1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00
This commit is contained in:
Carles Fernandez 2016-03-29 12:16:37 +02:00
commit 81ae079c06
18 changed files with 2108 additions and 119 deletions

View File

@ -735,8 +735,8 @@ if(NOT ARMADILLO_FOUND)
message(STATUS " Armadillo will be downloaded and built automatically ")
message(STATUS " when doing 'make'. ")
set(armadillo_RELEASE 6.500.4)
set(armadillo_MD5 "a39f27197d24b3d25437fab6bb1d118f")
set(armadillo_RELEASE 6.600.5)
set(armadillo_MD5 "649a6d0ed528c2e39c1102b43710103f")
ExternalProject_Add(
armadillo-${armadillo_RELEASE}

View File

@ -73,9 +73,9 @@ In case you do not want to use PyBOMBS and prefer to build and install GNU Radio
$ sudo apt-get install libopenblas-dev liblapack-dev # For Debian/Ubuntu/LinuxMint
$ sudo yum install lapack-devel blas-devel # For Fedora/CentOS/RHEL
$ sudo zypper install lapack-devel blas-devel # For OpenSUSE
$ wget http://sourceforge.net/projects/arma/files/armadillo-6.500.4.tar.gz
$ tar xvfz armadillo-6.500.4.tar.gz
$ cd armadillo-6.500.4
$ wget http://sourceforge.net/projects/arma/files/armadillo-6.600.5.tar.gz
$ tar xvfz armadillo-6.600.5.tar.gz
$ cd armadillo-6.600.5
$ cmake .
$ make
$ sudo make install

View File

@ -218,7 +218,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
@ -369,7 +369,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3_reload(lv_16sc
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
@ -470,7 +470,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* out
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
@ -620,7 +620,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3_reload(lv_16sc
_out += 4;
}
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for (unsigned int i = sse_iters * 4; i < num_points; ++i)

View File

@ -290,6 +290,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_u_axv2(lv_16sc_t* out, con
result = _mm256_or_si256(realcacc, imagcacc);
_mm256_storeu_si256((__m256i*)dotProductVector, result); // Store the results back into the dot product vector
_mm256_zeroupper();
for (i = 0; i < 8; ++i)
{
@ -365,6 +366,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_axv2(lv_16sc_t* out, con
result = _mm256_or_si256(realcacc, imagcacc);
_mm256_store_si256((__m256i*)dotProductVector, result); // Store the results back into the dot product vector
_mm256_zeroupper();
for (i = 0; i < 8; ++i)
{

View File

@ -369,6 +369,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_avx2(lv_16sc_t* resul
volk_gnsssdr_free(realcacc);
volk_gnsssdr_free(imagcacc);
}
_mm256_zeroupper();
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
@ -461,6 +462,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_u_avx2(lv_16sc_t* resul
volk_gnsssdr_free(realcacc);
volk_gnsssdr_free(imagcacc);
}
_mm256_zeroupper();
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{

View File

@ -225,7 +225,7 @@ static inline void volk_gnsssdr_16ic_x2_multiply_16ic_u_avx2(lv_16sc_t* out, con
_in_b += 8;
_out += 8;
}
_mm256_zeroupper();
number = avx2_points * 8;
for(;number < num_points; number++)
{
@ -279,7 +279,7 @@ static inline void volk_gnsssdr_16ic_x2_multiply_16ic_a_avx2(lv_16sc_t* out, con
_in_b += 8;
_out += 8;
}
_mm256_zeroupper();
number = avx2_points * 8;
for(;number < num_points; number++)
{

