mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-11-04 09:13:05 +00:00 
			
		
		
		
	Merge branch 'odrisci-fix_pcps_threshold' into next. Fixes: #331
This commit is contained in:
		@@ -28,6 +28,7 @@
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "rtklib_pvt_gs.h"
 | 
			
		||||
#include "MATH_CONSTANTS.h"
 | 
			
		||||
#include "beidou_dnav_almanac.h"
 | 
			
		||||
#include "beidou_dnav_ephemeris.h"
 | 
			
		||||
@@ -60,7 +61,6 @@
 | 
			
		||||
#include "pvt_conf.h"
 | 
			
		||||
#include "rinex_printer.h"
 | 
			
		||||
#include "rtcm_printer.h"
 | 
			
		||||
#include "rtklib_pvt_gs.h"
 | 
			
		||||
#include "rtklib_solver.h"
 | 
			
		||||
#include <boost/any.hpp>                   // for any_cast, any
 | 
			
		||||
#include <boost/archive/xml_iarchive.hpp>  // for xml_iarchive
 | 
			
		||||
@@ -1921,11 +1921,11 @@ int rtklib_pvt_gs::work(int noutput_items, gr_vector_const_void_star& input_item
 | 
			
		||||
                {
 | 
			
		||||
                    if (in[i][epoch].Flag_valid_pseudorange)
 | 
			
		||||
                        {
 | 
			
		||||
                            std::map<int, Gps_Ephemeris>::const_iterator tmp_eph_iter_gps = d_internal_pvt_solver->gps_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            std::map<int, Galileo_Ephemeris>::const_iterator tmp_eph_iter_gal = d_internal_pvt_solver->galileo_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            std::map<int, Gps_CNAV_Ephemeris>::const_iterator tmp_eph_iter_cnav = d_internal_pvt_solver->gps_cnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            std::map<int, Glonass_Gnav_Ephemeris>::const_iterator tmp_eph_iter_glo_gnav = d_internal_pvt_solver->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            std::map<int, Beidou_Dnav_Ephemeris>::const_iterator tmp_eph_iter_bds_dnav = d_internal_pvt_solver->beidou_dnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            auto tmp_eph_iter_gps = d_internal_pvt_solver->gps_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            auto tmp_eph_iter_gal = d_internal_pvt_solver->galileo_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            auto tmp_eph_iter_cnav = d_internal_pvt_solver->gps_cnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            auto tmp_eph_iter_glo_gnav = d_internal_pvt_solver->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
                            auto tmp_eph_iter_bds_dnav = d_internal_pvt_solver->beidou_dnav_ephemeris_map.find(in[i][epoch].PRN);
 | 
			
		||||
 | 
			
		||||
                            bool store_valid_observable = false;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -53,6 +53,7 @@ Pvt_Solution::Pvt_Solution()
 | 
			
		||||
    d_valid_observations = 0;
 | 
			
		||||
    d_rx_pos = arma::zeros(3, 1);
 | 
			
		||||
    d_rx_dt_s = 0.0;
 | 
			
		||||
    d_rx_clock_drift_ppm = 0.0;
 | 
			
		||||
    d_pre_2009_file = false;  // disabled by default
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@
 | 
			
		||||
#include "beidou_b1i_signal_processing.h"
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <memory>
 | 
			
		||||
@@ -52,65 +51,26 @@ BeidouB1iPcpsAcquisition::BeidouB1iPcpsAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, BEIDOU_B1I_CODE_RATE_CPS, 10e6);
 | 
			
		||||
 | 
			
		||||
    LOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    acq_parameters_.sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    num_codes_ = acq_parameters_.sampled_ms;
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
    // --- Find number of samples per spreading code -------------------------
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (BEIDOU_B1I_CODE_RATE_CPS / BEIDOU_B1I_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
    acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / BEIDOU_B1I_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(BEIDOU_B1I_CODE_PERIOD_S * 1000.0);
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -122,7 +82,6 @@ BeidouB1iPcpsAcquisition::BeidouB1iPcpsAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
    if (in_streams_ > 1)
 | 
			
		||||
@@ -143,18 +102,7 @@ void BeidouB1iPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void BeidouB1iPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -225,23 +173,6 @@ void BeidouB1iPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float BeidouB1iPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    uint32_t frequency_bins = 0;
 | 
			
		||||
    frequency_bins = (2 * doppler_max_ + doppler_step_) / doppler_step_;
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    uint32_t ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void BeidouB1iPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -170,17 +170,12 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
@@ -188,7 +183,6 @@ private:
 | 
			
		||||
    unsigned int num_codes_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_BEIDOU_B1I_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,6 @@
 | 
			
		||||
#include "beidou_b3i_signal_processing.h"
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
@@ -50,65 +49,26 @@ BeidouB3iPcpsAcquisition::BeidouB3iPcpsAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, BEIDOU_B3I_CODE_RATE_CPS, 100e6);
 | 
			
		||||
 | 
			
		||||
    LOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    acq_parameters_.sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    num_codes_ = acq_parameters_.sampled_ms;
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
    // --- Find number of samples per spreading code -------------------------
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (BEIDOU_B3I_CODE_RATE_CPS / BEIDOU_B3I_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
    acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / BEIDOU_B3I_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(BEIDOU_B3I_CODE_PERIOD_S * 1000.0);
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -120,7 +80,6 @@ BeidouB3iPcpsAcquisition::BeidouB3iPcpsAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
    if (in_streams_ > 1)
 | 
			
		||||
@@ -141,22 +100,7 @@ void BeidouB3iPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void BeidouB3iPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
        }
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -226,23 +170,6 @@ void BeidouB3iPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float BeidouB3iPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    frequency_bins = (2 * doppler_max_ + doppler_step_) / doppler_step_;
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1.0 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void BeidouB3iPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -169,17 +169,12 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
@@ -187,7 +182,6 @@ private:
 | 
			
		||||
    unsigned int num_codes_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_BEIDOU_B3I_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -49,99 +49,28 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 4;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GALILEO_E1_CODE_CHIP_RATE_CPS, GALILEO_E1_OPT_ACQ_FS_SPS);
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    acq_parameters_.ms_per_code = 4;
 | 
			
		||||
    sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", acq_parameters_.ms_per_code);
 | 
			
		||||
    acq_parameters_.sampled_ms = sampled_ms_;
 | 
			
		||||
    if ((acq_parameters_.sampled_ms % acq_parameters_.ms_per_code) != 0)
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Parameter coherent_integration_time_ms should be a multiple of 4. Setting it to 4";
 | 
			
		||||
            acq_parameters_.sampled_ms = acq_parameters_.ms_per_code;
 | 
			
		||||
        }
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false);  // will be true in future versions
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler == true and item_type_ != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Galileo E1 acqisition disabled the automatic resampler feature because its item_type is not set to gr_complex";
 | 
			
		||||
            acq_parameters_.use_automatic_resampler = false;
 | 
			
		||||
        }
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (acq_parameters_.fs_in > GALILEO_E1_OPT_ACQ_FS_SPS)
 | 
			
		||||
                {
 | 
			
		||||
                    acq_parameters_.resampler_ratio = floor(static_cast<float>(acq_parameters_.fs_in) / GALILEO_E1_OPT_ACQ_FS_SPS);
 | 
			
		||||
                    uint32_t decimation = acq_parameters_.fs_in / GALILEO_E1_OPT_ACQ_FS_SPS;
 | 
			
		||||
                    while (acq_parameters_.fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    acq_parameters_.resampler_ratio = decimation;
 | 
			
		||||
                    acq_parameters_.resampled_fs = acq_parameters_.fs_in / static_cast<int>(acq_parameters_.resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
            // -- Find number of samples per spreading code (4 ms)  -----------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(acq_parameters_.resampled_fs) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GALILEO_E1_CODE_CHIP_RATE_CPS) * static_cast<float>(acq_parameters_.resampled_fs)));
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            // -- Find number of samples per spreading code (4 ms)  -----------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GALILEO_E1_CODE_CHIP_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(GALILEO_E1_CODE_PERIOD_MS);
 | 
			
		||||
    vector_length_ = sampled_ms_ * acq_parameters_.samples_per_ms;
 | 
			
		||||
    if (bit_transition_flag_)
 | 
			
		||||
        {
 | 
			
		||||
            vector_length_ *= 2;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
    acquire_pilot_ = configuration->property(role + ".acquire_pilot", false);
 | 
			
		||||
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    sampled_ms_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -153,7 +82,6 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    doppler_center_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
@@ -175,23 +103,7 @@ void GalileoE1PcpsAmbiguousAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GalileoE1PcpsAmbiguousAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -303,27 +215,6 @@ void GalileoE1PcpsAmbiguousAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GalileoE1PcpsAmbiguousAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -173,8 +173,6 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    bool acquire_pilot_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
@@ -183,17 +181,13 @@ private:
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    int doppler_center_;
 | 
			
		||||
    unsigned int sampled_ms_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
    std::string role_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GALILEO_E1_PCPS_AMBIGUOUS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -34,7 +34,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "galileo_e5_signal_processing.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
@@ -48,109 +47,40 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GALILEO_E5A_CODE_CHIP_RATE_CPS, GALILEO_E5A_OPT_ACQ_FS_SPS);
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
 | 
			
		||||
    acq_iq_ = configuration_->property(role + ".acquire_iq", false);
 | 
			
		||||
    if (acq_iq_)
 | 
			
		||||
        {
 | 
			
		||||
            acq_pilot_ = false;
 | 
			
		||||
        }
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    sampled_ms_ = 1;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false);
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_;
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler == true and item_type_ != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Galileo E5a acquisition disabled the automatic resampler feature because its item_type is not set to gr_complex";
 | 
			
		||||
            acq_parameters_.use_automatic_resampler = false;
 | 
			
		||||
        }
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (acq_parameters_.fs_in > GALILEO_E5A_OPT_ACQ_FS_SPS)
 | 
			
		||||
                {
 | 
			
		||||
                    acq_parameters_.resampler_ratio = floor(static_cast<float>(acq_parameters_.fs_in) / GALILEO_E5A_OPT_ACQ_FS_SPS);
 | 
			
		||||
                    uint32_t decimation = acq_parameters_.fs_in / GALILEO_E5A_OPT_ACQ_FS_SPS;
 | 
			
		||||
                    while (acq_parameters_.fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    acq_parameters_.resampler_ratio = decimation;
 | 
			
		||||
                    acq_parameters_.resampled_fs = acq_parameters_.fs_in / static_cast<int>(acq_parameters_.resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(acq_parameters_.resampled_fs) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GALILEO_E5A_CODE_CHIP_RATE_CPS) * static_cast<float>(acq_parameters_.resampled_fs)));
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GALILEO_E5A_CODE_CHIP_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // -- Find number of samples per spreading code (1ms)-------------------------
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / GALILEO_E5A_CODE_CHIP_RATE_CPS * static_cast<double>(GALILEO_E5A_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = code_length_ * sampled_ms_;
 | 
			
		||||
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    acq_parameters_.sampled_ms = sampled_ms_;
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(GALILEO_E5A_CODE_PERIOD_MS);
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    sampled_ms_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    doppler_center_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
@@ -172,24 +102,7 @@ void GalileoE5aPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GalileoE5aPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -280,25 +193,6 @@ void GalileoE5aPcpsAcquisition::reset()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GalileoE5aPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GalileoE5aPcpsAcquisition::set_state(int state)
 | 
			
