_code_phase_samples = 0.0;
|
d_code_phase_samples = 0.0;
|
||||||
|
|
||||||
@ -175,6 +208,8 @@ gps_l1_ca_dll_pll_c_aid_tracking_cc::gps_l1_ca_dll_pll_c_aid_tracking_cc(
|
|||||||
d_rem_code_phase_chips = 0.0;
|
d_rem_code_phase_chips = 0.0;
|
||||||
d_code_phase_step_chips = 0.0;
|
d_code_phase_step_chips = 0.0;
|
||||||
d_carrier_phase_step_rad = 0.0;
|
d_carrier_phase_step_rad = 0.0;
|
||||||
|
d_enable_extended_integration = false;
|
||||||
|
d_preamble_synchronized = false;
|
||||||
//set_min_output_buffer((long int)300);
|
//set_min_output_buffer((long int)300);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -254,11 +289,11 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking()
|
|||||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||||
|
|
||||||
|
|
||||||
// enable tracking
|
// enable tracking
|
||||||
d_pull_in = true;
|
d_pull_in = true;
|
||||||
d_enable_tracking = true;
|
d_enable_tracking = true;
|
||||||
|
d_enable_extended_integration=false;
|
||||||
|
d_preamble_synchronized=false;
|
||||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||||
@ -290,13 +325,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||||
|
|
||||||
// process vars
|
// process vars
|
||||||
double code_error_chips_Ti = 0.0;
|
|
||||||
double code_error_filt_chips = 0.0;
|
|
||||||
double code_error_filt_secs_Ti = 0.0;
|
double code_error_filt_secs_Ti = 0.0;
|
||||||
double CURRENT_INTEGRATION_TIME_S;
|
double CURRENT_INTEGRATION_TIME_S = 0.0;
|
||||||
double CORRECTED_INTEGRATION_TIME_S;
|
double CORRECTED_INTEGRATION_TIME_S = 0.0;
|
||||||
double dll_code_error_secs_Ti = 0.0;
|
double dll_code_error_secs_Ti = 0.0;
|
||||||
double carr_phase_error_secs_Ti = 0.0;
|
|
||||||
double old_d_rem_code_phase_samples;
|
double old_d_rem_code_phase_samples;
|
||||||
if (d_enable_tracking == true)
|
if (d_enable_tracking == true)
|
||||||
{
|
{
|
||||||
@ -313,6 +345,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_pull_in = false;
|
d_pull_in = false;
|
||||||
// Fill the acquisition data
|
// Fill the acquisition data
|
||||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||||
return 1;
|
return 1;
|
||||||
@ -326,17 +360,108 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
|
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
|
||||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
||||||
|
|
||||||
|
// ####### coherent intergration extension
|
||||||
|
// keep the last symbols
|
||||||
|
d_E_history.push_back(d_correlator_outs[0]); // save early output
|
||||||
|
d_P_history.push_back(d_correlator_outs[1]); // save prompt output
|
||||||
|
d_L_history.push_back(d_correlator_outs[2]); // save late output
|
||||||
|
|
||||||
|
if (static_cast<int>(d_P_history.size()) > d_extend_correlation_ms)
|
||||||
|
{
|
||||||
|
d_E_history.pop_front();
|
||||||
|
d_P_history.pop_front();
|
||||||
|
d_L_history.pop_front();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool enable_dll_pll;
|
||||||
|
if (d_enable_extended_integration == true)
|
||||||
|
{
|
||||||
|
long int symbol_diff = round(1000.0*((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in)-d_preamble_timestamp_s));
|
||||||
|
if (symbol_diff>0 and symbol_diff % d_extend_correlation_ms == 0)
|
||||||
|
{
|
||||||
|
// compute coherent integration and enable tracking loop
|
||||||
|
// perform coherent integration using correlator output history
|
||||||
|
//std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
|
||||||
|
d_correlator_outs[0] = gr_complex(0.0,0.0);
|
||||||
|
d_correlator_outs[1] = gr_complex(0.0,0.0);
|
||||||
|
d_correlator_outs[2] = gr_complex(0.0,0.0);
|
||||||
|
for (int n = 0; n < d_extend_correlation_ms; n++)
|
||||||
|
{
|
||||||
|
d_correlator_outs[0] += d_E_history.at(n);
|
||||||
|
d_correlator_outs[1] += d_P_history.at(n);
|
||||||
|
d_correlator_outs[2] += d_L_history.at(n);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (d_preamble_synchronized == false)
|
||||||
|
{
|
||||||
|
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
|
||||||
|
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz,2);
|
||||||
|
d_preamble_synchronized = true;
|
||||||
|
std::cout << "Enabled extended correlator for CH "<< d_channel <<" : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||||
|
<<" dll_narrow_bw=" << d_dll_bw_narrow_hz << " pll_narrow_bw=" << d_pll_bw_narrow_hz << std::endl;
|
||||||
|
}
|
||||||
|
// UPDATE INTEGRATION TIME
|
||||||
|
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GPS_L1_CA_CODE_PERIOD;
|
||||||
|
enable_dll_pll = true;
|
||||||
|
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if(d_preamble_synchronized == true)
|
||||||
|
{
|
||||||
|
// continue extended coherent correlation
|
||||||
|
//remnant carrier phase [rads]
|
||||||
|
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GPS_TWO_PI);
|
||||||
|
|
||||||
|
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
|
||||||
|
double T_chip_seconds = 1 / d_code_freq_chips;
|
||||||
|
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||||
|
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||||
|
int K_prn_samples = round(T_prn_samples);
|
||||||
|
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||||
|
|
||||||
|
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
|
||||||
|
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples);
|
||||||
|
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
|
||||||
|
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||||
|
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||||
|
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||||
|
//remnant code phase [chips]
|
||||||
|
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||||
|
|
||||||
|
// UPDATE ACCUMULATED CARRIER PHASE
|
||||||
|
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||||
|
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
|
||||||
|
|
||||||
|
// disable tracking loop and inform telemetry decoder
|
||||||
|
enable_dll_pll = false;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// perform basic (1ms) correlation
|
||||||
// UPDATE INTEGRATION TIME
|
// UPDATE INTEGRATION TIME
|
||||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||||
|
enable_dll_pll = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// UPDATE INTEGRATION TIME
|
||||||
|
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||||
|
enable_dll_pll = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (enable_dll_pll == true)
|
||||||
|
{
|
||||||
// ################## PLL ##########################################################
|
// ################## PLL ##########################################################
|
||||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||||
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
||||||
// Carrier discriminator filter
|
// Carrier discriminator filter
|
||||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||||
// Input [s/Ti] -> output [Hz]
|
// Input [s/Ti] -> output [Hz]
|
||||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||||
// PLL to DLL assistance [Secs/Ti]
|
// PLL to DLL assistance [Secs/Ti]
|
||||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||||
// code Doppler frequency update
|
// code Doppler frequency update
|
||||||
@ -344,31 +469,36 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
|
|
||||||
// ################## DLL ##########################################################
|
// ################## DLL ##########################################################
|
||||||
// DLL discriminator
|
// DLL discriminator
|
||||||
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
||||||
// Code discriminator filter
|
// Code discriminator filter
|
||||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||||
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
|
||||||
|
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
|
||||||
// DLL code error estimation [s/Ti]
|
// DLL code error estimation [s/Ti]
|
||||||
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
|
// PLL to DLL assistance is disable due to the use of a fractional resampler that allows the correction of the code Doppler effect.