View File

@ -71,11 +71,10 @@
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <volk_gnsssdr/saturation_arithmetic.h>
#include <math.h>
#include <stdio.h>
//#include <stdio.h>
#ifdef LV_HAVE_GENERIC
@ -719,7 +718,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
a = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
_mm_storeu_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
_mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 4; ++i)
{
@ -731,7 +730,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
volk_gnsssdr_free(realcacc);
volk_gnsssdr_free(imagcacc);
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for(unsigned int n = sse_iters * 4; n < num_points; n++)
@ -751,6 +750,522 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
{
const unsigned int avx2_iters = num_points / 8;
const lv_16sc_t** _in_a = in_a;
const lv_16sc_t* _in_common = in_common;
lv_16sc_t* _out = result;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
__VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
lv_16sc_t dotProduct = lv_cmake(0,0);
__m256i* realcacc = (__m256i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256i), volk_gnsssdr_get_alignment());
__m256i* imagcacc = (__m256i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256i), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
realcacc[n_vec] = _mm256_setzero_si256();
imagcacc[n_vec] = _mm256_setzero_si256();
}
const __m256i mask_imag = _mm256_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
const __m256i mask_real = _mm256_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
__m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
__m128i c1, c2, result1, result2;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc * phase_inc;
two_phase_inc[1] = phase_inc * phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase) * phase_inc;
two_phase_acc_reg = _mm_load_ps((float*) two_phase_acc);
__m256i a2, b2, c, c_sr, real, imag;
__m128 yl, yh, tmp1, tmp2, tmp3;
for(unsigned int number = 0; number < avx2_iters; number++)
{
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result1 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
__builtin_prefetch(_in_common + 16);
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result2 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
b2 = _mm256_insertf128_si256(_mm256_castsi128_si256(result1), (result2), 1);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a2 = _mm256_load_si256((__m256i*)&(_in_a[n_vec][number * 8]));
c = _mm256_mullo_epi16(a2, b2);
c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm256_subs_epi16(c, c_sr);
c_sr = _mm256_slli_si256(b2, 2);
c = _mm256_mullo_epi16(a2, c_sr);
c_sr = _mm256_slli_si256(a2, 2);
imag = _mm256_mullo_epi16(b2, c_sr);
imag = _mm256_adds_epi16(c, imag);
realcacc[n_vec] = _mm256_adds_epi16(realcacc[n_vec], real);
imagcacc[n_vec] = _mm256_adds_epi16(imagcacc[n_vec], imag);
}
// Regenerate phase
if ((number % 128) == 0)
{
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
tmp2 = _mm_hadd_ps(tmp1, tmp1);
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm_sqrt_ps(tmp1);
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
realcacc[n_vec] = _mm256_and_si256(realcacc[n_vec], mask_real);
imagcacc[n_vec] = _mm256_and_si256(imagcacc[n_vec], mask_imag);
a2 = _mm256_or_si256(realcacc[n_vec], imagcacc[n_vec]);
_mm256_store_si256((__m256i*)dotProductVector, a2); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 8; ++i)
{
dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
}
_out[n_vec] = dotProduct;
}
volk_gnsssdr_free(realcacc);
volk_gnsssdr_free(imagcacc);
_mm256_zeroupper();
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for(unsigned int n = avx2_iters * 8; n < num_points; n++)
{
tmp16 = in_common[n];
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
}
}
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
{
const unsigned int avx2_iters = num_points / 8;
const unsigned int ROTATOR_RELOAD = 128;
const lv_16sc_t** _in_a = in_a;
const lv_16sc_t* _in_common = in_common;
lv_16sc_t* _out = result;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
__VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
lv_16sc_t dotProduct = lv_cmake(0,0);