		||||
{
 | 
			
		||||
    acquisition_->set_state(state);
 | 
			
		||||
 
 | 
			
		||||
@@ -154,7 +154,6 @@ public:
 | 
			
		||||
    void set_resampler_latency(uint32_t latency_samples) override;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    Acq_Conf acq_parameters_;
 | 
			
		||||
@@ -162,11 +161,7 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::string role_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool acq_pilot_;
 | 
			
		||||
    bool use_CFAR_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    bool acq_iq_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
@@ -176,7 +171,6 @@ private:
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    int doppler_center_;
 | 
			
		||||
    unsigned int sampled_ms_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "glonass_l1_signal_processing.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
@@ -50,70 +49,29 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
 | 
			
		||||
                                in_streams_(in_streams),
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    Acq_Conf acq_parameters = Acq_Conf();
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./data/acquisition.dat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GLONASS_L1_CA_CODE_RATE_CPS, 100e6);
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters.fs_in = fs_in_;
 | 
			
		||||
    acq_parameters.samples_per_chip = static_cast<unsigned int>(ceil(GLONASS_L1_CA_CHIP_PERIOD_S * static_cast<float>(acq_parameters.fs_in)));
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters.dump = dump_;
 | 
			
		||||
    acq_parameters.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters.doppler_max = doppler_max_;
 | 
			
		||||
    sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
    acq_parameters.sampled_ms = sampled_ms_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters.dump_filename = dump_filename_;
 | 
			
		||||
    // --- Find number of samples per spreading code -------------------------
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L1_CA_CODE_RATE_CPS / GLONASS_L1_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
 | 
			
		||||
    vector_length_ = code_length_ * sampled_ms_;
 | 
			
		||||
 | 
			
		||||
    if (bit_transition_flag_)
 | 
			
		||||
        {
 | 
			
		||||
            vector_length_ *= 2;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GLONASS_L1_CA_CODE_RATE_CPS / GLONASS_L1_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters.it_size = item_size_;
 | 
			
		||||
    acq_parameters.sampled_ms = sampled_ms_;
 | 
			
		||||
    acq_parameters.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
    acq_parameters.ms_per_code = 1;
 | 
			
		||||
    acq_parameters.samples_per_code = acq_parameters.samples_per_ms * static_cast<float>(GLONASS_L1_CA_CODE_PERIOD_S * 1000.0);
 | 
			
		||||
    acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    sampled_ms_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cbyte")
 | 
			
		||||
@@ -145,18 +103,7 @@ void GlonassL1CaPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GlonassL1CaPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -228,31 +175,6 @@ void GlonassL1CaPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GlonassL1CaPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    /*
 | 
			
		||||
    for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    frequency_bins = (2 * doppler_max_ + doppler_step_) / doppler_step_;
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GlonassL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -34,6 +34,7 @@
 | 
			
		||||
#ifndef GNSS_SDR_GLONASS_L1_CA_PCPS_ACQUISITION_H_
 | 
			
		||||
#define GNSS_SDR_GLONASS_L1_CA_PCPS_ACQUISITION_H_
 | 
			
		||||
 | 
			
		||||
#include "acq_conf.h"
 | 
			
		||||
#include "channel_fsm.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
@@ -156,6 +157,7 @@ public:
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    Acq_Conf acq_parameters_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
@@ -163,25 +165,19 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    unsigned int sampled_ms_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
    std::string role_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GLONASS_L1_CA_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "glonass_l2_signal_processing.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
@@ -49,70 +48,29 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
 | 
			
		||||
                                in_streams_(in_streams),
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    Acq_Conf acq_parameters = Acq_Conf();
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./data/acquisition.dat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GLONASS_L2_CA_CODE_RATE_CPS, 100e6);
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters.fs_in = fs_in_;
 | 
			
		||||
    acq_parameters.samples_per_chip = static_cast<unsigned int>(ceil(GLONASS_L2_CA_CHIP_PERIOD_S * static_cast<float>(acq_parameters.fs_in)));
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters.dump = dump_;
 | 
			
		||||
    acq_parameters.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters.doppler_max = doppler_max_;
 | 
			
		||||
    sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters.max_dwells = max_dwells_;
 | 
			
		||||
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters.dump_filename = dump_filename_;
 | 
			
		||||
    // --- Find number of samples per spreading code -------------------------
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L2_CA_CODE_RATE_CPS / GLONASS_L2_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
 | 
			
		||||
    vector_length_ = code_length_ * sampled_ms_;
 | 
			
		||||
 | 
			
		||||
    if (bit_transition_flag_)
 | 
			
		||||
        {
 | 
			
		||||
            vector_length_ *= 2;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GLONASS_L2_CA_CODE_RATE_CPS / GLONASS_L2_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters.it_size = item_size_;
 | 
			
		||||
    acq_parameters.sampled_ms = sampled_ms_;
 | 
			
		||||
    acq_parameters.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
    acq_parameters.ms_per_code = 1;
 | 
			
		||||
    acq_parameters.samples_per_code = acq_parameters.samples_per_ms * static_cast<float>(GLONASS_L2_CA_CODE_PERIOD_S * 1000.0);
 | 
			
		||||
    acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    sampled_ms_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cbyte")
 | 
			
		||||
@@ -144,18 +102,7 @@ void GlonassL2CaPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GlonassL2CaPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -227,31 +174,6 @@ void GlonassL2CaPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GlonassL2CaPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    /*
 | 
			
		||||
    for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
     */
 | 
			
		||||
 | 
			
		||||
    frequency_bins = (2 * doppler_max_ + doppler_step_) / doppler_step_;
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GlonassL2CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -33,6 +33,7 @@
 | 
			
		||||
#ifndef GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_
 | 
			
		||||
#define GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_
 | 
			
		||||
 | 
			
		||||
#include "acq_conf.h"
 | 
			
		||||
#include "channel_fsm.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
@@ -155,6 +156,7 @@ public:
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    Acq_Conf acq_parameters_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
@@ -162,25 +164,19 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    unsigned int sampled_ms_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
    std::string role_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -39,7 +39,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include "gps_sdr_signal_processing.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <gsl/gsl>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
@@ -54,88 +53,27 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GPS_L1_CA_CODE_RATE_CPS, GPS_L1_CA_OPT_ACQ_FS_SPS);
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
    acq_parameters_.sampled_ms = sampled_ms_;
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler == true and item_type_ != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "GPS L1 CA acquisition disabled the automatic resampler feature because its item_type is not set to gr_complex";
 | 
			
		||||
            acq_parameters_.use_automatic_resampler = false;
 | 
			
		||||
        }
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (acq_parameters_.fs_in > GPS_L1_CA_OPT_ACQ_FS_SPS)
 | 
			
		||||
                {
 | 
			
		||||
                    acq_parameters_.resampler_ratio = floor(static_cast<float>(acq_parameters_.fs_in) / GPS_L1_CA_OPT_ACQ_FS_SPS);
 | 
			
		||||
                    uint32_t decimation = acq_parameters_.fs_in / GPS_L1_CA_OPT_ACQ_FS_SPS;
 | 
			
		||||
                    while (acq_parameters_.fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    acq_parameters_.resampler_ratio = decimation;
 | 
			
		||||
                    acq_parameters_.resampled_fs = acq_parameters_.fs_in / static_cast<int>(acq_parameters_.resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(acq_parameters_.resampled_fs) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil(GPS_L1_CA_CHIP_PERIOD_S * static_cast<float>(acq_parameters_.resampled_fs)));
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil(GPS_L1_CA_CHIP_PERIOD_S * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(GPS_L1_CA_CODE_PERIOD_S * 1000.0);
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
    sampled_ms_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -147,7 +85,6 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    doppler_center_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
@@ -169,18 +106,7 @@ void GpsL1CaPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GpsL1CaPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -240,7 +166,7 @@ void GpsL1CaPcpsAcquisition::set_local_code()
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
 | 
			
		||||
            gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, acq_parameters_.fs_in, 0);
 | 
			
		||||
        }
 | 
			
		||||
    gsl::span<gr_complex> code_span(code_.data(), vector_length_);
 | 
			
		||||
    for (unsigned int i = 0; i < sampled_ms_; i++)
 | 
			
		||||
@@ -264,26 +190,6 @@ void GpsL1CaPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GpsL1CaPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
@@ -304,7 +210,7 @@ void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type: " << item_type_;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -327,7 +233,7 @@ void GpsL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type" << item_type_;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -347,7 +253,7 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
 | 
			
		||||
            return cbyte_to_float_x2_;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
    LOG(WARNING) << item_type_ << " unknown acquisition item type" << item_type_;
 | 
			
		||||
    return nullptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -177,8 +177,6 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
@@ -186,17 +184,12 @@ private:
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    int doppler_center_;
 | 
			
		||||
    unsigned int sampled_ms_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
    std::string role_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include "gps_l2c_signal.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
@@ -51,94 +50,25 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 20;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GPS_L2_M_CODE_RATE_CPS, GPS_L2C_OPT_ACQ_FS_SPS);
 | 
			
		||||
 | 
			
		||||
    LOG(INFO) << "role " << role;
 | 
			
		||||
    DLOG(INFO) << "Role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    acq_parameters_.ms_per_code = 20;
 | 
			
		||||
    acq_parameters_.sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", acq_parameters_.ms_per_code);
 | 
			
		||||
    if ((acq_parameters_.sampled_ms % acq_parameters_.ms_per_code) != 0)
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Parameter coherent_integration_time_ms should be a multiple of 20. Setting it to 20";
 | 
			
		||||
            acq_parameters_.sampled_ms = acq_parameters_.ms_per_code;
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler == true and item_type_ != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "GPS L2CM acquisition disabled the automatic resampler feature because its item_type is not set to gr_complex";
 | 
			
		||||
            acq_parameters_.use_automatic_resampler = false;
 | 
			
		||||
        }
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (acq_parameters_.fs_in > GPS_L2C_OPT_ACQ_FS_SPS)
 | 
			
		||||
                {
 | 
			
		||||
                    acq_parameters_.resampler_ratio = floor(static_cast<float>(acq_parameters_.fs_in) / GPS_L2C_OPT_ACQ_FS_SPS);
 | 
			
		||||
                    uint32_t decimation = acq_parameters_.fs_in / GPS_L2C_OPT_ACQ_FS_SPS;
 | 
			
		||||
                    while (acq_parameters_.fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    acq_parameters_.resampler_ratio = decimation;
 | 
			
		||||
                    acq_parameters_.resampled_fs = acq_parameters_.fs_in / static_cast<int>(acq_parameters_.resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L2_M_CODE_RATE_CPS / GPS_L2_M_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(acq_parameters_.resampled_fs) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GPS_L2_M_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.resampled_fs)));
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_CPS / GPS_L2_M_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GPS_L2_M_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(GPS_L2_M_PERIOD_S * 1000.0);
 | 
			
		||||
    vector_length_ = acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L2_M_CODE_RATE_CPS / GPS_L2_M_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -150,7 +80,6 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    doppler_center_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
@@ -173,22 +102,7 @@ void GpsL2MPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GpsL2MPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
        }
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -275,26 +189,6 @@ void GpsL2MPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GpsL2MPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1.0 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GpsL2MPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
 
