mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-26 17:06:58 +00:00
Update cubature filter library to align with coding conventions
This commit is contained in:
parent
c567be407c
commit
83d77fabb0
src
algorithms/tracking/libs
tests/unit-tests/signal-processing-blocks/tracking
@ -84,7 +84,7 @@ void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x
|
||||
/*
|
||||
* Perform the prediction step of the cubature Kalman filter
|
||||
*/
|
||||
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
|
||||
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
|
||||
{
|
||||
// Compute number of cubature points
|
||||
int nx = x_post.n_elem;
|
||||
@ -125,7 +125,7 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma
|
||||
/*
|
||||
* Perform the update step of the cubature Kalman filter
|
||||
*/
|
||||
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
|
||||
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
|
||||
{
|
||||
// Compute number of cubature points
|
||||
int nx = x_pred.n_elem;
|
||||
@ -188,8 +188,3 @@ arma::mat Cubature_filter::get_P_x_est() const
|
||||
{
|
||||
return P_x_est;
|
||||
}
|
||||
|
||||
double Cubature_filter::func_number(double number, TestModel* func)
|
||||
{
|
||||
return (*func)(number);
|
||||
}
|
||||
|
@ -45,19 +45,11 @@
|
||||
#include <gnuradio/gr_complex.h>
|
||||
|
||||
// Abstract model function
|
||||
class ModelFunction{
|
||||
class Model_Function{
|
||||
public:
|
||||
ModelFunction() {};
|
||||
Model_Function() {};
|
||||
virtual arma::vec operator() (arma::vec input) = 0;
|
||||
virtual ~ModelFunction() = default;
|
||||
};
|
||||
|
||||
class TestModel{
|
||||
public:
|
||||
TestModel() {};
|
||||
//virtual arma::vec operator() (arma::vec input) = 0;
|
||||
virtual double operator() (double input) = 0;
|
||||
virtual ~TestModel() = default;
|
||||
virtual ~Model_Function() = default;
|
||||
};
|
||||
|
||||
class Cubature_filter
|
||||
@ -73,8 +65,8 @@ public:
|
||||
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
|
||||
|
||||
// Prediction and estimation
|
||||
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
|
||||
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
|
||||
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
|
||||
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
|
||||
|
||||
// Getters
|
||||
arma::mat get_x_pred() const;
|
||||
@ -82,9 +74,6 @@ public:
|
||||
arma::mat get_x_est() const;
|
||||
arma::mat get_P_x_est() const;
|
||||
|
||||
//Test-dev
|
||||
double func_number(double number, TestModel* func);
|
||||
|
||||
private:
|
||||
arma::vec x_pred_out;
|
||||
arma::mat P_x_pred_out;
|
||||
|
@ -35,17 +35,17 @@
|
||||
|
||||
#define CUBATURE_TEST_N_TRIALS 1000
|
||||
|
||||
class TransitionModel : public ModelFunction {
|
||||
class Transition_Model : public Model_Function {
|
||||
public:
|
||||
TransitionModel(arma::mat kf_F) {coeff_mat = kf_F;};
|
||||
Transition_Model(arma::mat kf_F) {coeff_mat = kf_F;};
|
||||
virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;};
|
||||
private:
|
||||
arma::mat coeff_mat;
|
||||
};
|
||||
|
||||
class MeasurementModel : public ModelFunction {
|
||||
class Measurement_Model : public Model_Function {
|
||||
public:
|
||||
MeasurementModel(arma::mat kf_H) {coeff_mat = kf_H;};
|
||||
Measurement_Model(arma::mat kf_H) {coeff_mat = kf_H;};
|
||||
virtual arma::vec operator() (arma::vec input) {return coeff_mat*input;};
|
||||
private:
|
||||
arma::mat coeff_mat;
|
||||
@ -83,8 +83,8 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
||||
arma::mat kf_P_y;
|
||||
arma::mat kf_K;
|
||||
|
||||
ModelFunction* transition_function;
|
||||
ModelFunction* measurement_function;
|
||||
Model_Function* transition_function;
|
||||
Model_Function* measurement_function;
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
|
||||
@ -112,7 +112,7 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
||||
kf_F = arma::randu<arma::mat>(nx,nx);
|
||||
kf_Q = arma::diagmat(arma::randu<arma::vec>(nx,1));
|
||||
|
||||
transition_function = new TransitionModel(kf_F);
|
||||
transition_function = new Transition_Model(kf_F);
|
||||
arma::mat ttx = (*transition_function)(kf_x_post);
|
||||
|
||||
kf_cubature.predict_sequential(kf_x_post,kf_P_x_post,transition_function,kf_Q);
|
||||
@ -135,7 +135,7 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
||||
|
||||
kf_y = kf_H*(kf_F*kf_x + eta) + nu;
|
||||
|
||||
measurement_function = new MeasurementModel(kf_H);
|
||||
measurement_function = new Measurement_Model(kf_H);
|
||||
kf_cubature.update_sequential(kf_y,kf_x_pre,kf_P_x_pre,measurement_function,kf_R);
|
||||
|
||||
ckf_x_post = kf_cubature.get_x_est();
|
||||
|
Loading…
Reference in New Issue
Block a user