|
||||||
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
|
dll_code_error_secs_Ti = - code_error_filt_secs_Ti; // + d_pll_to_dll_assist_secs_Ti;
|
||||||
|
|
||||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||||
|
|
||||||
// keep alignment parameters for the next input buffer
|
// keep alignment parameters for the next input buffer
|
||||||
double T_chip_seconds;
|
double T_chip_seconds;
|
||||||
double T_prn_seconds;
|
double T_prn_seconds;
|
||||||
double T_prn_samples;
|
double T_prn_samples;
|
||||||
double K_blk_samples;
|
double K_prn_samples;
|
||||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||||
T_chip_seconds = 1 / d_code_freq_chips;
|
T_chip_seconds = 1 / d_code_freq_chips;
|
||||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
K_prn_samples = round(T_prn_samples);
|
||||||
|
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||||
|
|
||||||
d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
|
|
||||||
old_d_rem_code_phase_samples = d_rem_code_phase_samples;
|
old_d_rem_code_phase_samples = d_rem_code_phase_samples;
|
||||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
|
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||||
|
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples);
|
||||||
|
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
|
||||||
|
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||||
|
|
||||||
// UPDATE REMNANT CARRIER PHASE
|
// UPDATE ACCUMULATED CARRIER PHASE
|
||||||
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||||
//remnant carrier phase [rad]
|
//remnant carrier phase [rad]
|
||||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||||
@ -422,7 +552,6 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ########### Output the tracking data to navigation and PVT ##########
|
// ########### Output the tracking data to navigation and PVT ##########
|
||||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
||||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
||||||
@ -434,7 +563,33 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
if (d_preamble_synchronized == true)
|
||||||
|
{
|
||||||
|
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
|
}
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
|
||||||
|
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
|
||||||
|
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
|
||||||
|
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||||
|
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||||
|
current_synchro_data.Code_phase_secs = 0;
|
||||||
|
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||||
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;// todo: project the carrier doppler
|
||||||
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
|
*out[0] = current_synchro_data;
|
||||||
|
}
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
/*!
|
/*!
|
||||||
@ -448,7 +603,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
||||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
||||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -488,6 +643,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
|
|
||||||
current_synchro_data.System = {'G'};
|
current_synchro_data.System = {'G'};
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -523,19 +679,19 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||||
|
|
||||||
//PLL commands
|
//PLL commands
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||||
|
|
||||||
//DLL commands
|
//DLL commands
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips_Ti), sizeof(double));
|
||||||
|
|
||||||
// CN0 and carrier lock test
|
// CN0 and carrier lock test
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||||
|
|
||||||
// AUX vars (for debug purposes)
|
// AUX vars (for debug purposes)
|
||||||
tmp_double = d_rem_code_phase_samples;
|
tmp_double = d_code_error_chips_Ti*CURRENT_INTEGRATION_TIME_S;
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
@ -556,6 +712,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_channel(unsigned int channel)
|
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_channel(unsigned int channel)
|
||||||
{
|
{
|
||||||
d_channel = channel;
|
d_channel = channel;
|
||||||
@ -581,11 +738,13 @@ void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_channel(unsigned int channel)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||||
{
|
{
|
||||||
d_channel_internal_queue = channel_internal_queue;
|
d_channel_internal_queue = channel_internal_queue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
void gps_l1_ca_dll_pll_c_aid_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||||
{
|
{
|
||||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||||
|
@ -39,13 +39,16 @@
|
|||||||
|
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <map>
|
#include <map>
|
||||||
|
#include <deque>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <gnuradio/block.h>
|
#include <gnuradio/block.h>
|
||||||
#include <gnuradio/msg_queue.h>
|
#include <gnuradio/msg_queue.h>
|
||||||
|
#include <pmt/pmt.h>
|
||||||
#include "concurrent_queue.h"
|
#include "concurrent_queue.h"
|
||||||
#include "gnss_synchro.h"
|
#include "gnss_synchro.h"
|
||||||
#include "tracking_2nd_DLL_filter.h"
|
#include "tracking_2nd_DLL_filter.h"
|
||||||
#include "tracking_FLL_PLL_filter.h"
|
#include "tracking_FLL_PLL_filter.h"
|
||||||
|
#include "tracking_loop_filter.h"
|
||||||
#include "cpu_multicorrelator.h"
|
#include "cpu_multicorrelator.h"
|
||||||
|
|
||||||
class gps_l1_ca_dll_pll_c_aid_tracking_cc;
|
class gps_l1_ca_dll_pll_c_aid_tracking_cc;
|
||||||
@ -62,6 +65,9 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_cc(long if_freq,
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
|
int extend_correlation_ms,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
|
|
||||||
@ -94,6 +100,9 @@ private:
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
|
int extend_correlation_ms,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
gps_l1_ca_dll_pll_c_aid_tracking_cc(long if_freq,
|
gps_l1_ca_dll_pll_c_aid_tracking_cc(long if_freq,
|
||||||
@ -104,6 +113,9 @@ private:
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
|
int extend_correlation_ms,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
// tracking configuration vars
|
// tracking configuration vars
|
||||||
@ -130,8 +142,10 @@ private:
|
|||||||
double d_rem_code_phase_samples;
|
double d_rem_code_phase_samples;
|
||||||
double d_rem_code_phase_chips;
|
double d_rem_code_phase_chips;
|
||||||
double d_rem_carrier_phase_rad;
|
double d_rem_carrier_phase_rad;
|
||||||
|
int d_rem_code_phase_integer_samples;
|
||||||
|
|
||||||
// PLL and DLL filter library
|
// PLL and DLL filter library
|
||||||
|
//Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||||
Tracking_FLL_PLL_filter d_carrier_loop_filter;
|
Tracking_FLL_PLL_filter d_carrier_loop_filter;
|
||||||
|
|
||||||
@ -140,6 +154,10 @@ private:
|
|||||||
double d_acq_carrier_doppler_hz;
|
double d_acq_carrier_doppler_hz;
|
||||||
|
|
||||||
// tracking vars
|
// tracking vars
|
||||||
|
float d_dll_bw_hz;
|
||||||
|
float d_pll_bw_hz;
|
||||||
|
float d_dll_bw_narrow_hz;
|
||||||
|
float d_pll_bw_narrow_hz;
|
||||||
double d_code_freq_chips;
|
double d_code_freq_chips;
|
||||||
double d_code_phase_step_chips;
|
double d_code_phase_step_chips;
|
||||||
double d_carrier_doppler_hz;
|
double d_carrier_doppler_hz;
|
||||||
@ -147,6 +165,21 @@ private:
|
|||||||
double d_acc_carrier_phase_cycles;
|
double d_acc_carrier_phase_cycles;
|
||||||
double d_code_phase_samples;
|
double d_code_phase_samples;
|
||||||
double d_pll_to_dll_assist_secs_Ti;
|
double d_pll_to_dll_assist_secs_Ti;
|
||||||
|
double d_code_error_chips_Ti;
|
||||||
|
double d_code_error_filt_chips_s;
|
||||||
|
double d_code_error_filt_chips_Ti;
|
||||||
|
double d_carr_phase_error_secs_Ti;
|
||||||
|
|
||||||
|
// symbol history to detect bit transition
|
||||||
|
std::deque<gr_complex> d_E_history;
|
||||||
|
std::deque<gr_complex> d_P_history;
|
||||||
|
std::deque<gr_complex> d_L_history;
|
||||||
|
double d_preamble_timestamp_s;
|
||||||
|