 | 
			
		||||
@@ -174,18 +174,13 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    int doppler_center_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
@@ -193,7 +188,6 @@ private:
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    unsigned int num_codes_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GPS_L2_M_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include "gnss_sdr_flags.h"
 | 
			
		||||
#include "gps_l5_signal.h"
 | 
			
		||||
#include <boost/math/distributions/exponential.hpp>
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
@@ -51,90 +50,28 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
 | 
			
		||||
                                out_streams_(out_streams)
 | 
			
		||||
{
 | 
			
		||||
    configuration_ = configuration;
 | 
			
		||||
    std::string default_item_type = "gr_complex";
 | 
			
		||||
    std::string default_dump_filename = "./acquisition.mat";
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.SetFromConfiguration(configuration_, role, GPS_L5I_CODE_RATE_CPS, GPS_L5_OPT_ACQ_FS_SPS);
 | 
			
		||||
 | 
			
		||||
    LOG(INFO) << "role " << role;
 | 
			
		||||
    DLOG(INFO) << "role " << role;
 | 
			
		||||
 | 
			
		||||
    item_type_ = configuration_->property(role + ".item_type", default_item_type);
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
 | 
			
		||||
    fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    acq_parameters_.fs_in = fs_in_;
 | 
			
		||||
    dump_ = configuration_->property(role + ".dump", false);
 | 
			
		||||
    acq_parameters_.dump = dump_;
 | 
			
		||||
    acq_parameters_.dump_channel = configuration_->property(role + ".dump_channel", 0);
 | 
			
		||||
    blocking_ = configuration_->property(role + ".blocking", true);
 | 
			
		||||
    acq_parameters_.blocking = blocking_;
 | 
			
		||||
    doppler_max_ = configuration->property(role + ".doppler_max", 5000);
 | 
			
		||||
    if (FLAGS_doppler_max != 0)
 | 
			
		||||
        {
 | 
			
		||||
            doppler_max_ = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
    acq_parameters_.doppler_max = doppler_max_;
 | 
			
		||||
    bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
 | 
			
		||||
    acq_parameters_.bit_transition_flag = bit_transition_flag_;
 | 
			
		||||
    use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  // will be false in future versions
 | 
			
		||||
    acq_parameters_.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
 | 
			
		||||
    max_dwells_ = configuration_->property(role + ".max_dwells", 1);
 | 
			
		||||
    acq_parameters_.max_dwells = max_dwells_;
 | 
			
		||||
    dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
 | 
			
		||||
    acq_parameters_.dump_filename = dump_filename_;
 | 
			
		||||
    acq_parameters_.sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1);
 | 
			
		||||
 | 
			
		||||
    if (item_type_ == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(lv_16sc_t);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            item_size_ = sizeof(gr_complex);
 | 
			
		||||
            acq_parameters_.doppler_max = FLAGS_doppler_max;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.ms_per_code = 1;
 | 
			
		||||
    acq_parameters_.it_size = item_size_;
 | 
			
		||||
    num_codes_ = acq_parameters_.sampled_ms;
 | 
			
		||||
    acq_parameters_.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
 | 
			
		||||
    acq_parameters_.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
 | 
			
		||||
    acq_parameters_.make_2_steps = configuration_->property(role + ".make_two_steps", false);
 | 
			
		||||
    acq_parameters_.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acq_parameters_.use_automatic_resampler = configuration_->property("GNSS-SDR.use_acquisition_resampler", false);
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler == true and item_type_ != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "GPS L5 acquisition disabled the automatic resampler feature because its item_type is not set to gr_complex";
 | 
			
		||||
            acq_parameters_.use_automatic_resampler = false;
 | 
			
		||||
        }
 | 
			
		||||
    if (acq_parameters_.use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (acq_parameters_.fs_in > GPS_L5_OPT_ACQ_FS_SPS)
 | 
			
		||||
                {
 | 
			
		||||
                    acq_parameters_.resampler_ratio = floor(static_cast<float>(acq_parameters_.fs_in) / GPS_L5_OPT_ACQ_FS_SPS);
 | 
			
		||||
                    uint32_t decimation = acq_parameters_.fs_in / GPS_L5_OPT_ACQ_FS_SPS;
 | 
			
		||||
                    while (acq_parameters_.fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    acq_parameters_.resampler_ratio = decimation;
 | 
			
		||||
                    acq_parameters_.resampled_fs = acq_parameters_.fs_in / static_cast<int>(acq_parameters_.resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
    doppler_max_ = acq_parameters_.doppler_max;
 | 
			
		||||
    doppler_step_ = acq_parameters_.doppler_step;
 | 
			
		||||
    item_type_ = acq_parameters_.item_type;
 | 
			
		||||
    item_size_ = acq_parameters_.it_size;
 | 
			
		||||
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L5I_CODE_RATE_CPS / GPS_L5I_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(acq_parameters_.resampled_fs) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GPS_L5I_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.resampled_fs)));
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            acq_parameters_.resampled_fs = fs_in_;
 | 
			
		||||
            // -- Find number of samples per spreading code -------------------------
 | 
			
		||||
            code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(fs_in_) / (GPS_L5I_CODE_RATE_CPS / GPS_L5I_CODE_LENGTH_CHIPS)));
 | 
			
		||||
            acq_parameters_.samples_per_ms = static_cast<float>(fs_in_) * 0.001;
 | 
			
		||||
            acq_parameters_.samples_per_chip = static_cast<unsigned int>(ceil((1.0 / GPS_L5I_CODE_RATE_CPS) * static_cast<float>(acq_parameters_.fs_in)));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    acq_parameters_.samples_per_code = acq_parameters_.samples_per_ms * static_cast<float>(GPS_L5I_PERIOD_S * 1000.0);
 | 
			
		||||
    code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GPS_L5I_CODE_RATE_CPS / GPS_L5I_CODE_LENGTH_CHIPS)));
 | 
			
		||||
    vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
 | 
			
		||||
    code_ = std::vector<std::complex<float>>(vector_length_);
 | 
			
		||||
    fs_in_ = acq_parameters_.fs_in;
 | 
			
		||||
 | 
			
		||||
    num_codes_ = acq_parameters_.sampled_ms;
 | 
			
		||||
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters_);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
@@ -146,7 +83,6 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
 | 
			
		||||
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
    doppler_center_ = 0;
 | 
			
		||||
    gnss_synchro_ = nullptr;
 | 
			
		||||
 | 
			
		||||
@@ -168,22 +104,7 @@ void GpsL5iPcpsAcquisition::stop_acquisition()
 | 
			
		||||
 | 
			
		||||
void GpsL5iPcpsAcquisition::set_threshold(float threshold)
 | 
			
		||||
{
 | 
			
		||||
    float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
 | 
			
		||||
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            pfa = configuration_->property(role_ + ".pfa", 0.0);
 | 
			
		||||
        }
 | 
			
		||||
    if (pfa == 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = threshold;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            threshold_ = calculate_threshold(pfa);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
 | 
			
		||||
    threshold_ = threshold;
 | 
			
		||||
 | 
			
		||||
    acquisition_->set_threshold(threshold_);
 | 
			
		||||
}
 | 
			
		||||
@@ -270,26 +191,6 @@ void GpsL5iPcpsAcquisition::set_state(int state)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float GpsL5iPcpsAcquisition::calculate_threshold(float pfa)
 | 
			
		||||
{
 | 
			
		||||
    // Calculate the threshold
 | 
			
		||||
    unsigned int frequency_bins = 0;
 | 
			
		||||
    for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
 | 
			
		||||
        {
 | 
			
		||||
            frequency_bins++;
 | 
			
		||||
        }
 | 
			
		||||
    DLOG(INFO) << "Channel " << channel_ << "  Pfa = " << pfa;
 | 
			
		||||
    unsigned int ncells = vector_length_ * frequency_bins;
 | 
			
		||||
    double exponent = 1.0 / static_cast<double>(ncells);
 | 
			
		||||
    double val = pow(1.0 - pfa, exponent);
 | 
			
		||||
    auto lambda = static_cast<double>(vector_length_);
 | 
			
		||||
    boost::math::exponential_distribution<double> mydist(lambda);
 | 
			
		||||
    auto threshold = static_cast<float>(quantile(mydist, val));
 | 
			
		||||
 | 
			
		||||
    return threshold;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void GpsL5iPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_ == "gr_complex")
 | 
			
		||||
@@ -310,7 +211,7 @@ void GpsL5iPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type: " << item_type_;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -333,7 +234,7 @@ void GpsL5iPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
            LOG(WARNING) << item_type_ << " unknown acquisition item type" << item_type_;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -353,7 +254,7 @@ gr::basic_block_sptr GpsL5iPcpsAcquisition::get_left_block()
 | 
			
		||||
            return cbyte_to_float_x2_;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    LOG(WARNING) << item_type_ << " unknown acquisition item type";
 | 
			
		||||
    LOG(WARNING) << item_type_ << " unknown acquisition item type" << item_type_;
 | 
			
		||||
    return nullptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -174,18 +174,13 @@ private:
 | 
			
		||||
    std::string item_type_;
 | 
			
		||||
    unsigned int vector_length_;
 | 
			
		||||
    unsigned int code_length_;
 | 
			
		||||
    bool bit_transition_flag_;
 | 
			
		||||
    bool use_CFAR_algorithm_flag_;
 | 
			
		||||
    unsigned int channel_;
 | 
			
		||||
    std::weak_ptr<ChannelFsm> channel_fsm_;
 | 
			
		||||
    float threshold_;
 | 
			
		||||
    unsigned int doppler_max_;
 | 
			
		||||
    unsigned int doppler_step_;
 | 
			
		||||
    int doppler_center_;
 | 
			
		||||
    unsigned int max_dwells_;
 | 
			
		||||
    int64_t fs_in_;
 | 
			
		||||
    bool dump_;
 | 
			
		||||
    bool blocking_;
 | 
			
		||||
    std::string dump_filename_;
 | 
			
		||||
    std::vector<std::complex<float>> code_;
 | 
			
		||||
    Gnss_Synchro* gnss_synchro_;
 | 
			
		||||
@@ -193,7 +188,6 @@ private:
 | 
			
		||||
    unsigned int num_codes_;
 | 
			
		||||
    unsigned int in_streams_;
 | 
			
		||||
    unsigned int out_streams_;
 | 
			
		||||
    float calculate_threshold(float pfa);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_GPS_L5I_PCPS_ACQUISITION_H_ */
 | 
			
		||||
 
 | 
			
		||||
@@ -48,6 +48,7 @@
 | 
			
		||||
#else
 | 
			
		||||
#include <boost/filesystem/path.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
#include <boost/math/special_functions/gamma.hpp>
 | 
			
		||||
#include <gnuradio/io_signature.h>
 | 
			
		||||
#include <matio.h>
 | 
			
		||||
#include <pmt/pmt.h>        // for from_long
 | 
			
		||||
@@ -105,7 +106,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
 | 
			
		||||
    d_input_power = 0.0;
 | 
			
		||||
    d_num_doppler_bins = 0U;
 | 
			
		||||
    d_threshold = 0.0;
 | 
			
		||||
    d_doppler_step = 0U;
 | 
			
		||||
    d_doppler_step = acq_parameters.doppler_step;
 | 
			
		||||
    d_doppler_center = 0U;
 | 
			
		||||
    d_doppler_center_step_two = 0.0;
 | 
			
		||||
    d_test_statistics = 0.0;
 | 
			
		||||
@@ -129,11 +130,11 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
 | 
			
		||||
    //
 | 
			
		||||
    // We can avoid this by doing linear correlation, effectively doubling the
 | 
			