__m256i* realcacc = (__m256i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256i), volk_gnsssdr_get_alignment());
__m256i* imagcacc = (__m256i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256i), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
realcacc[n_vec] = _mm256_setzero_si256();
imagcacc[n_vec] = _mm256_setzero_si256();
}
const __m256i mask_imag = _mm256_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
const __m256i mask_real = _mm256_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
__m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
__m128i c1, c2, result1, result2;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc * phase_inc;
two_phase_inc[1] = phase_inc * phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase) * phase_inc;
two_phase_acc_reg = _mm_load_ps((float*) two_phase_acc);
__m256i a2, b2, c, c_sr, real, imag;
__m128 yl, yh, tmp1, tmp2, tmp3;
for (unsigned int number = 0; number < avx2_iters / ROTATOR_RELOAD; ++number)
{
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
{
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result1 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
__builtin_prefetch(_in_common + 16);
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result2 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
b2 = _mm256_insertf128_si256(_mm256_castsi128_si256(result1), (result2), 1);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a2 = _mm256_load_si256((__m256i*)&(_in_a[n_vec][(number * ROTATOR_RELOAD + j) * 8]));
c = _mm256_mullo_epi16(a2, b2);
c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm256_subs_epi16(c, c_sr);
c_sr = _mm256_slli_si256(b2, 2);
c = _mm256_mullo_epi16(a2, c_sr);
c_sr = _mm256_slli_si256(a2, 2);
imag = _mm256_mullo_epi16(b2, c_sr);
imag = _mm256_adds_epi16(c, imag);
realcacc[n_vec] = _mm256_adds_epi16(realcacc[n_vec], real);
imagcacc[n_vec] = _mm256_adds_epi16(imagcacc[n_vec], imag);
}
}
// regenerate phase
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
tmp2 = _mm_hadd_ps(tmp1, tmp1);
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm_sqrt_ps(tmp1);
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
}
for (unsigned int j = 0; j < avx2_iters % ROTATOR_RELOAD; j++)
{
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result1 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
//next two samples
_in_common += 2;
a = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
__builtin_prefetch(_in_common + 16);
//complex 32fc multiplication b=a*two_phase_acc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
// store four output samples
result2 = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
_in_common += 2;
b2 = _mm256_insertf128_si256(_mm256_castsi128_si256(result1), (result2), 1);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a2 = _mm256_load_si256((__m256i*)&(_in_a[n_vec][((avx2_iters / ROTATOR_RELOAD) * ROTATOR_RELOAD + j) * 8]));
c = _mm256_mullo_epi16(a2, b2);
c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm256_subs_epi16(c, c_sr);
c_sr = _mm256_slli_si256(b2, 2);
c = _mm256_mullo_epi16(a2, c_sr);
c_sr = _mm256_slli_si256(a2, 2);
imag = _mm256_mullo_epi16(b2, c_sr);
imag = _mm256_adds_epi16(c, imag);
realcacc[n_vec] = _mm256_adds_epi16(realcacc[n_vec], real);
imagcacc[n_vec] = _mm256_adds_epi16(imagcacc[n_vec], imag);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
realcacc[n_vec] = _mm256_and_si256(realcacc[n_vec], mask_real);
imagcacc[n_vec] = _mm256_and_si256(imagcacc[n_vec], mask_imag);
a2 = _mm256_or_si256(realcacc[n_vec], imagcacc[n_vec]);
_mm256_store_si256((__m256i*)dotProductVector, a2); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 8; ++i)
{
dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
}
_out[n_vec] = dotProduct;
}
_mm256_zeroupper();
volk_gnsssdr_free(realcacc);
volk_gnsssdr_free(imagcacc);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for(unsigned int n = avx2_iters * 8; n < num_points; n++)
{
tmp16 = in_common[n];
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
}
}
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
@ -855,9 +1370,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
@ -1069,9 +1581,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
}
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4]));
@ -1250,9 +1759,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_optvma(lv_
_phase_imag = vld1q_f32(____phase_imag);
}
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4]));