int d_extend_correlation_ms;
|
||||||
|
bool d_enable_extended_integration;
|
||||||
|
bool d_preamble_synchronized;
|
||||||
|
int d_correlation_symbol_counter;
|
||||||
|
void msg_handler_preamble_index(pmt::pmt_t msg);
|
||||||
|
|
||||||
//Integration period in samples
|
//Integration period in samples
|
||||||
int d_correlation_length_samples;
|
int d_correlation_length_samples;
|
||||||
|
@ -66,10 +66,12 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_sc(
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
float early_late_space_chips)
|
float early_late_space_chips)
|
||||||
{
|
{
|
||||||
return gps_l1_ca_dll_pll_c_aid_tracking_sc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_sc(if_freq,
|
return gps_l1_ca_dll_pll_c_aid_tracking_sc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_sc(if_freq,
|
||||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, early_late_space_chips));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -94,10 +96,14 @@ gps_l1_ca_dll_pll_c_aid_tracking_sc::gps_l1_ca_dll_pll_c_aid_tracking_sc(
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
float early_late_space_chips) :
|
float early_late_space_chips) :
|
||||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)),
|
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -108,6 +114,10 @@ gps_l1_ca_dll_pll_c_aid_tracking_sc::gps_l1_ca_dll_pll_c_aid_tracking_sc(
|
|||||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||||
|
|
||||||
// Initialize tracking ==========================================
|
// Initialize tracking ==========================================
|
||||||
|
d_pll_bw_hz=pll_bw_hz;
|
||||||
|
d_dll_bw_hz=dll_bw_hz;
|
||||||
|
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
|
||||||
|
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
|
||||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
||||||
|
|
||||||
@ -259,7 +269,6 @@ void gps_l1_ca_dll_pll_c_aid_tracking_sc::start_tracking()
|
|||||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||||
|
|
||||||
|
|
||||||
// enable tracking
|
// enable tracking
|
||||||
d_pull_in = true;
|
d_pull_in = true;
|
||||||
d_enable_tracking = true;
|
d_enable_tracking = true;
|
||||||
@ -329,19 +338,9 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
|||||||
|
|
||||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||||
|
|
||||||
//volk_gnsssdr_32fc_convert_16ic(d_in_16sc,in,d_correlation_length_samples);
|
|
||||||
//std::cout << std::fixed << std::setw( 11 ) << std::setprecision( 6 );
|
|
||||||
//std::cout<<"in="<<in[0]<<std::endl;
|
|
||||||
|
|
||||||
multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc, in);
|
multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc, in);
|
||||||
multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
||||||
|
|
||||||
//std::cout<<"E 16sc="<<d_correlator_outs_16sc[0]<<std::endl;
|
|
||||||
//std::cout<<"P 16sc="<<d_correlator_outs_16sc[1]<<std::endl;
|
|
||||||
//std::cout<<"L 16sc="<<d_correlator_outs_16sc[2]<<std::endl;
|
|
||||||
|
|
||||||
//std::cout<<std::endl;
|
|
||||||
// UPDATE INTEGRATION TIME
|
// UPDATE INTEGRATION TIME
|
||||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||||
|
|
||||||
@ -450,6 +449,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms = 1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
@ -504,6 +505,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
|||||||
|
|
||||||
current_synchro_data.System = {'G'};
|
current_synchro_data.System = {'G'};
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -572,6 +574,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items, gr_vec
|
|||||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_channel(unsigned int channel)
|
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_channel(unsigned int channel)
|
||||||
{
|
{
|
||||||
d_channel = channel;
|
d_channel = channel;
|
||||||
@ -597,11 +600,13 @@ void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_channel(unsigned int channel)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||||
{
|
{
|
||||||
d_channel_internal_queue = channel_internal_queue;
|
d_channel_internal_queue = channel_internal_queue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
void gps_l1_ca_dll_pll_c_aid_tracking_sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||||
{
|
{
|
||||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||||
|
@ -67,6 +67,8 @@ gps_l1_ca_dll_pll_c_aid_make_tracking_sc(long if_freq,
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
|
|
||||||
@ -99,6 +101,8 @@ private:
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
gps_l1_ca_dll_pll_c_aid_tracking_sc(long if_freq,
|
gps_l1_ca_dll_pll_c_aid_tracking_sc(long if_freq,
|
||||||
@ -109,6 +113,8 @@ private:
|
|||||||
std::string dump_filename,
|
std::string dump_filename,
|
||||||
float pll_bw_hz,
|
float pll_bw_hz,
|
||||||
float dll_bw_hz,
|
float dll_bw_hz,
|
||||||
|
float pll_bw_narrow_hz,
|
||||||
|
float dll_bw_narrow_hz,
|
||||||
float early_late_space_chips);
|
float early_late_space_chips);
|
||||||
|
|
||||||
// tracking configuration vars
|
// tracking configuration vars
|
||||||
@ -148,6 +154,10 @@ private:
|
|||||||
double d_acq_carrier_doppler_hz;
|
double d_acq_carrier_doppler_hz;
|
||||||
|
|
||||||
// tracking vars
|
// tracking vars
|
||||||
|
float d_dll_bw_hz;
|
||||||
|
float d_pll_bw_hz;
|
||||||
|
float d_dll_bw_narrow_hz;
|
||||||
|
float d_pll_bw_narrow_hz;
|
||||||
double d_code_freq_chips;
|
double d_code_freq_chips;
|
||||||
double d_code_phase_step_chips;
|
double d_code_phase_step_chips;
|
||||||
double d_carrier_doppler_hz;
|
double d_carrier_doppler_hz;
|
||||||
|
@ -104,6 +104,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Pll_Tracking_cc(
|
|||||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -309,8 +311,6 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
|
|||||||
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
|
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
|
||||||
phase_rad_i += phase_step_rad_i;
|
phase_rad_i += phase_step_rad_i;
|
||||||
}
|
}
|
||||||
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
|
|
||||||
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -362,11 +362,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
|
||||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
|
|
||||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||||
d_pull_in = false;
|
d_pull_in = false;
|
||||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
|
||||||
// Fill the acquisition data
|
// Fill the acquisition data
|
||||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
@ -493,11 +490,6 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
|
||||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
|
||||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
|
||||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
||||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||||
@ -510,6 +502,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms=1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
@ -563,6 +557,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
|
|
||||||
current_synchro_data.System = {'G'};
|
current_synchro_data.System = {'G'};
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -616,7 +611,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||||
}
|
}
|
||||||
@ -651,7 +646,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
|
|||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||||
}
|
}
|
||||||
catch (std::ifstream::failure e)
|
catch (const std::ifstream::failure &e)
|
||||||
{
|
{
|
||||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
||||||
}
|
}
|
||||||
|
@ -99,6 +99,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
|||||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -451,6 +453,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms=1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
@ -505,6 +509,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
|||||||
|
|
||||||
current_synchro_data.System = {'G'};
|
current_synchro_data.System = {'G'};
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,606 +0,0 @@
|
|||||||
/*!