		||||
    // size of the input buffer and padding the code with zeros.
 | 
			
		||||
    if (acq_parameters.bit_transition_flag)
 | 
			
		||||
        {
 | 
			
		||||
            d_fft_size = d_consumed_samples * 2;
 | 
			
		||||
            acq_parameters.max_dwells = 1;  // Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
 | 
			
		||||
        }
 | 
			
		||||
    //if (acq_parameters.bit_transition_flag)
 | 
			
		||||
    //{
 | 
			
		||||
    //d_fft_size = d_consumed_samples * 2;
 | 
			
		||||
    //acq_parameters.max_dwells = 1;  // Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
 | 
			
		||||
    //}
 | 
			
		||||
 | 
			
		||||
    d_tmp_buffer = volk_gnsssdr::vector<float>(d_fft_size);
 | 
			
		||||
    d_fft_codes = volk_gnsssdr::vector<std::complex<float>>(d_fft_size);
 | 
			
		||||
@@ -160,14 +161,14 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
 | 
			
		||||
    d_samplesPerChip = acq_parameters.samples_per_chip;
 | 
			
		||||
    d_buffer_count = 0U;
 | 
			
		||||
    // todo: CFAR statistic not available for non-coherent integration
 | 
			
		||||
    if (acq_parameters.max_dwells == 1)
 | 
			
		||||
        {
 | 
			
		||||
            d_use_CFAR_algorithm_flag = acq_parameters.use_CFAR_algorithm_flag;
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            d_use_CFAR_algorithm_flag = false;
 | 
			
		||||
        }
 | 
			
		||||
    //if (acq_parameters.max_dwells == 1)
 | 
			
		||||
    //{
 | 
			
		||||
    d_use_CFAR_algorithm_flag = acq_parameters.use_CFAR_algorithm_flag;
 | 
			
		||||
    //}
 | 
			
		||||
    //else
 | 
			
		||||
    //{
 | 
			
		||||
    //d_use_CFAR_algorithm_flag = false;
 | 
			
		||||
    //}
 | 
			
		||||
    d_dump_number = 0LL;
 | 
			
		||||
    d_dump_channel = acq_parameters.dump_channel;
 | 
			
		||||
    d_dump = acq_parameters.dump;
 | 
			
		||||
@@ -364,7 +365,6 @@ void pcps_acquisition::set_state(int32_t state)
 | 
			
		||||
            d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
 | 
			
		||||
            d_gnss_synchro->Acq_doppler_step = 0U;
 | 
			
		||||
            d_mag = 0.0;
 | 
			
		||||
            d_input_power = 0.0;
 | 
			
		||||
            d_test_statistics = 0.0;
 | 
			
		||||
            d_active = true;
 | 
			
		||||
        }
 | 
			
		||||
@@ -382,16 +382,16 @@ void pcps_acquisition::send_positive_acquisition()
 | 
			
		||||
{
 | 
			
		||||
    // Declare positive acquisition using a message port
 | 
			
		||||
    // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    DLOG(INFO) << "positive acquisition"
 | 
			
		||||
               << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
               << ", sample_stamp " << d_sample_counter
 | 
			
		||||
               << ", test statistics value " << d_test_statistics
 | 
			
		||||
               << ", test statistics threshold " << d_threshold
 | 
			
		||||
               << ", code phase " << d_gnss_synchro->Acq_delay_samples
 | 
			
		||||
               << ", doppler " << d_gnss_synchro->Acq_doppler_hz
 | 
			
		||||
               << ", magnitude " << d_mag
 | 
			
		||||
               << ", input signal power " << d_input_power
 | 
			
		||||
               << ", Assist doppler_center " << d_doppler_center;
 | 
			
		||||
    LOG(INFO) << "positive acquisition"
 | 
			
		||||
              << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
              << ", sample_stamp " << d_sample_counter
 | 
			
		||||
              << ", test statistics value " << d_test_statistics
 | 
			
		||||
              << ", test statistics threshold " << d_threshold
 | 
			
		||||
              << ", code phase " << d_gnss_synchro->Acq_delay_samples
 | 
			
		||||
              << ", doppler " << d_gnss_synchro->Acq_doppler_hz
 | 
			
		||||
              << ", magnitude " << d_mag
 | 
			
		||||
              << ", input signal power " << d_input_power
 | 
			
		||||
              << ", Assist doppler_center " << d_doppler_center;
 | 
			
		||||
    d_positive_acq = 1;
 | 
			
		||||
 | 
			
		||||
    if (!d_channel_fsm.expired())
 | 
			
		||||
@@ -410,15 +410,15 @@ void pcps_acquisition::send_negative_acquisition()
 | 
			
		||||
{
 | 
			
		||||
    // Declare negative acquisition using a message port
 | 
			
		||||
    // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    DLOG(INFO) << "negative acquisition"
 | 
			
		||||
               << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
               << ", sample_stamp " << d_sample_counter
 | 
			
		||||
               << ", test statistics value " << d_test_statistics
 | 
			
		||||
               << ", test statistics threshold " << d_threshold
 | 
			
		||||
               << ", code phase " << d_gnss_synchro->Acq_delay_samples
 | 
			
		||||
               << ", doppler " << d_gnss_synchro->Acq_doppler_hz
 | 
			
		||||
               << ", magnitude " << d_mag
 | 
			
		||||
               << ", input signal power " << d_input_power;
 | 
			
		||||
    LOG(INFO) << "negative acquisition"
 | 
			
		||||
              << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
              << ", sample_stamp " << d_sample_counter
 | 
			
		||||
              << ", test statistics value " << d_test_statistics
 | 
			
		||||
              << ", test statistics threshold " << d_threshold
 | 
			
		||||
              << ", code phase " << d_gnss_synchro->Acq_delay_samples
 | 
			
		||||
              << ", doppler " << d_gnss_synchro->Acq_doppler_hz
 | 
			
		||||
              << ", magnitude " << d_mag
 | 
			
		||||
              << ", input signal power " << d_input_power;
 | 
			
		||||
    d_positive_acq = 0;
 | 
			
		||||
    this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
 | 
			
		||||
}
 | 
			
		||||
@@ -527,18 +527,18 @@ void pcps_acquisition::dump_results(int32_t effective_fft_size)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, float input_power, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step)
 | 
			
		||||
float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step)
 | 
			
		||||
{
 | 
			
		||||
    float grid_maximum = 0.0;
 | 
			
		||||
    uint32_t index_doppler = 0U;
 | 
			
		||||
    uint32_t tmp_intex_t = 0U;
 | 
			
		||||
    uint32_t index_time = 0U;
 | 
			
		||||
    float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
 | 
			
		||||
    int32_t effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
 | 
			
		||||
 | 
			
		||||
    // Find the correlation peak and the carrier frequency
 | 
			
		||||
    for (uint32_t i = 0; i < num_doppler_bins; i++)
 | 
			
		||||
        {
 | 
			
		||||
            volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i].data(), d_fft_size);
 | 
			
		||||
            volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i].data(), effective_fft_size);
 | 
			
		||||
            if (d_magnitude_grid[i][tmp_intex_t] > grid_maximum)
 | 
			
		||||
                {
 | 
			
		||||
                    grid_maximum = d_magnitude_grid[i][tmp_intex_t];
 | 
			
		||||
@@ -549,6 +549,8 @@ float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int32_t&
 | 
			
		||||
    indext = index_time;
 | 
			
		||||
    if (!d_step_two)
 | 
			
		||||
        {
 | 
			
		||||
            int index_opp = (index_doppler + d_num_doppler_bins / 2) % d_num_doppler_bins;
 | 
			
		||||
            d_input_power = std::accumulate(d_magnitude_grid[index_opp].data(), d_magnitude_grid[index_opp].data() + effective_fft_size, 0.0) / effective_fft_size / 2.0 / d_num_noncoherent_integrations_counter;
 | 
			
		||||
            doppler = -static_cast<int32_t>(doppler_max) + d_doppler_center + doppler_step * static_cast<int32_t>(index_doppler);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
@@ -556,8 +558,7 @@ float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int32_t&
 | 
			
		||||
            doppler = static_cast<int32_t>(d_doppler_center_step_two + (static_cast<float>(index_doppler) - static_cast<float>(floor(d_num_doppler_bins_step2 / 2.0))) * acq_parameters.doppler_step2);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    float magt = grid_maximum / (fft_normalization_factor * fft_normalization_factor);
 | 
			
		||||
    return magt / input_power;
 | 
			
		||||
    return grid_maximum / d_input_power;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -652,7 +653,6 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
        }
 | 
			
		||||
    const gr_complex* in = d_input_signal.data();  // Get the input samples pointer
 | 
			
		||||
 | 
			
		||||
    d_input_power = 0.0;
 | 
			
		||||
    d_mag = 0.0;
 | 
			
		||||
    d_num_noncoherent_integrations_counter++;
 | 
			
		||||
 | 
			
		||||
@@ -665,14 +665,6 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
 | 
			
		||||
    lk.unlock();
 | 
			
		||||
 | 
			
		||||
    if (d_use_CFAR_algorithm_flag or acq_parameters.bit_transition_flag)
 | 
			
		||||
        {
 | 
			
		||||
            // Compute the input signal power estimation
 | 
			
		||||
            volk_32fc_magnitude_squared_32f(d_tmp_buffer.data(), in, d_fft_size);
 | 
			
		||||
            volk_32f_accumulator_s32f(&d_input_power, d_tmp_buffer.data(), d_fft_size);
 | 
			
		||||
            d_input_power /= static_cast<float>(d_fft_size);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Doppler frequency grid loop
 | 
			
		||||
    if (!d_step_two)
 | 
			
		||||
        {
 | 
			
		||||
@@ -712,7 +704,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
            // Compute the test statistic
 | 
			
		||||
            if (d_use_CFAR_algorithm_flag)
 | 
			
		||||
                {
 | 
			
		||||
                    d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power, d_num_doppler_bins, acq_parameters.doppler_max, d_doppler_step);
 | 
			
		||||
                    d_test_statistics = max_to_input_power_statistic(indext, doppler, d_num_doppler_bins, acq_parameters.doppler_max, d_doppler_step);
 | 
			
		||||
                }
 | 
			
		||||
            else
 | 
			
		||||
                {
 | 
			
		||||
@@ -769,7 +761,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
            // Compute the test statistic
 | 
			
		||||
            if (d_use_CFAR_algorithm_flag)
 | 
			
		||||
                {
 | 
			
		||||
                    d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power, d_num_doppler_bins_step2, static_cast<int32_t>(d_doppler_center_step_two - (static_cast<float>(d_num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2), acq_parameters.doppler_step2);
 | 
			
		||||
                    d_test_statistics = max_to_input_power_statistic(indext, doppler, d_num_doppler_bins_step2, static_cast<int32_t>(d_doppler_center_step_two - (static_cast<float>(d_num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2), acq_parameters.doppler_step2);
 | 
			
		||||
                }
 | 
			
		||||
            else
 | 
			
		||||
                {
 | 
			
		||||
@@ -815,6 +807,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
                                    d_positive_acq = 0;
 | 
			
		||||
                                    d_state = 0;
 | 
			
		||||
                                }
 | 
			
		||||
                            calculate_threshold();
 | 
			
		||||
                        }
 | 
			
		||||
                    else
 | 
			
		||||
                        {
 | 
			
		||||
@@ -836,7 +829,12 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
                        }
 | 
			