View File

@ -193,6 +193,130 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_1
#endif // SSE3
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_avx2(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
}
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX2
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_avx2_reload(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
}
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2_reload(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX2
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_avx2(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
}
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX2
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_avx2_reload(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
}
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_avx2_reload(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX2
#ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
{

View File

@ -37,7 +37,8 @@
*
* \b Overview
*
* Computes the sine and cosine of a vector of floats, providing the output in a complex vector (cosine, sine)
* VOLK_GNSSSDR kernel that computes the sine and cosine of a vector
* of floats, providing the output in a complex vector (cosine, sine)
*
* <b>Dispatcher Prototype</b>
* \code
@ -133,12 +134,13 @@ static inline void volk_gnsssdr_32f_sincos_32fc_u_sse4_1(lv_32fc_t* out, const f
cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
cplxValue = _mm_unpacklo_ps(cosine, sine);
_mm_storeu_ps((float*)bPtr, cplxValue);
bPtr += 2;
cplxValue = _mm_unpackhi_ps(cosine, sine);
_mm_storeu_ps((float*)bPtr, cplxValue);
bPtr += 2;
aPtr += 4;
}
@ -226,12 +228,13 @@ static inline void volk_gnsssdr_32f_sincos_32fc_a_sse4_1(lv_32fc_t* out, const f
cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
cplxValue = _mm_unpacklo_ps(cosine, sine);
_mm_store_ps((float*)bPtr, cplxValue);
bPtr += 2;
cplxValue = _mm_unpackhi_ps(cosine, sine);
_mm_store_ps((float*)bPtr, cplxValue);
bPtr += 2;
aPtr += 4;
}
@ -587,7 +590,7 @@ static inline void volk_gnsssdr_32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, con
_in = *in++;
d = (int32_t)floor(_in / TWO_PI + 0.5);
_in -= d * TWO_PI;
x = (int32_t) ((float) _in * TWO_TO_THE_31_DIV_PI);
x = (int32_t) ((float)_in * TWO_TO_THE_31_DIV_PI);
ux = x;
sin_index = ux >> diffbits;