|
|
||||||
* \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc
|
|
||||||
* \brief Implementation of a code DLL + carrier PLL tracking block, GPU ACCELERATED
|
|
||||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
|
||||||
*
|
|
||||||
* Code DLL + carrier PLL according to the algorithms described in:
|
|
||||||
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
|
||||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
|
||||||
* Approach, Birkhauser, 2007
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*
|
|
||||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
|
||||||
*
|
|
||||||
* GNSS-SDR is a software defined Global Navigation
|
|
||||||
* Satellite Systems receiver
|
|
||||||
*
|
|
||||||
* This file is part of GNSS-SDR.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
||||||
* it under the terms of the GNU General Public License as published by
|
|
||||||
* the Free Software Foundation, either version 3 of the License, or
|
|
||||||
* (at your option) any later version.
|
|
||||||
*
|
|
||||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
||||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
* GNU General Public License for more details.
|
|
||||||
*
|
|
||||||
* You should have received a copy of the GNU General Public License
|
|
||||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*
|
|
||||||
* -------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "gps_l1_ca_dll_pll_tracking_gpu_cc.h"
|
|
||||||
#include <cmath>
|
|
||||||
#include <iostream>
|
|
||||||
#include <memory>
|
|
||||||
#include <sstream>
|
|
||||||
#include <boost/lexical_cast.hpp>
|
|
||||||
#include <gnuradio/io_signature.h>
|
|
||||||
#include <glog/logging.h>
|
|
||||||
#include "gnss_synchro.h"
|
|
||||||
#include "gps_sdr_signal_processing.h"
|
|
||||||
#include "tracking_discriminators.h"
|
|
||||||
#include "lock_detectors.h"
|
|
||||||
#include "GPS_L1_CA.h"
|
|
||||||
#include "control_message_factory.h"
|
|
||||||
#include <volk/volk.h> //volk_alignement
|
|
||||||
// includes
|
|
||||||
#include <cuda_profiler_api.h>
|
|
||||||
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \todo Include in definition header file
|
|
||||||
*/
|
|
||||||
#define CN0_ESTIMATION_SAMPLES 20
|
|
||||||
#define MINIMUM_VALID_CN0 25
|
|
||||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
|
||||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
|
||||||
|
|
||||||
|
|
||||||
using google::LogMessage;
|
|
||||||
|
|
||||||
gps_l1_ca_dll_pll_tracking_gpu_cc_sptr
|
|
||||||
gps_l1_ca_dll_pll_make_tracking_gpu_cc(
|
|
||||||
long if_freq,
|
|
||||||
long fs_in,
|
|
||||||
unsigned int vector_length,
|
|
||||||
boost::shared_ptr<gr::msg_queue> queue,
|
|
||||||
bool dump,
|
|
||||||
std::string dump_filename,
|
|
||||||
float pll_bw_hz,
|
|
||||||
float dll_bw_hz,
|
|
||||||
float early_late_space_chips)
|
|
||||||
{
|
|
||||||
return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(if_freq,
|
|
||||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast (int noutput_items,
|
|
||||||
gr_vector_int &ninput_items_required)
|
|
||||||
{
|
|
||||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
|
||||||
long if_freq,
|
|
||||||
long fs_in,
|
|
||||||
unsigned int vector_length,
|
|
||||||
boost::shared_ptr<gr::msg_queue> queue,
|
|
||||||
bool dump,
|
|
||||||
std::string dump_filename,
|
|
||||||
float pll_bw_hz,
|
|
||||||
float dll_bw_hz,
|
|
||||||
float early_late_space_chips) :
|
|
||||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
|
||||||
{
|
|
||||||
// initialize internal vars
|
|
||||||
d_queue = queue;
|
|
||||||
d_dump = dump;
|
|
||||||
d_if_freq = if_freq;
|
|
||||||
d_fs_in = fs_in;
|
|
||||||
d_vector_length = vector_length;
|
|
||||||
d_dump_filename = dump_filename;
|
|
||||||
|
|
||||||
// Initialize tracking ==========================================
|
|
||||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
|
||||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
|
||||||
|
|
||||||
//--- DLL variables --------------------------------------------------------
|
|
||||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
|
||||||
|
|
||||||
// Set GPU flags
|
|
||||||
cudaSetDeviceFlags(cudaDeviceMapHost);
|
|
||||||
//allocate host memory
|
|
||||||
//pinned memory mode - use special function to get OS-pinned memory
|
|
||||||
int N_CORRELATORS = 3;
|
|
||||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
|
||||||
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
|
||||||
// Get space for the resampled early / prompt / late local replicas
|
|
||||||
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
|
||||||
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
|
||||||
// correlator outputs (scalar)
|
|
||||||
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
|
|
||||||
|
|
||||||
//map to EPL pointers
|
|
||||||
d_Early = &d_corr_outs_gpu[0];
|
|
||||||
d_Prompt = &d_corr_outs_gpu[1];
|
|
||||||
d_Late = &d_corr_outs_gpu[2];
|
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
|
||||||
multicorrelator_gpu = new cuda_multicorrelator();
|
|
||||||
//local code resampler on GPU
|
|
||||||
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
|
|
||||||
multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
|
|
||||||
|
|
||||||
// define initial code frequency basis of NCO
|
|
||||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
|
||||||
// define residual code phase (in chips)
|
|
||||||
d_rem_code_phase_samples = 0.0;
|
|
||||||
// define residual carrier phase
|
|
||||||
d_rem_carr_phase_rad = 0.0;
|
|
||||||
|
|
||||||
// sample synchronization
|
|
||||||
d_sample_counter = 0;
|
|
||||||
//d_sample_counter_seconds = 0;
|
|
||||||
d_acq_sample_stamp = 0;
|
|
||||||
|
|
||||||
d_enable_tracking = false;
|
|
||||||
d_pull_in = false;
|
|
||||||
d_last_seg = 0;
|
|
||||||
|
|
||||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
|
||||||
|
|
||||||
// CN0 estimation and lock detector buffers
|
|
||||||
d_cn0_estimation_counter = 0;
|
|
||||||
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
|
|
||||||
d_carrier_lock_test = 1;
|
|
||||||
d_CN0_SNV_dB_Hz = 0;
|
|
||||||
d_carrier_lock_fail_counter = 0;
|
|
||||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
|
||||||
|
|
||||||
systemName["G"] = std::string("GPS");
|
|
||||||
systemName["S"] = std::string("SBAS");
|
|
||||||
|
|
||||||
|
|
||||||
set_relative_rate(1.0/((double)d_vector_length*2));
|
|
||||||
|
|
||||||
d_channel_internal_queue = 0;
|
|
||||||
d_acquisition_gnss_synchro = 0;
|
|
||||||
d_channel = 0;
|
|
||||||
d_acq_code_phase_samples = 0.0;
|
|
||||||
d_acq_carrier_doppler_hz = 0.0;
|
|
||||||
d_carrier_doppler_hz = 0.0;
|
|
||||||
d_acc_carrier_phase_rad = 0.0;
|
|
||||||
d_code_phase_samples = 0.0;
|
|
||||||
d_acc_code_phase_secs = 0.0;
|
|
||||||
//set_min_output_buffer((long int)300);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* correct the code phase according to the delay between acq and trk
|
|
||||||
*/
|
|
||||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
|