		||||
                    d_state = 0;
 | 
			
		||||
                    d_active = false;
 | 
			
		||||
                    bool was_step_two = d_step_two;
 | 
			
		||||
                    d_step_two = false;
 | 
			
		||||
                    if (was_step_two)
 | 
			
		||||
                        {
 | 
			
		||||
                            calculate_threshold();
 | 
			
		||||
                        }
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
@@ -858,6 +856,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
                                    d_num_noncoherent_integrations_counter = 0U;
 | 
			
		||||
                                    d_state = 0;
 | 
			
		||||
                                }
 | 
			
		||||
                            calculate_threshold();
 | 
			
		||||
                        }
 | 
			
		||||
                    else
 | 
			
		||||
                        {
 | 
			
		||||
@@ -868,7 +867,12 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
            else
 | 
			
		||||
                {
 | 
			
		||||
                    d_state = 0;  // Negative acquisition
 | 
			
		||||
                    bool was_step_two = d_step_two;
 | 
			
		||||
                    d_step_two = false;
 | 
			
		||||
                    if (was_step_two)
 | 
			
		||||
                        {
 | 
			
		||||
                            calculate_threshold();
 | 
			
		||||
                        }
 | 
			
		||||
                    send_negative_acquisition();
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
@@ -899,10 +903,29 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
 | 
			
		||||
bool pcps_acquisition::start()
 | 
			
		||||
{
 | 
			
		||||
    d_sample_counter = 0ULL;
 | 
			
		||||
    calculate_threshold();
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void pcps_acquisition::calculate_threshold()
 | 
			
		||||
{
 | 
			
		||||
    float pfa = (d_step_two ? acq_parameters.pfa2 : acq_parameters.pfa);
 | 
			
		||||
 | 
			
		||||
    if (pfa <= 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    int effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
 | 
			
		||||
    int num_doppler_bins = (d_step_two ? d_num_doppler_bins_step2 : d_num_doppler_bins);
 | 
			
		||||
 | 
			
		||||
    int num_bins = effective_fft_size * num_doppler_bins;
 | 
			
		||||
 | 
			
		||||
    d_threshold = 2.0 * boost::math::gamma_p_inv(2.0 * acq_parameters.max_dwells, std::pow(1.0 - pfa, 1.0 / static_cast<float>(num_bins)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
    gr_vector_int& ninput_items,
 | 
			
		||||
    gr_vector_const_void_star& input_items,
 | 
			
		||||
@@ -946,8 +969,6 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
                d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
 | 
			
		||||
                d_gnss_synchro->Acq_doppler_step = 0U;
 | 
			
		||||
                d_mag = 0.0;
 | 
			
		||||
                d_input_power = 0.0;
 | 
			
		||||
                d_test_statistics = 0.0;
 | 
			
		||||
                d_state = 1;
 | 
			
		||||
                d_buffer_count = 0U;
 | 
			
		||||
                if (!acq_parameters.blocking_on_standby)
 | 
			
		||||
 
 | 
			
		||||
@@ -267,8 +267,9 @@ private:
 | 
			
		||||
    void dump_results(int32_t effective_fft_size);
 | 
			
		||||
    bool is_fdma();
 | 
			
		||||
    bool start();
 | 
			
		||||
    void calculate_threshold(void);
 | 
			
		||||
    float first_vs_second_peak_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step);
 | 
			
		||||
    float max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, float input_power, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step);
 | 
			
		||||
    float max_to_input_power_statistic(uint32_t& indext, int32_t& doppler, uint32_t num_doppler_bins, int32_t doppler_max, int32_t doppler_step);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif /* GNSS_SDR_PCPS_ACQUISITION_H_*/
 | 
			
		||||
 
 | 
			
		||||
@@ -30,31 +30,135 @@
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "acq_conf.h"
 | 
			
		||||
#include "item_type_helpers.h"
 | 
			
		||||
#include <glog/logging.h>
 | 
			
		||||
#include <gnuradio/gr_complex.h>
 | 
			
		||||
 | 
			
		||||
Acq_Conf::Acq_Conf()
 | 
			
		||||
{
 | 
			
		||||
    /* PCPS acquisition configuration */
 | 
			
		||||
    sampled_ms = 0U;
 | 
			
		||||
    ms_per_code = 0U;
 | 
			
		||||
    max_dwells = 0U;
 | 
			
		||||
    samples_per_chip = 0U;
 | 
			
		||||
    doppler_max = 0U;
 | 
			
		||||
    num_doppler_bins_step2 = 0U;
 | 
			
		||||
    doppler_step2 = 0.0;
 | 
			
		||||
    fs_in = 0LL;
 | 
			
		||||
    sampled_ms = 1U;
 | 
			
		||||
    ms_per_code = 1U;
 | 
			
		||||
    max_dwells = 1U;
 | 
			
		||||
    samples_per_chip = 2U;
 | 
			
		||||
    chips_per_second = 1023000;
 | 
			
		||||
    doppler_max = 5000;
 | 
			
		||||
    doppler_min = -5000;
 | 
			
		||||
    doppler_step = 250.0;
 | 
			
		||||
    num_doppler_bins_step2 = 4U;
 | 
			
		||||
    doppler_step2 = 125.0;
 | 
			
		||||
    pfa = 0.0;
 | 
			
		||||
    pfa2 = 0.0;
 | 
			
		||||
    fs_in = 4000000;
 | 
			
		||||
    samples_per_ms = 0.0;
 | 
			
		||||
    samples_per_code = 0.0;
 | 
			
		||||
    bit_transition_flag = false;
 | 
			
		||||
    use_CFAR_algorithm_flag = false;
 | 
			
		||||
    use_CFAR_algorithm_flag = true;
 | 
			
		||||
    dump = false;
 | 
			
		||||
    blocking = false;
 | 
			
		||||
    blocking = true;
 | 
			
		||||
    make_2_steps = false;
 | 
			
		||||
    dump_filename = "";
 | 
			
		||||
    dump_channel = 0U;
 | 
			
		||||
    it_size = sizeof(char);
 | 
			
		||||
    it_size = sizeof(gr_complex);
 | 
			
		||||
    item_type = "gr_complex";
 | 
			
		||||
    blocking_on_standby = false;
 | 
			
		||||
    use_automatic_resampler = false;
 | 
			
		||||
    resampler_ratio = 1.0;
 | 
			
		||||
    resampled_fs = 0LL;
 | 
			
		||||
    resampler_latency_samples = 0U;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Acq_Conf::SetFromConfiguration(ConfigurationInterface *configuration,
 | 
			
		||||
    const std::string &role, double chip_rate, double opt_freq)
 | 
			
		||||
{
 | 
			
		||||
    item_type = configuration->property(role + ".item_type", item_type);
 | 
			
		||||
    if (!item_type_valid(item_type))
 | 
			
		||||
        {
 | 
			
		||||
            throw std::invalid_argument("Unknown item type: " + item_type);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    chips_per_second = chip_rate;
 | 
			
		||||
 | 
			
		||||
    int64_t fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", fs_in);
 | 
			
		||||
    fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
 | 
			
		||||
    doppler_max = configuration->property(role + ".doppler_max", doppler_max);
 | 
			
		||||
    sampled_ms = configuration->property(role + ".coherent_integration_time_ms", sampled_ms);
 | 
			
		||||
    bit_transition_flag = configuration->property(role + ".bit_transition_flag", bit_transition_flag);
 | 
			
		||||
    max_dwells = configuration->property(role + ".max_dwells", max_dwells);
 | 
			
		||||
    dump = configuration->property(role + ".dump", dump);
 | 
			
		||||
    dump_channel = configuration->property(role + ".dump_channel", dump_channel);
 | 
			
		||||
    blocking = configuration->property(role + ".blocking", blocking);
 | 
			
		||||
    dump_filename = configuration->property(role + ".dump_filename", dump_filename);
 | 
			
		||||
 | 
			
		||||
    use_automatic_resampler = configuration->property("GNSS-SDR.use_acquisition_resampler", use_automatic_resampler);
 | 
			
		||||
 | 
			
		||||
    if ((sampled_ms % ms_per_code) != 0)
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Parameter coherent_integration_time_ms should be a multiple of "
 | 
			
		||||
                         << ms_per_code << ". Setting it to " << ms_per_code;
 | 
			
		||||
            sampled_ms = ms_per_code;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    resampled_fs = fs_in;
 | 
			
		||||
 | 
			
		||||
    if (use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            ConfigureAutomaticResampler(opt_freq);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    it_size = item_type_size(item_type);
 | 
			
		||||
    num_doppler_bins_step2 = configuration->property(role + ".second_nbins", num_doppler_bins_step2);
 | 
			
		||||
    doppler_step2 = configuration->property(role + ".second_doppler_step", doppler_step2);
 | 
			
		||||
    doppler_step = configuration->property(role + ".doppler_step", doppler_step);
 | 
			
		||||
    pfa = configuration->property(role + ".pfa", pfa);
 | 
			
		||||
    if ((pfa < 0.0) or (pfa > 1.0))
 | 
			
		||||
        {
 | 
			
		||||
            LOG(WARNING) << "Parameter pfa should between 0.0 and 1.0. Setting it to 0.0";
 | 
			
		||||
            pfa = 0.0;
 | 
			
		||||
        }
 | 
			
		||||
    pfa2 = configuration->property(role + ".pfa_second_step", pfa2);
 | 
			
		||||
    if ((pfa2 <= 0.0) or (pfa2 > 1.0))
 | 
			
		||||
        {
 | 
			
		||||
            pfa2 = pfa;
 | 
			
		||||
        }
 | 
			
		||||
    make_2_steps = configuration->property(role + ".make_two_steps", make_2_steps);
 | 
			
		||||
    blocking_on_standby = configuration->property(role + ".blocking_on_standby", blocking_on_standby);
 | 
			
		||||
 | 
			
		||||
    if (pfa <= 0.0)
 | 
			
		||||
        {
 | 
			
		||||
            // if pfa is not set, we use the first_vs_second_peak_statistic metric
 | 
			
		||||
            use_CFAR_algorithm_flag = false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    SetDerivedParams();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Acq_Conf::ConfigureAutomaticResampler(double opt_freq)
 | 
			
		||||
{
 | 
			
		||||
    if (use_automatic_resampler)
 | 
			
		||||
        {
 | 
			
		||||
            if (fs_in > opt_freq)
 | 
			
		||||
                {
 | 
			
		||||
                    resampler_ratio = floor(static_cast<float>(fs_in) / opt_freq);
 | 
			
		||||
                    uint32_t decimation = fs_in / opt_freq;
 | 
			
		||||
                    while (fs_in % decimation > 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            decimation--;
 | 
			
		||||
                        };
 | 
			
		||||
                    resampler_ratio = decimation;
 | 
			
		||||
                    resampled_fs = fs_in / static_cast<int>(resampler_ratio);
 | 
			
		||||
                }
 | 
			
		||||
            // --- Find number of samples per spreading code -------------------
 | 
			
		||||
            SetDerivedParams();
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Acq_Conf::SetDerivedParams()
 | 
			
		||||
{
 | 
			
		||||
    samples_per_ms = static_cast<float>(resampled_fs) * 0.001;
 | 
			
		||||
    samples_per_chip = static_cast<unsigned int>(ceil(static_cast<float>(resampled_fs) / chips_per_second));
 | 
			