View File

@ -0,0 +1,769 @@
/*!
* \file volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn.h
* \brief VOLK_GNSSSDR kernel: multiplies N complex (32-bit float per component) vectors
* by a common vector, phase rotated and accumulates the results in N float complex outputs.
* \authors <ul>
* <li> Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
* </ul>
*
* VOLK_GNSSSDR kernel that multiplies N 32 bits complex vectors by a common vector, which is
* phase-rotated by phase offset and phase increment, and accumulates the results
* in N 32 bits float complex outputs.
* It is optimized to perform the N tap correlation process in GNSS receivers.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
/*!
* \page volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn
*
* \b Overview
*
* Rotates and multiplies the reference complex vector with an arbitrary number of other complex vectors,
* accumulates the results and stores them in the output vector.
* The rotation is done at a fixed rate per sample, from an initial \p phase offset.
* This function can be used for Doppler wipe-off and multiple correlator.
*
* <b>Dispatcher Prototype</b>
* \code
* void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points);
* \endcode
*
* \b Inputs
* \li in_common: Pointer to one of the vectors to be rotated, multiplied and accumulated (reference vector).
* \li phase_inc: Phase increment = lv_cmake(cos(phase_step_rad), sin(phase_step_rad))
* \li phase: Initial phase = lv_cmake(cos(initial_phase_rad), sin(initial_phase_rad))
* \li in_a: Pointer to an array of pointers to multiple vectors to be multiplied and accumulated.
* \li num_a_vectors: Number of vectors to be multiplied by the reference vector and accumulated.
* \li num_points: Number of complex values to be multiplied together, accumulated and stored into \p result.
*
* \b Outputs
* \li phase: Final phase.
* \li result: Vector of \p num_a_vectors components with the multiple vectors of \p in_a rotated, multiplied by \p in_common and accumulated.
*
*/
#ifndef INCLUDED_volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_H
#define INCLUDED_volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_H
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <volk_gnsssdr/saturation_arithmetic.h>
#include <math.h>
#include <stdio.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_generic(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t tmp32_1, tmp32_2;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
result[n_vec] = lv_cmake(0,0);
}
for (unsigned int n = 0; n < num_points; n++)
{
tmp32_1 = *in_common++ * (*phase);//if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
// Regenerate phase
if (n % 256 == 0)
{
//printf("Phase before regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
#ifdef __cplusplus
(*phase) /= std::abs((*phase));
#else
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
#endif
//printf("Phase after regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
}
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][n];
result[n_vec] += tmp32_2;
}
}
}
#endif /*LV_HAVE_GENERIC*/
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_generic_reload(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t tmp32_1, tmp32_2;
const unsigned int ROTATOR_RELOAD = 256;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
result[n_vec] = lv_cmake(0,0);
}
for (unsigned int n = 0; n < num_points / ROTATOR_RELOAD; n++)
{
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
{
tmp32_1 = *in_common++ * (*phase);
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][n * ROTATOR_RELOAD + j];
result[n_vec] += tmp32_2;
}
}
/* Regenerate phase */
#ifdef __cplusplus
(*phase) /= std::abs((*phase));
#else
//(*phase) /= cabsf((*phase));
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
#endif
}
for (unsigned int j = 0; j < num_points % ROTATOR_RELOAD; j++)
{
tmp32_1 = *in_common++ * (*phase);
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][(num_points / ROTATOR_RELOAD) * ROTATOR_RELOAD + j];
result[n_vec] += tmp32_2;
}
}
}
#endif /*LV_HAVE_GENERIC*/
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_u_sse3(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t dotProduct = lv_cmake(0,0);
lv_32fc_t tmp32_1, tmp32_2;
const unsigned int sse_iters = num_points / 2;
const lv_32fc_t** _in_a = in_a;
const lv_32fc_t* _in_common = in_common;
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
__m128* acc = (__m128*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
acc[n_vec] = _mm_setzero_ps();