||||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
|
||||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
|
||||||
|
|
||||||
long int acq_trk_diff_samples;
|
|
||||||
double acq_trk_diff_seconds;
|
|
||||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
|
||||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
|
||||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
|
||||||
//doppler effect
|
|
||||||
// Fd=(C/(C+Vr))*F
|
|
||||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
|
||||||
// new chip and prn sequence periods based on acq Doppler
|
|
||||||
double T_chip_mod_seconds;
|
|
||||||
double T_prn_mod_seconds;
|
|
||||||
double T_prn_mod_samples;
|
|
||||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
|
||||||
T_chip_mod_seconds = 1.0/d_code_freq_chips;
|
|
||||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
|
||||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
|
||||||
|
|
||||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
|
||||||
|
|
||||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
|
||||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
|
||||||
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
|
||||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
|
||||||
double corrected_acq_phase_samples, delay_correction_samples;
|
|
||||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
|
||||||
if (corrected_acq_phase_samples < 0)
|
|
||||||
{
|
|
||||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
|
||||||
}
|
|
||||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
|
||||||
|
|
||||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
|
||||||
|
|
||||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
|
||||||
|
|
||||||
// DLL/PLL filter initialization
|
|
||||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
|
||||||
d_code_loop_filter.initialize(); // initialize the code filter
|
|
||||||
|
|
||||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
|
||||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
|
||||||
|
|
||||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
|
||||||
d_local_code_shift_chips[1] = 0.0;
|
|
||||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
|
||||||
|
|
||||||
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
|
|
||||||
|
|
||||||
d_carrier_lock_fail_counter = 0;
|
|
||||||
d_rem_code_phase_samples = 0;
|
|
||||||
d_rem_carr_phase_rad = 0;
|
|
||||||
d_acc_carrier_phase_rad = 0;
|
|
||||||
d_acc_code_phase_secs = 0;
|
|
||||||
|
|
||||||
d_code_phase_samples = d_acq_code_phase_samples;
|
|
||||||
|
|
||||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
|
||||||
sys = sys_.substr(0,1);
|
|
||||||
|
|
||||||
// DEBUG OUTPUT
|
|
||||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
|
||||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
|
||||||
|
|
||||||
|
|
||||||
// enable tracking
|
|
||||||
d_pull_in = true;
|
|
||||||
d_enable_tracking = true;
|
|
||||||
|
|
||||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
|
||||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
|
||||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
|
|
||||||
{
|
|
||||||
d_dump_file.close();
|
|
||||||
cudaFreeHost(in_gpu);
|
|
||||||
cudaFreeHost(d_corr_outs_gpu);
|
|
||||||
cudaFreeHost(d_local_code_shift_chips);
|
|
||||||
cudaFreeHost(d_ca_code);
|
|
||||||
multicorrelator_gpu->free_cuda();
|
|
||||||
delete(multicorrelator_gpu);
|
|
||||||
delete[] d_Prompt_buffer;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
|
||||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
|
||||||
{
|
|
||||||
// process vars
|
|
||||||
double carr_error_hz=0.0;
|
|
||||||
double carr_error_filt_hz=0.0;
|
|
||||||
double code_error_chips=0.0;
|
|
||||||
double code_error_filt_chips=0.0;
|
|
||||||
|
|
||||||
// Block input data and block output stream pointers
|
|
||||||
const gr_complex* in = (gr_complex*) input_items[0];
|
|
||||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
|
||||||
|
|
||||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
|
||||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
|
||||||
|
|
||||||
if (d_enable_tracking == true)
|
|
||||||
{
|
|
||||||
// Receiver signal alignment
|
|
||||||
if (d_pull_in == true)
|
|
||||||
{
|
|
||||||
int samples_offset;
|
|
||||||
double acq_trk_shif_correction_samples;
|
|
||||||
int acq_to_trk_delay_samples;
|
|
||||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
|
||||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
|
||||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
|
||||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
|
||||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
|
|
||||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
|
||||||
d_pull_in = false;
|
|
||||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
|
||||||
// Fill the acquisition data
|
|
||||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
|
||||||
*out[0] = current_synchro_data;
|
|
||||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Fill the acquisition data
|
|
||||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
|
||||||
|
|
||||||
// UPDATE NCO COMMAND
|
|
||||||
double phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
|
||||||
|
|
||||||
//code resampler on GPU (new)
|
|
||||||
double code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
|
||||||
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
|
||||||
|
|
||||||
std::cout<<"rem_code_phase_chips="<<rem_code_phase_chips<<" d_current_prn_length_samples="<<d_current_prn_length_samples<<std::endl;
|
|
||||||
memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
|
|
||||||
cudaProfilerStart();
|
|
||||||
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda( static_cast<float>(d_rem_carr_phase_rad),
|
|
||||||
static_cast<float>(phase_step_rad),
|
|
||||||
static_cast<float>(code_phase_step_chips),
|
|
||||||
static_cast<float>(rem_code_phase_chips),
|
|
||||||
d_current_prn_length_samples, 3);
|
|
||||||
cudaProfilerStop();
|
|
||||||
|
|
||||||
// ################## PLL ##########################################################
|
|
||||||
// PLL discriminator
|
|
||||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
|
|
||||||
// Carrier discriminator filter
|
|
||||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
|
||||||
// New carrier Doppler frequency estimation
|
|
||||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
|
||||||
// New code Doppler frequency estimation
|
|
||||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
|
||||||
//carrier phase accumulator for (K) doppler estimation
|
|
||||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
|
||||||
//remanent carrier phase to prevent overflow in the code NCO
|
|
||||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
|
||||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
|
||||||
|
|
||||||
// ################## DLL ##########################################################
|
|
||||||
// DLL discriminator
|
|
||||||
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
|
|