		||||
    samples_per_code = samples_per_ms * ms_per_code;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -32,6 +32,7 @@
 | 
			
		||||
#ifndef GNSS_SDR_ACQ_CONF_H_
 | 
			
		||||
#define GNSS_SDR_ACQ_CONF_H_
 | 
			
		||||
 | 
			
		||||
#include "configuration_interface.h"
 | 
			
		||||
#include <cstddef>
 | 
			
		||||
#include <cstdint>
 | 
			
		||||
#include <string>
 | 
			
		||||
@@ -43,10 +44,15 @@ public:
 | 
			
		||||
    uint32_t sampled_ms;
 | 
			
		||||
    uint32_t ms_per_code;
 | 
			
		||||
    uint32_t samples_per_chip;
 | 
			
		||||
    uint32_t chips_per_second;
 | 
			
		||||
    uint32_t max_dwells;
 | 
			
		||||
    uint32_t doppler_max;
 | 
			
		||||
    int32_t doppler_max;
 | 
			
		||||
    int32_t doppler_min;
 | 
			
		||||
    float doppler_step;
 | 
			
		||||
    uint32_t num_doppler_bins_step2;
 | 
			
		||||
    float doppler_step2;
 | 
			
		||||
    float pfa;
 | 
			
		||||
    float pfa2;
 | 
			
		||||
    int64_t fs_in;
 | 
			
		||||
    float samples_per_ms;
 | 
			
		||||
    float samples_per_code;
 | 
			
		||||
@@ -63,8 +69,16 @@ public:
 | 
			
		||||
    std::string dump_filename;
 | 
			
		||||
    uint32_t dump_channel;
 | 
			
		||||
    size_t it_size;
 | 
			
		||||
    std::string item_type;
 | 
			
		||||
 | 
			
		||||
    Acq_Conf();
 | 
			
		||||
 | 
			
		||||
    void SetFromConfiguration(ConfigurationInterface *configuration, const std::string &role, double chip_rate, double opt_freq);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    void SetDerivedParams();
 | 
			
		||||
 | 
			
		||||
    void ConfigureAutomaticResampler(double opt_freq);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -40,6 +40,7 @@ set(GNSS_SPLIBS_SOURCES
 | 
			
		||||
    conjugate_ic.cc
 | 
			
		||||
    gnss_sdr_create_directory.cc
 | 
			
		||||
    geofunctions.cc
 | 
			
		||||
    item_type_helpers.cc
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
set(GNSS_SPLIBS_HEADERS
 | 
			
		||||
@@ -65,6 +66,7 @@ set(GNSS_SPLIBS_HEADERS
 | 
			
		||||
    gnss_sdr_create_directory.h
 | 
			
		||||
    gnss_circular_deque.h
 | 
			
		||||
    geofunctions.h
 | 
			
		||||
    item_type_helpers.h
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
if(ENABLE_OPENCL)
 | 
			
		||||
@@ -133,6 +135,30 @@ target_compile_definitions(algorithms_libs
 | 
			
		||||
    PUBLIC -DGNSSSDR_INSTALL_DIR="${CMAKE_INSTALL_PREFIX}"
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
if((CMAKE_CXX_COMPILER_ID STREQUAL "GNU") AND NOT WIN32)
 | 
			
		||||
    if(CMAKE_CXX_COMPILER_VERSION VERSION_LESS "6.1.1")
 | 
			
		||||
        target_compile_definitions(algorithms_libs
 | 
			
		||||
            PRIVATE -DOLDCOMPILER=1
 | 
			
		||||
        )
 | 
			
		||||
    endif()
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
if(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
 | 
			
		||||
    if(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang")
 | 
			
		||||
        if(CLANG_VERSION VERSION_LESS "600")
 | 
			
		||||
            target_compile_definitions(algorithms_libs
 | 
			
		||||
                PRIVATE -DOLDCOMPILER=1
 | 
			
		||||
            )
 | 
			
		||||
        endif()
 | 
			
		||||
    else()
 | 
			
		||||
        if(CMAKE_CXX_COMPILER_VERSION VERSION_LESS "3.5.0")
 | 
			
		||||
            target_compile_definitions(algorithms_libs
 | 
			
		||||
                PRIVATE -DOLDCOMPILER=1
 | 
			
		||||
            )
 | 
			
		||||
        endif()
 | 
			
		||||
    endif()
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
set_property(TARGET algorithms_libs
 | 
			
		||||
    APPEND PROPERTY INTERFACE_INCLUDE_DIRECTORIES
 | 
			
		||||
        $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										409
									
								
								src/algorithms/libs/item_type_helpers.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										409
									
								
								src/algorithms/libs/item_type_helpers.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,409 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file item_type_helpers.cc
 | 
			
		||||
 * \brief Utility functions for converting between item types
 | 
			
		||||
 * \authors <ul>
 | 
			
		||||
 *          <li> Cillian O'Driscoll, 2019. cillian.odriscoll(at)gmail.com
 | 
			
		||||
 *          </ul>
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "item_type_helpers.h"
 | 
			
		||||
#include <volk/volk.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr.h>
 | 
			
		||||
#include <cstring>  // memcpy
 | 
			
		||||
 | 
			
		||||
bool item_type_valid(const std::string &item_type)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type != "byte" and item_type != "cbyte" and item_type != "ibyte" and
 | 
			
		||||
        item_type != "short" and item_type != "cshort" and item_type != "ishort" and
 | 
			
		||||
        item_type != "float" and item_type != "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
size_t item_type_size(const std::string &item_type)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type == "byte" or item_type == "ibyte")
 | 
			
		||||
        {
 | 
			
		||||
            return sizeof(int8_t);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type == "cbyte")
 | 
			
		||||
        {
 | 
			
		||||
            return 2 * sizeof(int8_t);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type == "short" or item_type == "ishort")
 | 
			
		||||
        {
 | 
			
		||||
            return sizeof(int16_t);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            return 2 * sizeof(int16_t);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type == "float")
 | 
			
		||||
        {
 | 
			
		||||
            return sizeof(float);
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type == "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            return 2 * sizeof(float);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
            return 0;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
bool item_type_is_complex(const std::string &item_type)
 | 
			
		||||
{
 | 
			
		||||
    return (item_type == "ibyte") or (item_type == "cbyte") or (item_type == "ishort") or (item_type == "cshort") or (item_type == "gr_complex");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void copy_converter(void *dest, const void *src, unsigned int num_items, size_t item_size)
 | 
			
		||||
{
 | 
			
		||||
    std::memcpy(dest, src, num_items * item_size);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_8i_16i(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_8i_convert_16i(reinterpret_cast<int16_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const int8_t *>(src), num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_8i_32f(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_8i_s32f_convert_32f(reinterpret_cast<float *>(dest),
 | 
			
		||||
        reinterpret_cast<const int8_t *>(src), 1.0F, num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_8ic_16ic(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_8i_convert_16i(reinterpret_cast<int16_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const int8_t *>(src), 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_8ic_32fc(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_8i_s32f_convert_32f(reinterpret_cast<float *>(dest),
 | 
			
		||||
        reinterpret_cast<const int8_t *>(src), 1.0F, 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_16i_8i(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_16i_convert_8i(reinterpret_cast<int8_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const int16_t *>(src), num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_16i_32f(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_16i_s32f_convert_32f(reinterpret_cast<float *>(dest),
 | 
			
		||||
        reinterpret_cast<const int16_t *>(src), 1.0F, num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_16ic_8ic(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_16i_convert_8i(reinterpret_cast<int8_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const int16_t *>(src), 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_16ic_32fc(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_16i_s32f_convert_32f(reinterpret_cast<float *>(dest),
 | 
			
		||||
        reinterpret_cast<const int16_t *>(src), 1.0F, 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_32f_8i(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_32f_s32f_convert_8i(reinterpret_cast<int8_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const float *>(src), 1.0F, num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_32f_16i(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_32f_s32f_convert_16i(reinterpret_cast<int16_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const float *>(src), 1.0F, num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_32fc_8ic(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_32f_s32f_convert_8i(reinterpret_cast<int8_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const float *>(src), 1.0F, 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void convert_32fc_16ic(void *dest, const void *src, unsigned int num_items)
 | 
			
		||||
{
 | 
			
		||||
    volk_32f_s32f_convert_16i(reinterpret_cast<int16_t *>(dest),
 | 
			
		||||
        reinterpret_cast<const float *>(src), 1.0F, 2 * num_items);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
item_type_converter_t make_vector_converter(const std::string &input_type,
 | 
			
		||||
    const std::string &output_type)
 | 
			
		||||
{
 | 
			
		||||
    if (not item_type_valid(input_type) or not item_type_valid(output_type))
 | 
			
		||||
        {
 | 
			
		||||
            throw std::runtime_error("make_vector_converter: invalid item types : " + input_type + " " + output_type);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    if (input_type == output_type)
 | 
			
		||||
        {
 | 
			
		||||
            size_t input_size = item_type_size(input_type);
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
            return std::bind(copy_converter, std::placeholders::_1, std::placeholders::_2,
 | 
			
		||||
                std::placeholders::_3, input_size);
 | 
			
		||||
#else
 | 
			
		||||
            return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return copy_converter(arg1, arg2, arg3, input_size); };
 | 
			
		||||
#endif
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    if (input_type == "byte")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "short")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8i_16i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8i_16i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "float")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8i_32f, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8i_32f(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "cbyte")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "ibyte")
 | 
			
		||||
                {
 | 
			
		||||
                    size_t input_size = item_type_size(input_type);
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(copy_converter, std::placeholders::_1, std::placeholders::_2,
 | 
			
		||||
                        std::placeholders::_3, input_size);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return copy_converter(arg1, arg2, arg3, input_size); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            if (output_type == "cshort" or output_type == "ishort")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8ic_16ic, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8ic_16ic(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "gr_complex")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8ic_32fc, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8ic_32fc(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "ibyte")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "cbyte")
 | 
			
		||||
                {
 | 
			
		||||
                    size_t input_size = item_type_size(input_type);
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(copy_converter, std::placeholders::_1, std::placeholders::_2,
 | 
			
		||||
                        std::placeholders::_3, input_size);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return copy_converter(arg1, arg2, arg3, input_size); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "cshort" or output_type == "ishort")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8i_16i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8i_16i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "gr_complex")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_8i_32f, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_8i_32f(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "short")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "byte")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16i_8i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16i_8i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "float")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16i_32f, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16i_32f(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "cshort")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "cbyte" or output_type == "ibyte")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16ic_8ic, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16ic_8ic(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            if (output_type == "ishort")
 | 
			
		||||
                {
 | 
			
		||||
                    size_t input_size = item_type_size(input_type);
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(copy_converter, std::placeholders::_1, std::placeholders::_2,
 | 
			
		||||
                        std::placeholders::_3, input_size);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return copy_converter(arg1, arg2, arg3, input_size); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "gr_complex")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16ic_32fc, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16ic_32fc(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "ishort")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "cbyte" or output_type == "ibyte")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16i_8i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16i_8i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            if (output_type == "cshort")
 | 
			
		||||
                {
 | 
			
		||||
                    size_t input_size = item_type_size(input_type);
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(copy_converter, std::placeholders::_1, std::placeholders::_2,
 | 
			
