diff --git a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc b/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc
deleted file mode 100644
index a0c67e80b..000000000
--- a/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.cc
+++ /dev/null
@@ -1,488 +0,0 @@
-/*!
- * \file pcps_acquisition_sc.cc
- * \brief This class implements a Parallel Code Phase Search Acquisition
- * \authors
- * - Javier Arribas, 2011. jarribas(at)cttc.es
- *
- Luis Esteve, 2012. luis(at)epsilon-formacion.com
- *
- Marc Molina, 2013. marc.molina.pena@gmail.com
- *
- *
- * -------------------------------------------------------------------------
- *
- * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
- *
- * GNSS-SDR is a software defined Global Navigation
- * Satellite Systems receiver
- *
- * This file is part of GNSS-SDR.
- *
- * GNSS-SDR is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * GNSS-SDR is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNSS-SDR. If not, see .
- *
- * -------------------------------------------------------------------------
- */
-
-#include "pcps_acquisition_sc.h"
-#include
-#include
-#include
-#include
-#include
-#include
-#include "control_message_factory.h"
-#include "GPS_L1_CA.h" //GPS_TWO_PI
-
-using google::LogMessage;
-
-pcps_acquisition_sc_sptr pcps_make_acquisition_sc(
- unsigned int sampled_ms, unsigned int max_dwells,
- unsigned int doppler_max, long freq, long fs_in,
- int samples_per_ms, int samples_per_code,
- bool bit_transition_flag, bool use_CFAR_algorithm_flag,
- bool dump,
- std::string dump_filename)
-{
-
- return pcps_acquisition_sc_sptr(
- new pcps_acquisition_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
- samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, dump_filename));
-}
-
-pcps_acquisition_sc::pcps_acquisition_sc(
- unsigned int sampled_ms, unsigned int max_dwells,
- unsigned int doppler_max, long freq, long fs_in,
- int samples_per_ms, int samples_per_code,
- bool bit_transition_flag, bool use_CFAR_algorithm_flag,
- bool dump,
- std::string dump_filename) :
- gr::block("pcps_acquisition_sc",
- gr::io_signature::make(1, 1, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
- gr::io_signature::make(0, 0, 0))
-{
- this->message_port_register_out(pmt::mp("events"));
- d_sample_counter = 0; // SAMPLE COUNTER
- d_active = false;
- d_state = 0;
- d_freq = freq;
- d_fs_in = fs_in;
- d_samples_per_ms = samples_per_ms;
- d_samples_per_code = samples_per_code;
- d_sampled_ms = sampled_ms;
- d_max_dwells = max_dwells;
- d_well_count = 0;
- d_doppler_max = doppler_max;
- d_fft_size = d_sampled_ms * d_samples_per_ms;
- d_mag = 0;
- d_input_power = 0.0;
- d_num_doppler_bins = 0;
- d_bit_transition_flag = bit_transition_flag;
- d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
- d_threshold = 0.0;
- d_doppler_step = 250;
- d_code_phase = 0;
- d_test_statistics = 0.0;
- d_channel = 0;
- d_doppler_freq = 0.0;
-
- //set_relative_rate( 1.0/d_fft_size );
-
- // COD:
- // Experimenting with the overlap/save technique for handling bit trannsitions
- // The problem: Circular correlation is asynchronous with the received code.
- // In effect the first code phase used in the correlation is the current
- // estimate of the code phase at the start of the input buffer. If this is 1/2
- // of the code period a bit transition would move all the signal energy into
- // adjacent frequency bands at +/- 1/T where T is the integration time.
- //
- // We can avoid this by doing linear correlation, effectively doubling the
- // size of the input buffer and padding the code with zeros.