||||||
// Code discriminator filter
|
|
||||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
|
||||||
//Code phase accumulator
|
|
||||||
double code_error_filt_secs;
|
|
||||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
|
||||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
|
||||||
|
|
||||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
|
||||||
// keep alignment parameters for the next input buffer
|
|
||||||
double T_chip_seconds;
|
|
||||||
double T_prn_seconds;
|
|
||||||
double T_prn_samples;
|
|
||||||
double K_blk_samples;
|
|
||||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
|
||||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
|
||||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
|
||||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
|
||||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
|
||||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
|
||||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
|
||||||
|
|
||||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
|
||||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
|
||||||
{
|
|
||||||
// fill buffer with prompt correlator output values
|
|
||||||
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
|
|
||||||
d_cn0_estimation_counter++;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
d_cn0_estimation_counter = 0;
|
|
||||||
// Code lock indicator
|
|
||||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
|
||||||
// Carrier lock indicator
|
|
||||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
|
||||||
// Loss of lock detection
|
|
||||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
|
||||||
{
|
|
||||||
d_carrier_lock_fail_counter++;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
|
||||||
}
|
|
||||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
|
||||||
{
|
|
||||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
|
||||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
|
||||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
|
||||||
if (d_queue != gr::msg_queue::sptr())
|
|
||||||
{
|
|
||||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
|
||||||
}
|
|
||||||
d_carrier_lock_fail_counter = 0;
|
|
||||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// ########### Output the tracking data to navigation and PVT ##########
|
|
||||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
|
||||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
|
||||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
|
||||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
|
||||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
|
||||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
|
||||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
|
||||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
|
||||||
|
|
||||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
|
|
||||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
|
||||||
current_synchro_data.Code_phase_secs = 0;
|
|
||||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
|
||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
|
||||||
*out[0] = current_synchro_data;
|
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
|
||||||
/*!
|
|
||||||
* \todo The stop timer has to be moved to the signal source!
|
|
||||||
*/
|
|
||||||
// debug: Second counter in channel 0
|
|
||||||
if (d_channel == 0)
|
|
||||||
{
|
|
||||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
|
||||||
{
|
|
||||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
|
||||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
|
||||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
|
||||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
|
||||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
|
||||||
{
|
|
||||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
|
||||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
|
||||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
|
|
||||||
/*!
|
|
||||||
* \todo The stop timer has to be moved to the signal source!
|
|
||||||
*/
|
|
||||||
// stream to collect cout calls to improve thread safety
|
|
||||||
std::stringstream tmp_str_stream;
|
|
||||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
|
||||||
{
|
|
||||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
|
||||||
|
|
||||||
if (d_channel == 0)
|
|
||||||
{
|
|
||||||
// debug: Second counter in channel 0
|
|
||||||
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
|
|
||||||
std::cout << tmp_str_stream.rdbuf() << std::flush;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
*d_Early = gr_complex(0,0);
|
|
||||||
*d_Prompt = gr_complex(0,0);
|
|
||||||
*d_Late = gr_complex(0,0);
|
|
||||||
|
|
||||||
current_synchro_data.System = {'G'};
|
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
|
||||||
*out[0] = current_synchro_data;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(d_dump)
|
|
||||||
{
|
|
||||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
|
||||||
float prompt_I;
|
|
||||||
float prompt_Q;
|
|
||||||
float tmp_E, tmp_P, tmp_L;
|
|
||||||
float tmp_float;
|
|
||||||
double tmp_double;
|
|
||||||
prompt_I = (*d_Prompt).real();
|
|
||||||
prompt_Q = (*d_Prompt).imag();
|
|
||||||
tmp_E = std::abs<float>(*d_Early);
|
|
||||||
tmp_P = std::abs<float>(*d_Prompt);
|
|
||||||
tmp_L = std::abs<float>(*d_Late);
|
|
||||||
try
|
|
||||||
{
|
|
||||||
|
|
||||||
// EPR
|
|
||||||
d_dump_file.write((char*)&tmp_E, sizeof(float));
|
|
||||||
d_dump_file.write((char*)&tmp_P, sizeof(float));
|
|
||||||
d_dump_file.write((char*)&tmp_L, sizeof(float));
|
|
||||||
// PROMPT I and Q (to analyze navigation symbols)
|
|
||||||
d_dump_file.write((char*)&prompt_I, sizeof(float));
|
|
||||||
d_dump_file.write((char*)&prompt_Q, sizeof(float));
|
|
||||||
// PRN start sample stamp
|
|
||||||
//tmp_float=(float)d_sample_counter;
|
|
||||||
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
|
|
||||||
// accumulated carrier phase
|
|
||||||
tmp_float = d_acc_carrier_phase_rad;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
|
|
||||||
// carrier and code frequency
|
|
||||||
tmp_float = d_carrier_doppler_hz;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
tmp_float = d_code_freq_chips;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
|
|
||||||
//PLL commands
|
|
||||||
tmp_float = carr_error_hz;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
tmp_float = carr_error_filt_hz;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
|
|
||||||
//DLL commands
|
|
||||||
tmp_float = code_error_chips;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
tmp_float = code_error_filt_chips;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
|
|
||||||
// CN0 and carrier lock test
|
|
||||||
tmp_float = d_CN0_SNV_dB_Hz;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
tmp_float = d_carrier_lock_test;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
|
|
||||||
// AUX vars (for debug purposes)
|
|
||||||
tmp_float = d_rem_code_phase_samples;
|
|
||||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