		||||
                        std::placeholders::_3, input_size);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return copy_converter(arg1, arg2, arg3, input_size); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "gr_complex")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_16i_32f, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_16i_32f(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "float")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "byte")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_32f_8i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_32f_8i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "short")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_32f_16i, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_32f_16i(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
    else if (input_type == "gr_complex")
 | 
			
		||||
        {
 | 
			
		||||
            if (output_type == "cbyte" or output_type == "ibyte")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_32fc_8ic, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_32fc_8ic(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
            else if (output_type == "cshort" or output_type == "ishort")
 | 
			
		||||
                {
 | 
			
		||||
#ifdef OLDCOMPILER
 | 
			
		||||
                    return std::bind(convert_32fc_16ic, std::placeholders::_1,
 | 
			
		||||
                        std::placeholders::_2, std::placeholders::_3);
 | 
			
		||||
#else
 | 
			
		||||
                    return [=](auto &&arg1, auto &&arg2, auto &&arg3) { return convert_32fc_16ic(arg1, arg2, arg3); };
 | 
			
		||||
#endif
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    throw std::runtime_error("make_vector_converter: invalid conversion : " + input_type + " to " + output_type);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										88
									
								
								src/algorithms/libs/item_type_helpers.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										88
									
								
								src/algorithms/libs/item_type_helpers.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,88 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file item_type_helpers.h
 | 
			
		||||
 * \brief Utility functions for converting between item types
 | 
			
		||||
 * \authors <ul>
 | 
			
		||||
 *          <li> Cillian O'Driscoll, 2019. cillian.odriscoll(at)gmail.com
 | 
			
		||||
 *          </ul>
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef GNSS_SDR_ITEM_TYPE_HELPERS_H_
 | 
			
		||||
#define GNSS_SDR_ITEM_TYPE_HELPERS_H_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
using item_type_converter_t = std::function<void(void *, const void *, unsigned)>;
 | 
			
		||||
 | 
			
		||||
/*!
 | 
			
		||||
 * \brief Check if a string is a valid item type
 | 
			
		||||
 *
 | 
			
		||||
 * \description Valid item types include:
 | 
			
		||||
 *     "byte", "short", "float", "ibyte", "ishort", "cbyte", "cshort", "gr_complex"
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
bool item_type_valid(const std::string &item_type);
 | 
			
		||||
 | 
			
		||||
/*!
 | 
			
		||||
 * \brief Return the size of the given item type, or zero if unknown
 | 
			
		||||
 */
 | 
			
		||||
size_t item_type_size(const std::string &item_type);
 | 
			
		||||
 | 
			
		||||
/*!
 | 
			
		||||
 * \brief Determine if an item_type is complex
 | 
			
		||||
 */
 | 
			
		||||
bool item_type_is_complex(const std::string &item_type);
 | 
			
		||||
 | 
			
		||||
/*!
 | 
			
		||||
 * \brief Create a function to convert an array of input_type to an array of output_type
 | 
			
		||||
 *
 | 
			
		||||
 * \description Provides a generic interface to generate conversion functions for mapping
 | 
			
		||||
 * arrays of items.
 | 
			
		||||
 *
 | 
			
		||||
 * \param input_type - String representation of the input item type
 | 
			
		||||
 * \param output_type - String representation of the output item type
 | 
			
		||||
 *
 | 
			
		||||
 * The item types accepted are:
 | 
			
		||||
 *
 | 
			
		||||
 *  1. "byte" for 8 bit integers
 | 
			
		||||
 *  2. "cbyte" for complex (interleaved) 8 bit integers
 | 
			
		||||
 *  4. "ibyte" for complex (interleaved) 8 bit integers
 | 
			
		||||
 *  4. "short" for 16 bit integers
 | 
			
		||||
 *  5. "cshort" for complex (interleaved) 16 bit integers
 | 
			
		||||
 *  6. "ishort" for complex (interleaved) 16 bit integers
 | 
			
		||||
 *  7. "float" for 32 bit floating point values
 | 
			
		||||
 *  8. "gr_complex" for complex (interleaved) 32 bit floating point values
 | 
			
		||||
 *
 | 
			
		||||
 * \returns A function object with the following prototype:
 | 
			
		||||
 *  void convert_fun( void *dest, void *src, int num_items );
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
item_type_converter_t make_vector_converter(const std::string &input_type,
 | 
			
		||||
    const std::string &output_type);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -5722,7 +5722,7 @@ inline VECTOR_CLASS<char*> cl::Program::getInfo<CL_PROGRAM_BINARIES>(cl_int* err
 | 
			
		||||
{
 | 
			
		||||
    VECTOR_CLASS< ::size_t> sizes = getInfo<CL_PROGRAM_BINARY_SIZES>();
 | 
			
		||||
    VECTOR_CLASS<char*> binaries;
 | 
			
		||||
    for (unsigned long & size : sizes)
 | 
			
		||||
    for (unsigned long& size : sizes)
 | 
			
		||||
        {
 | 
			
		||||
            char* ptr = nullptr;
 | 
			
		||||
            if (size != 0)
 | 
			
		||||
 
 | 
			
		||||
@@ -196,10 +196,9 @@ int PositionSystemTest::configure_receiver()
 | 
			
		||||
            const float threshold = 2.5;
 | 
			
		||||
            const float doppler_max = 5000.0;
 | 
			
		||||
            const float doppler_step = 250.0;
 | 
			
		||||
            const float pfa = 0.0;
 | 
			
		||||
            const float pfa_second_step = 0.0;
 | 
			
		||||
            const int max_dwells = 10;
 | 
			
		||||
            const int tong_init_val = 2;
 | 
			
		||||
            const int tong_max_val = 10;
 | 
			
		||||
            const int tong_max_dwells = 30;
 | 
			
		||||
            const int coherent_integration_time_ms = 1;
 | 
			
		||||
 | 
			
		||||
            const float pll_bw_hz = 35.0;
 | 
			
		||||
@@ -279,13 +278,15 @@ int PositionSystemTest::configure_receiver()
 | 
			
		||||
            config->set_property("Acquisition_1C.item_type", "gr_complex");
 | 
			
		||||
            config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
 | 
			
		||||
            config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
 | 
			
		||||
            config->set_property("Acquisition_1C.pfa", std::to_string(pfa));
 | 
			
		||||
            config->set_property("Acquisition_1C.pfa_second_step", std::to_string(pfa_second_step));
 | 
			
		||||
            config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
 | 
			
		||||
            config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
 | 
			
		||||
            config->set_property("Acquisition_1C.bit_transition_flag", "false");
 | 
			
		||||
            config->set_property("Acquisition_1C.max_dwells", std::to_string(max_dwells));
 | 
			
		||||
            config->set_property("Acquisition_1C.tong_init_val", std::to_string(tong_init_val));
 | 
			
		||||
            config->set_property("Acquisition_1C.tong_max_val", std::to_string(tong_max_val));
 | 
			
		||||
            config->set_property("Acquisition_1C.tong_max_dwells", std::to_string(tong_max_dwells));
 | 
			
		||||
            config->set_property("Acquisition_1C.make_two_steps", "false");
 | 
			
		||||
            config->set_property("Acquisition_1C.second_nbins", "8");
 | 
			
		||||
            config->set_property("Acquisition_1C.second_doppler_step", "125");
 | 
			
		||||
            config->set_property("Acquisition_1C.dump", "false");
 | 
			
		||||
            config->set_property("Acquisition_1C.dump_filename", "./acquisition");
 | 
			
		||||
            config->set_property("Acquisition_1C.dump_channel", "1");
 | 
			
		||||
 
 | 
			
		||||
@@ -92,6 +92,7 @@ DECLARE_string(log_dir);
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/sources/gnss_sdr_valve_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/sources/unpack_2bit_samples_test.cc"
 | 
			
		||||
// #include "unit-tests/signal-processing-blocks/acquisition/glonass_l2_ca_pcps_acquisition_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/libs/item_type_helpers.cc"
 | 
			
		||||
 | 
			
		||||
#if OPENCL_BLOCKS_TEST
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc"
 | 
			
		||||
 
 | 
			
		||||
@@ -249,7 +249,8 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_1()
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition_1B.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition_1B.bit_transition_flag", "false");
 | 
			
		||||
    config->set_property("Acquisition_1B.threshold", "0.1");
 | 
			
		||||
    //config->set_property("Acquisition_1B.threshold", "0.1");
 | 
			
		||||
    config->set_property("Acquisition_1B.pfa", "0.0001");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition_1B.dump", "false");
 | 
			
		||||
@@ -338,7 +339,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition_1B.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition_1B.bit_transition_flag", "false");
 | 
			
		||||
    config->set_property("Acquisition_1B.pfa", "0.1");
 | 
			
		||||
    config->set_property("Acquisition_1B.pfa", "0.0001");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition_1B.dump", "false");
 | 
			
		||||
@@ -487,10 +488,6 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
 | 
			
		||||
        acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
    }) << "Failure connecting acquisition to the top_block.";
 | 
			
		||||
@@ -519,7 +516,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
 | 
			
		||||
                }
 | 
			
		||||
            else if (i == 1)
 | 
			
		||||
                {
 | 
			
		||||
                    gnss_synchro.PRN = 20;  // This satellite is not visible
 | 
			
		||||
                    gnss_synchro.PRN = 36;  // This satellite is not visible
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            acquisition->set_local_code();
 | 
			
		||||
@@ -572,10 +569,6 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProbabi
 | 
			
		||||
        acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
    }) << "Failure connecting acquisition to the top_block.";
 | 
			
		||||
 
 | 
			
		||||
@@ -166,7 +166,8 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoCTest::init()
 | 
			
		||||
    config->set_property("Acquisition_1B.item_type", "gr_complex");
 | 
			
		||||
    config->set_property("Acquisition_1B.coherent_integration_time_ms", "4");
 | 
			
		||||
    config->set_property("Acquisition_1B.dump", "false");
 | 
			
		||||
    config->set_property("Acquisition_1B.threshold", "0.1");
 | 
			
		||||
    //config->set_property("Acquisition_1B.threshold", "0.1");
 | 
			
		||||
    config->set_property("Acquisition_1B.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_step", "125");
 | 
			
		||||
    config->set_property("Acquisition_1B.repeat_satellite", "false");
 | 
			
		||||
@@ -253,7 +254,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ValidationOfResults)
 | 
			
		||||
    top_block = gr::make_top_block("Acquisition test");
 | 
			
		||||
 | 
			
		||||
    init();
 | 
			
		||||
    std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 0);
 | 
			
		||||
    std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 0);
 | 
			
		||||
    std::shared_ptr<GalileoE1PcpsAmbiguousAcquisition> acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
 | 
			
		||||
    boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionGSoCTest_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionGSoCTest_msg_rx_make(channel_internal_queue);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -177,7 +177,8 @@ void GalileoE1PcpsAmbiguousAcquisitionTest::init()
 | 
			
		||||
            config->set_property("Acquisition_1B.dump", "false");
 | 
			
		||||
        }
 | 
			
		||||
    config->set_property("Acquisition_1B.dump_filename", "./tmp-acq-gal1/acquisition");
 | 
			
		||||
    config->set_property("Acquisition_1B.threshold", "0.0001");
 | 
			
		||||
    //config->set_property("Acquisition_1B.threshold", "0.0001");
 | 
			
		||||
    config->set_property("Acquisition_1B.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_max", std::to_string(doppler_max));
 | 
			