}
// phase rotation registers
__m128 a, two_phase_acc_reg, two_phase_inc_reg, yl, yh, tmp1, tmp1p, tmp2, tmp2p, z1;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc * phase_inc;
two_phase_inc[1] = phase_inc * phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase) * phase_inc;
two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
const __m128 ylp = _mm_moveldup_ps(two_phase_inc_reg);
const __m128 yhp = _mm_movehdup_ps(two_phase_inc_reg);
for(unsigned int number = 0; number < sse_iters; number++)
{
// Phase rotation on operand in_common starts here:
a = _mm_loadu_ps((float*)_in_common);
// __builtin_prefetch(_in_common + 4);
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg);
tmp1 = _mm_mul_ps(a, yl);
tmp1p = _mm_mul_ps(two_phase_acc_reg, ylp);
a = _mm_shuffle_ps(a, a, 0xB1);
two_phase_acc_reg = _mm_shuffle_ps(two_phase_acc_reg, two_phase_acc_reg, 0xB1);
tmp2 = _mm_mul_ps(a, yh);
tmp2p = _mm_mul_ps(two_phase_acc_reg, yhp);
z1 = _mm_addsub_ps(tmp1, tmp2);
two_phase_acc_reg = _mm_addsub_ps(tmp1p, tmp2p);
yl = _mm_moveldup_ps(z1); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(z1);
//next two samples
_in_common += 2;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a = _mm_loadu_ps((float*)&(_in_a[n_vec][number*2]));
tmp1 = _mm_mul_ps(a, yl);
a = _mm_shuffle_ps(a, a, 0xB1);
tmp2 = _mm_mul_ps(a, yh);
z1 = _mm_addsub_ps(tmp1, tmp2);
acc[n_vec] = _mm_add_ps(acc[n_vec], z1);
}
// Regenerate phase
if ((number % 128) == 0)
{
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
tmp2 = _mm_hadd_ps(tmp1, tmp1);
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm_sqrt_ps(tmp1);
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
_mm_store_ps((float*)dotProductVector, acc[n_vec]); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 2; ++i)
{
dotProduct = dotProduct + dotProductVector[i];
}
result[n_vec] = dotProduct;
}
volk_gnsssdr_free(acc);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for(unsigned int n = sse_iters * 2; n < num_points; n++)
{
tmp32_1 = in_common[n] * (*phase);
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][n];
result[n_vec] += tmp32_2;
}
}
}
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_a_sse3(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t dotProduct = lv_cmake(0,0);
lv_32fc_t tmp32_1, tmp32_2;
const unsigned int sse_iters = num_points / 2;
const lv_32fc_t** _in_a = in_a;
const lv_32fc_t* _in_common = in_common;
__VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
__m128* acc = (__m128*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
acc[n_vec] = _mm_setzero_ps();
}
// phase rotation registers
__m128 a, two_phase_acc_reg, two_phase_inc_reg, yl, yh, tmp1, tmp1p, tmp2, tmp2p, z1;
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
two_phase_inc[0] = phase_inc * phase_inc;
two_phase_inc[1] = phase_inc * phase_inc;
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
two_phase_acc[0] = (*phase);
two_phase_acc[1] = (*phase) * phase_inc;
two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
const __m128 ylp = _mm_moveldup_ps(two_phase_inc_reg);
const __m128 yhp = _mm_movehdup_ps(two_phase_inc_reg);
for(unsigned int number = 0; number < sse_iters; number++)
{
// Phase rotation on operand in_common starts here:
a = _mm_load_ps((float*)_in_common);
// __builtin_prefetch(_in_common + 4);
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(two_phase_acc_reg);
tmp1 = _mm_mul_ps(a, yl);
tmp1p = _mm_mul_ps(two_phase_acc_reg, ylp);
a = _mm_shuffle_ps(a, a, 0xB1);
two_phase_acc_reg = _mm_shuffle_ps(two_phase_acc_reg, two_phase_acc_reg, 0xB1);
tmp2 = _mm_mul_ps(a, yh);
tmp2p = _mm_mul_ps(two_phase_acc_reg, yhp);
z1 = _mm_addsub_ps(tmp1, tmp2);
two_phase_acc_reg = _mm_addsub_ps(tmp1p, tmp2p);
yl = _mm_moveldup_ps(z1); // Load yl with cr,cr,dr,dr
yh = _mm_movehdup_ps(z1);
//next two samples
_in_common += 2;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a = _mm_load_ps((float*)&(_in_a[n_vec][number*2]));
tmp1 = _mm_mul_ps(a, yl);
a = _mm_shuffle_ps(a, a, 0xB1);
tmp2 = _mm_mul_ps(a, yh);
z1 = _mm_addsub_ps(tmp1, tmp2);
acc[n_vec] = _mm_add_ps(acc[n_vec], z1);
}
// Regenerate phase
if ((number % 128) == 0)
{
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
tmp2 = _mm_hadd_ps(tmp1, tmp1);
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm_sqrt_ps(tmp1);
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
_mm_store_ps((float*)dotProductVector, acc[n_vec]); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 2; ++i)
{
dotProduct = dotProduct + dotProductVector[i];