|
||||||
tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
|
|
||||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
|
||||||
}
|
|
||||||
catch (std::ifstream::failure e)
|
|
||||||
{
|
|
||||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
|
|
||||||
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
|
|
||||||
//LOG(INFO)<<"GPS tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
|
|
||||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(unsigned int channel)
|
|
||||||
{
|
|
||||||
d_channel = channel;
|
|
||||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
|
||||||
// ############# ENABLE DATA FILE LOG #################
|
|
||||||
if (d_dump == true)
|
|
||||||
{
|
|
||||||
if (d_dump_file.is_open() == false)
|
|
||||||
{
|
|
||||||
try
|
|
||||||
{
|
|
||||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
|
||||||
d_dump_filename.append(".dat");
|
|
||||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
|
|
||||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
|
||||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
|
||||||
}
|
|
||||||
catch (std::ifstream::failure e)
|
|
||||||
{
|
|
||||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
|
||||||
{
|
|
||||||
d_channel_internal_queue = channel_internal_queue;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
|
||||||
{
|
|
||||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
|
||||||
}
|
|
@ -106,6 +106,8 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc(
|
|||||||
gr::block("Gps_L1_Ca_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("Gps_L1_Ca_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -434,7 +436,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
current_synchro_data.CN0_dB_hz = 0.0;
|
current_synchro_data.CN0_dB_hz = 0.0;
|
||||||
current_synchro_data.Flag_valid_tracking = false;
|
current_synchro_data.Flag_valid_tracking = false;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
@ -547,6 +549,8 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
current_synchro_data.Code_phase_secs = (double)d_code_phase_samples * (1/(float)d_fs_in);
|
current_synchro_data.Code_phase_secs = (double)d_code_phase_samples * (1/(float)d_fs_in);
|
||||||
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms=1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
|
@ -103,6 +103,8 @@ gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
|
|||||||
gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||||
{
|
{
|
||||||
|
// Telemetry bit synchronization message port input
|
||||||
|
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||||
// initialize internal vars
|
// initialize internal vars
|
||||||
d_queue = queue;
|
d_queue = queue;
|
||||||
d_dump = dump;
|
d_dump = dump;
|
||||||
@ -311,8 +313,6 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_carrier()
|
|||||||
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
|
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
|
||||||
phase_rad += phase_step_rad;
|
phase_rad += phase_step_rad;
|
||||||
}
|
}
|
||||||
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_L2_TWO_PI);
|
|
||||||
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -414,7 +414,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
|||||||
current_synchro_data.CN0_dB_hz = 0.0;
|
current_synchro_data.CN0_dB_hz = 0.0;
|
||||||
current_synchro_data.Flag_valid_tracking = false;
|
current_synchro_data.Flag_valid_tracking = false;
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
@ -499,11 +499,6 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
|||||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
|
||||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
|
||||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
|
||||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
|
||||||
|
|
||||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||||
@ -516,6 +511,8 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
|||||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||||
current_synchro_data.Flag_valid_tracking = true;
|
current_synchro_data.Flag_valid_tracking = true;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = true;
|
||||||
|
current_synchro_data.correlation_length_ms=1;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
|
|
||||||
// ########## DEBUG OUTPUT
|
// ########## DEBUG OUTPUT
|
||||||
@ -570,6 +567,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
|||||||
*d_Late = gr_complex(0,0);
|
*d_Late = gr_complex(0,0);
|
||||||
|
|
||||||
current_synchro_data.Flag_valid_pseudorange = false;
|
current_synchro_data.Flag_valid_pseudorange = false;
|
||||||
|
current_synchro_data.Flag_valid_symbol_output = false;
|
||||||
*out[0] = current_synchro_data;
|
*out[0] = current_synchro_data;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -35,7 +35,6 @@
|
|||||||
#include "cpu_multicorrelator.h"
|
#include "cpu_multicorrelator.h"
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <volk/volk.h>
|
|
||||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||||
|
|
||||||
|
|
||||||
@ -68,10 +67,10 @@ bool cpu_multicorrelator::init(
|
|||||||
// ALLOCATE MEMORY FOR INTERNAL vectors
|
// ALLOCATE MEMORY FOR INTERNAL vectors
|
||||||
size_t size = max_signal_length_samples * sizeof(std::complex<float>);
|
size_t size = max_signal_length_samples * sizeof(std::complex<float>);
|
||||||
|
|
||||||
d_local_codes_resampled = static_cast<std::complex<float>**>(volk_malloc(n_correlators * sizeof(std::complex<float>), volk_get_alignment()));
|
d_local_codes_resampled = static_cast<std::complex<float>**>(volk_gnsssdr_malloc(n_correlators * sizeof(std::complex<float>), volk_gnsssdr_get_alignment()));
|
||||||
for (int n = 0; n < n_correlators; n++)
|
for (int n = 0; n < n_correlators; n++)
|
||||||
{
|
{
|
||||||
d_local_codes_resampled[n] = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
|
d_local_codes_resampled[n] = static_cast<std::complex<float>*>(volk_gnsssdr_malloc(size, volk_gnsssdr_get_alignment()));
|
||||||
}
|
}
|
||||||
d_n_correlators = n_correlators;
|
d_n_correlators = n_correlators;
|
||||||
return true;
|
return true;
|
||||||
@ -103,18 +102,14 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
|
|||||||
|
|
||||||
void cpu_multicorrelator::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
|
void cpu_multicorrelator::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
|
||||||
{
|
{
|
||||||
float local_code_chip_index;
|
volk_gnsssdr_32fc_xn_resampler_32fc_xn(d_local_codes_resampled,
|
||||||
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
d_local_code_in,
|
||||||
{
|
rem_code_phase_chips,
|
||||||
for (int n = 0; n < correlator_length_samples; n++)
|
code_phase_step_chips,
|
||||||
{
|
d_shifts_chips,
|
||||||
// resample code for current tap
|
correlator_length_samples,
|
||||||
local_code_chip_index = std::fmod(code_phase_step_chips * static_cast<float>(n) + d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
|
d_n_correlators,
|
||||||
//Take into account that in multitap correlators, the shifts can be negative!