- if( d_bit_transition_flag )
- {
- d_fft_size *= 2;
- d_max_dwells = 1;
- }
-
- d_fft_codes = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
- d_magnitude = static_cast(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
- //temporary storage for the input conversion from 16sc to float 32fc
- d_in_32fc = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
-
- // Direct FFT
- d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
-
- // Inverse FFT
- d_ifft = new gr::fft::fft_complex(d_fft_size, false);
-
- // For dumping samples into a file
- d_dump = dump;
- d_dump_filename = dump_filename;
-
- d_gnss_synchro = 0;
- d_grid_doppler_wipeoffs = 0;
-}
-
-
-pcps_acquisition_sc::~pcps_acquisition_sc()
-{
- if (d_num_doppler_bins > 0)
- {
- for (unsigned int i = 0; i < d_num_doppler_bins; i++)
- {
- volk_free(d_grid_doppler_wipeoffs[i]);
- }
- delete[] d_grid_doppler_wipeoffs;
- }
-
- volk_free(d_fft_codes);
- volk_free(d_magnitude);
- volk_free(d_in_32fc);
-
- delete d_ifft;
- delete d_fft_if;
-
- if (d_dump)
- {
- d_dump_file.close();
- }
-}
-
-
-void pcps_acquisition_sc::set_local_code(std::complex * code)
-{
- // COD
- // Here we want to create a buffer that looks like this:
- // [ 0 0 0 ... 0 c_0 c_1 ... c_L]
- // where c_i is the local code and there are L zeros and L chips
- int offset = 0;
- if( d_bit_transition_flag )
- {
- std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
- offset = d_samples_per_code;
- }
- memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
- d_fft_if->execute(); // We need the FFT of local code
- volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
-}
-
-
-void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
-{
- float phase_step_rad = GPS_TWO_PI * freq / static_cast(d_fs_in);
- float _phase[1];
- _phase[0] = 0;
- volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
-}
-
-
-void pcps_acquisition_sc::init()
-{
- d_gnss_synchro->Flag_valid_acquisition = false;
- d_gnss_synchro->Flag_valid_symbol_output = false;
- d_gnss_synchro->Flag_valid_pseudorange = false;
- d_gnss_synchro->Flag_valid_word = false;
- d_gnss_synchro->Flag_preamble = false;
-
- d_gnss_synchro->Acq_delay_samples = 0.0;
- d_gnss_synchro->Acq_doppler_hz = 0.0;
- d_gnss_synchro->Acq_samplestamp_samples = 0;
- d_mag = 0.0;
- d_input_power = 0.0;
-
- d_num_doppler_bins = ceil( static_cast(static_cast(d_doppler_max) - static_cast(-d_doppler_max)) / static_cast(d_doppler_step));
-
- // Create the carrier Doppler wipeoff signals
- d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
-
- for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
- {
- d_grid_doppler_wipeoffs[doppler_index] = static_cast(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
- int doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index;
- update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
- }
-}
-
-
-
-void pcps_acquisition_sc::set_state(int state)
-{
- d_state = state;
- if (d_state == 1)
- {
- d_gnss_synchro->Acq_delay_samples = 0.0;
- d_gnss_synchro->Acq_doppler_hz = 0.0;
- d_gnss_synchro->Acq_samplestamp_samples = 0;
- d_well_count = 0;
- d_mag = 0.0;
- d_input_power = 0.0;
- d_test_statistics = 0.0;
- }
- else if (d_state == 0)
- {}
- else
- {
- LOG(ERROR) << "State can only be set to 0 or 1";
- }
-}
-
-int pcps_acquisition_sc::general_work(int noutput_items,
- gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
- gr_vector_void_star &output_items __attribute__((unused)))
-{
- /*
- * By J.Arribas, L.Esteve and M.Molina
- * Acquisition strategy (Kay Borre book + CFAR threshold):
- * 1. Compute the input signal power estimation
- * 2. Doppler serial search loop
- * 3. Perform the FFT-based circular convolution (parallel time search)
- * 4. Record the maximum peak and the associated synchronization parameters
- * 5. Compute the test statistics and compare to the threshold
- * 6. Declare positive or negative acquisition using a message port
- */
-
- int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
-
- switch (d_state)
- {
- case 0:
- {
- if (d_active)
- {
- //restart acquisition variables
- d_gnss_synchro->Acq_delay_samples = 0.0;
- d_gnss_synchro->Acq_doppler_hz = 0.0;
- d_gnss_synchro->Acq_samplestamp_samples = 0;
- d_well_count = 0;
- d_mag = 0.0;
- d_input_power = 0.0;
- d_test_statistics = 0.0;
-
- d_state = 1;
- }
-
- d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
- consume_each(ninput_items[0]);
-
- //DLOG(INFO) << "Consumed " << ninput_items[0] << " items";
-
- break;
- }
-
- case 1:
- {
- // initialize acquisition algorithm
- int doppler;
- uint32_t indext = 0;
- float magt = 0.0;
- const lv_16sc_t *in = (const lv_16sc_t *)input_items[0]; //Get the input samples pointer
- int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
-
- //TODO: optimize the signal processing chain to not use gr_complex. This is a temporary solution
- volk_gnsssdr_16ic_convert_32fc(d_in_32fc,in,effective_fft_size);
-
- float fft_normalization_factor = static_cast(d_fft_size) * static_cast(d_fft_size);
-
- d_mag = 0.0;
-
- d_sample_counter += d_fft_size; // sample counter
- d_well_count++;
-
- DLOG(INFO) << "Channel: " << d_channel
- << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
- << " ,sample stamp: " << d_sample_counter << ", threshold: "