		||||
    config->set_property("Acquisition_1B.doppler_step", std::to_string(doppler_step));
 | 
			
		||||
    config->set_property("Acquisition_1B.repeat_satellite", "false");
 | 
			
		||||
 
 | 
			
		||||
@@ -254,7 +254,8 @@ void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_1()
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition");
 | 
			
		||||
    config->set_property("Acquisition.threshold", "0.8");
 | 
			
		||||
    //config->set_property("Acquisition.threshold", "0.8");
 | 
			
		||||
    config->set_property("Acquisition.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition.bit_transition_flag", "false");
 | 
			
		||||
@@ -343,7 +344,7 @@ void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_2()
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition");
 | 
			
		||||
    // config->set_property("Acquisition.pfa", "0.1");
 | 
			
		||||
    config->set_property("Acquisition.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition.bit_transition_flag", "false");
 | 
			
		||||
@@ -497,9 +498,9 @@ TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResults)
 | 
			
		||||
        acquisition->set_doppler_step(500);
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(0.05);
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
    //ASSERT_NO_THROW({
 | 
			
		||||
    //acquisition->set_threshold(0.05);
 | 
			
		||||
    //}) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
@@ -585,9 +586,9 @@ TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResultsProbabilities)
 | 
			
		||||
        acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
    //ASSERT_NO_THROW({
 | 
			
		||||
    //acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
 | 
			
		||||
    //}) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
 
 | 
			
		||||
@@ -252,7 +252,8 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_1()
 | 
			
		||||
    config->set_property("Acquisition_1C.coherent_integration_time_ms",
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition_1C.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition_1C.threshold", "0.8");
 | 
			
		||||
    //config->set_property("Acquisition_1C.threshold", "0.8");
 | 
			
		||||
    config->set_property("Acquisition_1C.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition_1C.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition_1C.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition_1C.bit_transition_flag", "false");
 | 
			
		||||
@@ -339,7 +340,7 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
 | 
			
		||||
    config->set_property("Acquisition_1C.coherent_integration_time_ms",
 | 
			
		||||
        std::to_string(integration_time_ms));
 | 
			
		||||
    config->set_property("Acquisition_1C.max_dwells", "1");
 | 
			
		||||
    config->set_property("Acquisition_1C.pfa", "0.1");
 | 
			
		||||
    config->set_property("Acquisition_1C.pfa", "0.001");
 | 
			
		||||
    config->set_property("Acquisition_1C.doppler_max", "10000");
 | 
			
		||||
    config->set_property("Acquisition_1C.doppler_step", "250");
 | 
			
		||||
    config->set_property("Acquisition_1C.bit_transition_flag", "false");
 | 
			
		||||
@@ -490,9 +491,9 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResults)
 | 
			
		||||
        acquisition->set_doppler_step(500);
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(0.5);
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
    //ASSERT_NO_THROW({
 | 
			
		||||
    //acquisition->set_threshold(0.5);
 | 
			
		||||
    //}) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
@@ -579,9 +580,9 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
 | 
			
		||||
        acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
 | 
			
		||||
    }) << "Failure setting doppler_step.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
 | 
			
		||||
    }) << "Failure setting threshold.";
 | 
			
		||||
    //ASSERT_NO_THROW({
 | 
			
		||||
    //acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
 | 
			
		||||
    //}) << "Failure setting threshold.";
 | 
			
		||||
 | 
			
		||||
    ASSERT_NO_THROW({
 | 
			
		||||
        acquisition->connect(top_block);
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,259 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file item_type_helpers_test.cc
 | 
			
		||||
 * \brief  This file implements unit tests for the item_type_helpers
 | 
			
		||||
 *      custom block
 | 
			
		||||
 * \author Cillian O'Driscoll, 2019. cillian.odriscoll (at) gmail.com
 | 
			
		||||
 *
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "item_type_helpers.h"
 | 
			
		||||
#include <gtest/gtest.h>
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
class ItemTypeHelpersTest : public ::testing::Test
 | 
			
		||||
{
 | 
			
		||||
protected:
 | 
			
		||||
    static constexpr size_t N = 1000;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    ItemTypeHelpersTest()
 | 
			
		||||
    {
 | 
			
		||||
        std::random_device r;
 | 
			
		||||
        std::default_random_engine e(r());
 | 
			
		||||
 | 
			
		||||
        std::uniform_int_distribution<int8_t> udist_int8(-100, 100);
 | 
			
		||||
        std::uniform_int_distribution<int16_t> udist_int16(-100, 100);
 | 
			
		||||
        std::uniform_real_distribution<float> udist_float(-100, 100);
 | 
			
		||||
 | 
			
		||||
        std::generate(byte_array_in.begin(), byte_array_in.end(), [&udist_int8, &e]() { return udist_int8(e); });
 | 
			
		||||
 | 
			
		||||
        std::generate(short_array_in.begin(), short_array_in.end(), [&udist_int16, &e]() { return udist_int16(e); });
 | 
			
		||||
 | 
			
		||||
        std::generate(float_array_in.begin(), float_array_in.end(), [&udist_float, &e]() { return udist_float(e); });
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<std::string> valid_item_types = {"byte", "ibyte", "cbyte",
 | 
			
		||||
        "short", "ishort", "cshort", "float", "gr_complex"};
 | 
			
		||||
 | 
			
		||||
    std::vector<std::string> invalid_item_types = {"i8", "tfgs", "cbite",
 | 
			
		||||
        "shirt", "qshort", "csort", "flat", "igr_complex"};
 | 
			
		||||
 | 
			
		||||
    std::array<int8_t, 2 * N> byte_array_in;
 | 
			
		||||
    std::array<int8_t, 2 * N> byte_array_out;
 | 
			
		||||
 | 
			
		||||
    std::array<int16_t, 2 * N> short_array_in;
 | 
			
		||||
    std::array<int16_t, 2 * N> short_array_out;
 | 
			
		||||
 | 
			
		||||
    std::array<float, 2 * N> float_array_in;
 | 
			
		||||
    std::array<float, 2 * N> float_array_out;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_F(ItemTypeHelpersTest, CheckValidTypes)
 | 
			
		||||
{
 | 
			
		||||
    for (auto &valid_type : valid_item_types)
 | 
			
		||||
        {
 | 
			
		||||
            EXPECT_TRUE(item_type_valid(valid_type));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    for (auto &invalid_type : invalid_item_types)
 | 
			
		||||
        {
 | 
			
		||||
            EXPECT_FALSE(item_type_valid(invalid_type));
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ItemTypeHelpersTest, CheckSizes)
 | 
			
		||||
{
 | 
			
		||||
    EXPECT_EQ(item_type_size("byte"), 1);
 | 
			
		||||
    EXPECT_EQ(item_type_size("ibyte"), 1);
 | 
			
		||||
    EXPECT_EQ(item_type_size("cbyte"), 2);
 | 
			
		||||
 | 
			
		||||
    EXPECT_EQ(item_type_size("short"), 2);
 | 
			
		||||
    EXPECT_EQ(item_type_size("ishort"), 2);
 | 
			
		||||
    EXPECT_EQ(item_type_size("cshort"), 4);
 | 
			
		||||
 | 
			
		||||
    EXPECT_EQ(item_type_size("float"), 4);
 | 
			
		||||
    EXPECT_EQ(item_type_size("gr_complex"), 8);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    for (auto &invalid_type : invalid_item_types)
 | 
			
		||||
        {
 | 
			
		||||
            EXPECT_EQ(item_type_size(invalid_type), 0);
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ItemTypeHelpersTest, CheckMakeConverters)
 | 
			
		||||
{
 | 
			
		||||
    for (auto &input_type : valid_item_types)
 | 
			
		||||
        {
 | 
			
		||||
            for (auto &output_type : valid_item_types)
 | 
			
		||||
                {
 | 
			
		||||
                    item_type_converter_t converter = nullptr;
 | 
			
		||||
 | 
			
		||||
                    if (item_type_is_complex(input_type) == item_type_is_complex(output_type))
 | 
			
		||||
                        {
 | 
			
		||||
                            converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
                            EXPECT_NE(converter, nullptr);
 | 
			
		||||
                        }
 | 
			
		||||
                    else
 | 
			
		||||
                        {
 | 
			
		||||
                            EXPECT_THROW(converter = make_vector_converter(input_type, output_type), std::runtime_error);
 | 
			
		||||
                        }
 | 
			
		||||
                }
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ItemTypeHelpersTest, CheckConversionsReal)
 | 
			
		||||
{
 | 
			
		||||
    std::string input_type = "byte";
 | 
			
		||||
    std::string output_type = "byte";
 | 
			
		||||
    item_type_converter_t converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_in.begin(), byte_array_in.begin() + N, byte_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "byte";
 | 
			
		||||
    output_type = "short";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), short_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_out.begin(), byte_array_out.begin() + N, byte_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "byte";
 | 
			
		||||
    output_type = "float";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), float_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_out.begin(), byte_array_out.begin() + N, byte_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "short";
 | 
			
		||||
    output_type = "short";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), short_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(short_array_in.begin(), short_array_in.begin() + N, short_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "short";
 | 
			
		||||
    output_type = "float";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), short_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), float_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(short_array_out.begin(), short_array_out.begin() + N, short_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "float";
 | 
			
		||||
    output_type = "float";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), float_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(float_array_in.begin(), float_array_in.begin() + N, float_array_out.begin()));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ItemTypeHelpersTest, CheckConversionsComplex)
 | 
			
		||||
{
 | 
			
		||||
    std::string input_type = "cbyte";
 | 
			
		||||
    std::string output_type = "cbyte";
 | 
			
		||||
    item_type_converter_t converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_in.begin(), byte_array_in.begin() + N, byte_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cbyte";
 | 
			
		||||
    output_type = "ibyte";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_in.begin(), byte_array_in.begin() + N, byte_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cbyte";
 | 
			
		||||
    output_type = "cshort";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), short_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_out.begin(), byte_array_out.begin() + N, byte_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cbyte";
 | 
			
		||||
    output_type = "ishort";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), short_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_out.begin(), byte_array_out.begin() + N, byte_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cbyte";
 | 
			
		||||
    output_type = "gr_complex";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), byte_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(byte_array_out.data(), float_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(byte_array_out.begin(), byte_array_out.begin() + N, byte_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cshort";
 | 
			
		||||
    output_type = "cshort";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), short_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(short_array_in.begin(), short_array_in.begin() + N, short_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cshort";
 | 
			
		||||
    output_type = "ishort";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), short_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(short_array_in.begin(), short_array_in.begin() + N, short_array_out.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "cshort";
 | 
			
		||||
    output_type = "gr_complex";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), short_array_in.data(), N);
 | 
			
		||||
    converter = make_vector_converter(output_type, input_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(short_array_out.data(), float_array_out.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(short_array_out.begin(), short_array_out.begin() + N, short_array_in.begin()));
 | 
			
		||||
 | 
			
		||||
    input_type = "gr_complex";
 | 
			
		||||
    output_type = "gr_complex";
 | 
			
		||||
    converter = make_vector_converter(input_type, output_type);
 | 
			
		||||
    EXPECT_NE(converter, nullptr);
 | 
			
		||||
    converter(float_array_out.data(), float_array_in.data(), N);
 | 
			
		||||
    EXPECT_TRUE(std::equal(float_array_in.begin(), float_array_in.begin() + N, float_array_out.begin()));
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user