|
d_code_length_chips);
|
||||||
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
|
|
||||||
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -140,9 +135,9 @@ bool cpu_multicorrelator::free()
|
|||||||
// Free memory
|
// Free memory
|
||||||
for (int n = 0; n < d_n_correlators; n++)
|
for (int n = 0; n < d_n_correlators; n++)
|
||||||
{
|
{
|
||||||
volk_free(d_local_codes_resampled[n]);
|
volk_gnsssdr_free(d_local_codes_resampled[n]);
|
||||||
}
|
}
|
||||||
volk_free(d_local_codes_resampled);
|
volk_gnsssdr_free(d_local_codes_resampled);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -67,21 +67,22 @@
|
|||||||
*/
|
*/
|
||||||
float cn0_svn_estimator(gr_complex* Prompt_buffer, int length, long fs_in, double code_length)
|
float cn0_svn_estimator(gr_complex* Prompt_buffer, int length, long fs_in, double code_length)
|
||||||
{
|
{
|
||||||
float SNR = 0;
|
double SNR = 0;
|
||||||
float SNR_dB_Hz = 0;
|
double SNR_dB_Hz = 0;
|
||||||
float Psig = 0;
|
double Psig = 0;
|
||||||
float Ptot = 0;
|
double Ptot = 0;
|
||||||
for (int i=0; i<length; i++)
|
for (int i=0; i<length; i++)
|
||||||
{
|
{
|
||||||
Psig += std::abs(Prompt_buffer[i].real());
|
Psig += std::abs(static_cast<double>(Prompt_buffer[i].real()));
|
||||||
Ptot += Prompt_buffer[i].imag() * Prompt_buffer[i].imag() + Prompt_buffer[i].real() * Prompt_buffer[i].real();
|
Ptot += static_cast<double>(Prompt_buffer[i].imag()) * static_cast<double>(Prompt_buffer[i].imag())
|
||||||
|
+ static_cast<double>(Prompt_buffer[i].real()) * static_cast<double>(Prompt_buffer[i].real());
|
||||||
}
|
}
|
||||||
Psig = Psig / (float)length;
|
Psig = Psig / static_cast<double>(length);
|
||||||
Psig = Psig * Psig;
|
Psig = Psig * Psig;
|
||||||
Ptot = Ptot / (float)length;
|
Ptot = Ptot / static_cast<double>(length);
|
||||||
SNR = Psig / (Ptot - Psig);
|
SNR = Psig / (Ptot - Psig);
|
||||||
SNR_dB_Hz = 10 * log10(SNR) + 10 * log10(fs_in/2) - 10 * log10((float)code_length);
|
SNR_dB_Hz = 10 * log10(SNR) + 10 * log10(static_cast<double>(fs_in)/2) - 10 * log10(code_length);
|
||||||
return SNR_dB_Hz;
|
return static_cast<float>(SNR_dB_Hz);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -74,12 +74,15 @@ const int GPS_L1_CA_HISTORY_DEEP = 100;
|
|||||||
|
|
||||||
#define GPS_PREAMBLE {1, 0, 0, 0, 1, 0, 1, 1}
|
#define GPS_PREAMBLE {1, 0, 0, 0, 1, 0, 1, 1}
|
||||||
const int GPS_CA_PREAMBLE_LENGTH_BITS = 8;
|
const int GPS_CA_PREAMBLE_LENGTH_BITS = 8;
|
||||||
|
const int GPS_CA_PREAMBLE_LENGTH_SYMBOLS = 160;
|
||||||
const int GPS_CA_TELEMETRY_RATE_BITS_SECOND = 50; //!< NAV message bit rate [bits/s]
|
const int GPS_CA_TELEMETRY_RATE_BITS_SECOND = 50; //!< NAV message bit rate [bits/s]
|
||||||
const int GPS_CA_TELEMETRY_RATE_SYMBOLS_SECOND = GPS_CA_TELEMETRY_RATE_BITS_SECOND*20; //!< NAV message bit rate [symbols/s]
|
const int GPS_CA_TELEMETRY_SYMBOLS_PER_BIT = 20;
|
||||||
|
const int GPS_CA_TELEMETRY_RATE_SYMBOLS_SECOND = GPS_CA_TELEMETRY_RATE_BITS_SECOND*GPS_CA_TELEMETRY_SYMBOLS_PER_BIT; //!< NAV message bit rate [symbols/s]
|
||||||
const int GPS_WORD_LENGTH = 4; //!< CRC + GPS WORD (-2 -1 0 ... 29) Bits = 4 bytes
|
const int GPS_WORD_LENGTH = 4; //!< CRC + GPS WORD (-2 -1 0 ... 29) Bits = 4 bytes
|
||||||
const int GPS_SUBFRAME_LENGTH = 40; //!< GPS_WORD_LENGTH x 10 = 40 bytes
|
const int GPS_SUBFRAME_LENGTH = 40; //!< GPS_WORD_LENGTH x 10 = 40 bytes
|
||||||
const int GPS_SUBFRAME_BITS = 300; //!< Number of bits per subframe in the NAV message [bits]
|
const int GPS_SUBFRAME_BITS = 300; //!< Number of bits per subframe in the NAV message [bits]
|
||||||
const int GPS_SUBFRAME_SECONDS = 6; //!< Subframe duration [seconds]
|
const int GPS_SUBFRAME_SECONDS = 6; //!< Subframe duration [seconds]
|
||||||
|
const int GPS_SUBFRAME_MS = 6000; //!< Subframe duration [seconds]
|
||||||
const int GPS_WORD_BITS = 30; //!< Number of bits per word in the NAV message [bits]
|
const int GPS_WORD_BITS = 30; //!< Number of bits per word in the NAV message [bits]
|
||||||
|
|
||||||
// GPS NAVIGATION MESSAGE STRUCTURE
|
// GPS NAVIGATION MESSAGE STRUCTURE
|
||||||
|
@ -61,6 +61,9 @@ public:
|
|||||||
double Tracking_timestamp_secs; //!< Set by Tracking processing block
|
double Tracking_timestamp_secs; //!< Set by Tracking processing block
|
||||||
bool Flag_valid_tracking;
|
bool Flag_valid_tracking;
|
||||||
|
|
||||||
|
bool Flag_valid_symbol_output;
|
||||||
|
int correlation_length_ms; //!< Set by Tracking processing block
|
||||||
|
|
||||||
//Telemetry Decoder
|
//Telemetry Decoder
|
||||||
double Prn_timestamp_ms; //!< Set by Telemetry Decoder processing block
|
double Prn_timestamp_ms; //!< Set by Telemetry Decoder processing block
|
||||||
double Prn_timestamp_at_preamble_ms; //!< Set by Telemetry Decoder processing block
|
double Prn_timestamp_at_preamble_ms; //!< Set by Telemetry Decoder processing block
|
||||||
|
Loading…
Reference in New Issue
Block a user