- << d_threshold << ", doppler_max: " << d_doppler_max
- << ", doppler_step: " << d_doppler_step;
-
- if (d_use_CFAR_algorithm_flag == true)
- {
- // 1- (optional) Compute the input signal power estimation
- volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
- d_input_power /= static_cast(d_fft_size);
- }
- // 2- Doppler frequency search loop
- for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
- {
- // doppler search steps
-
- doppler = -static_cast(d_doppler_max) + d_doppler_step * doppler_index;
-
- volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
- d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
-
- // 3- Perform the FFT-based convolution (parallel time search)
- // Compute the FFT of the carrier wiped--off incoming signal
- d_fft_if->execute();
-
- // Multiply carrier wiped--off, Fourier transformed incoming signal
- // with the local FFT'd code reference using SIMD operations with VOLK library
- volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
- d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
-
- // compute the inverse FFT
- d_ifft->execute();
-
- // Search maximum
- size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
- volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
- volk_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
- magt = d_magnitude[indext];
-
- if (d_use_CFAR_algorithm_flag == true)
- {
- // Normalize the maximum value to correct the scale factor introduced by FFTW
- magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
- }
-
- // 4- record the maximum peak and the associated synchronization parameters
- if (d_mag < magt)
- {
- d_mag = magt;
-
- if (d_use_CFAR_algorithm_flag == false)
- {
- // Search grid noise floor approximation for this doppler line
- volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
- d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
- }
-
- // In case that d_bit_transition_flag = true, we compare the potentially
- // new maximum test statistics (d_mag/d_input_power) with the value in
- // d_test_statistics. When the second dwell is being processed, the value
- // of d_mag/d_input_power could be lower than d_test_statistics (i.e,
- // the maximum test statistics in the previous dwell is greater than
- // current d_mag/d_input_power). Note that d_test_statistics is not
- // restarted between consecutive dwells in multidwell operation.
-
- if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
- {
- d_gnss_synchro->Acq_delay_samples = static_cast(indext % d_samples_per_code);
- d_gnss_synchro->Acq_doppler_hz = static_cast(doppler);
- d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
-
- // 5- Compute the test statistics and compare to the threshold
- d_test_statistics = d_mag / d_input_power;
- //std::cout<<"d_input_power="<Acq_doppler_hz ="<Acq_doppler_hz <System
- <<"_" << d_gnss_synchro->Signal << "_sat_"
- << d_gnss_synchro->PRN << "_doppler_"
- << doppler
- << p.extension().string();
-
- DLOG(INFO) << "Writing ACQ out to " << filename.str();
-
- d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
- d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
- d_dump_file.close();
- }
- }
-
- if (!d_bit_transition_flag)
- {
- if (d_test_statistics > d_threshold)
- {
- d_state = 2; // Positive acquisition
- }
- else if (d_well_count == d_max_dwells)
- {
- d_state = 3; // Negative acquisition
- }
- }
- else
- {
- if (d_well_count == d_max_dwells) // d_max_dwells = 2
- {
- if (d_test_statistics > d_threshold)
- {
- d_state = 2; // Positive acquisition
- }
- else
- {
- d_state = 3; // Negative acquisition
- }
- }
- }
-
- consume_each(1);
-
- DLOG(INFO) << "Done. Consumed 1 item.";
-
- break;
- }
-
- case 2:
- {
- // 6.1- Declare positive acquisition using a message port
- DLOG(INFO) << "positive acquisition";
- DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
- DLOG(INFO) << "sample_stamp " << d_sample_counter;
- DLOG(INFO) << "test statistics value " << d_test_statistics;
- DLOG(INFO) << "test statistics threshold " << d_threshold;
- DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
- DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
- DLOG(INFO) << "magnitude " << d_mag;
- DLOG(INFO) << "input signal power " << d_input_power;
-
- d_active = false;
- d_state = 0;
-
- d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
- consume_each(ninput_items[0]);
-
- acquisition_message = 1;
- this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
-
- break;
- }
-
- case 3:
- {
- // 6.2- Declare negative acquisition using a message port
- DLOG(INFO) << "negative acquisition";
- DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
- DLOG(INFO) << "sample_stamp " << d_sample_counter;
- DLOG(INFO) << "test statistics value " << d_test_statistics;
- DLOG(INFO) << "test statistics threshold " << d_threshold;
- DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
- DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
- DLOG(INFO) << "magnitude " << d_mag;
- DLOG(INFO) << "input signal power " << d_input_power;
-
- d_active = false;
- d_state = 0;
-
- d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
- consume_each(ninput_items[0]);
- acquisition_message = 2;
- this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
-
- break;
- }
- }
-
- return noutput_items;
-}