}
result[n_vec] = dotProduct;
}
volk_gnsssdr_free(acc);
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
(*phase) = two_phase_acc[0];
for(unsigned int n = sse_iters * 2; n < num_points; n++)
{
tmp32_1 = in_common[n] * (*phase);
(*phase) *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][n];
result[n_vec] += tmp32_2;
}
}
}
#endif /* LV_HAVE_SSE3 */
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_u_avx(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t dotProduct = lv_cmake(0,0);
lv_32fc_t tmp32_1, tmp32_2;
const unsigned int avx_iters = num_points / 4;
const lv_32fc_t** _in_a = in_a;
const lv_32fc_t* _in_common = in_common;
lv_32fc_t _phase = (*phase);
__VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
__m256* acc = (__m256*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
acc[n_vec] = _mm256_setzero_ps();
result[n_vec] = lv_cmake(0, 0);
}
// phase rotation registers
__m256 a, four_phase_acc_reg, yl, yh, tmp1, tmp1p, tmp2, tmp2p, z;
__attribute__((aligned(32))) lv_32fc_t four_phase_inc[4];
const lv_32fc_t phase_inc2 = phase_inc * phase_inc;
const lv_32fc_t phase_inc3 = phase_inc2 * phase_inc;
const lv_32fc_t phase_inc4 = phase_inc3 * phase_inc;
four_phase_inc[0] = phase_inc4;
four_phase_inc[1] = phase_inc4;
four_phase_inc[2] = phase_inc4;
four_phase_inc[3] = phase_inc4;
const __m256 four_phase_inc_reg = _mm256_load_ps((float*)four_phase_inc);
__attribute__((aligned(32))) lv_32fc_t four_phase_acc[4];
four_phase_acc[0] = _phase;
four_phase_acc[1] = _phase * phase_inc;
four_phase_acc[2] = _phase * phase_inc2;
four_phase_acc[3] = _phase * phase_inc3;
four_phase_acc_reg = _mm256_load_ps((float*)four_phase_acc);
const __m256 ylp = _mm256_moveldup_ps(four_phase_inc_reg);
const __m256 yhp = _mm256_movehdup_ps(four_phase_inc_reg);
for(unsigned int number = 0; number < avx_iters; number++)
{
// Phase rotation on operand in_common starts here:
a = _mm256_loadu_ps((float*)_in_common);
__builtin_prefetch(_in_common + 16);
yl = _mm256_moveldup_ps(four_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm256_movehdup_ps(four_phase_acc_reg);
tmp1 = _mm256_mul_ps(a, yl);
tmp1p = _mm256_mul_ps(four_phase_acc_reg, ylp);
a = _mm256_shuffle_ps(a, a, 0xB1);
four_phase_acc_reg = _mm256_shuffle_ps(four_phase_acc_reg, four_phase_acc_reg, 0xB1);
tmp2 = _mm256_mul_ps(a, yh);
tmp2p = _mm256_mul_ps(four_phase_acc_reg, yhp);
z = _mm256_addsub_ps(tmp1, tmp2);
four_phase_acc_reg = _mm256_addsub_ps(tmp1p, tmp2p);
yl = _mm256_moveldup_ps(z); // Load yl with cr,cr,dr,dr
yh = _mm256_movehdup_ps(z);
//next two samples
_in_common += 4;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a = _mm256_loadu_ps((float*)&(_in_a[n_vec][number * 4]));
tmp1 = _mm256_mul_ps(a, yl);
a = _mm256_shuffle_ps(a, a, 0xB1);
tmp2 = _mm256_mul_ps(a, yh);
z = _mm256_addsub_ps(tmp1, tmp2);
acc[n_vec] = _mm256_add_ps(acc[n_vec], z);
}
// Regenerate phase
if ((number % 128) == 0)
{
tmp1 = _mm256_mul_ps(four_phase_acc_reg, four_phase_acc_reg);
tmp2 = _mm256_hadd_ps(tmp1, tmp1);
tmp1 = _mm256_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm256_sqrt_ps(tmp1);
four_phase_acc_reg = _mm256_div_ps(four_phase_acc_reg, tmp2);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
_mm256_store_ps((float*)dotProductVector, acc[n_vec]); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 4; ++i)
{
dotProduct = dotProduct + dotProductVector[i];
}
result[n_vec] = dotProduct;
}
volk_gnsssdr_free(acc);
tmp1 = _mm256_mul_ps(four_phase_acc_reg, four_phase_acc_reg);
tmp2 = _mm256_hadd_ps(tmp1, tmp1);
tmp1 = _mm256_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm256_sqrt_ps(tmp1);
four_phase_acc_reg = _mm256_div_ps(four_phase_acc_reg, tmp2);
_mm256_store_ps((float*)four_phase_acc, four_phase_acc_reg);
_phase = four_phase_acc[0];
_mm256_zeroupper();
for(unsigned int n = avx_iters * 4; n < num_points; n++)
{
tmp32_1 = *_in_common++ * _phase;
_phase *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * _in_a[n_vec][n];
result[n_vec] += tmp32_2;
}
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX */
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_a_avx(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
lv_32fc_t dotProduct = lv_cmake(0,0);
lv_32fc_t tmp32_1, tmp32_2;
const unsigned int avx_iters = num_points / 4;
const lv_32fc_t** _in_a = in_a;
const lv_32fc_t* _in_common = in_common;
lv_32fc_t _phase = (*phase);
__VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
__m256* acc = (__m256*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m256), volk_gnsssdr_get_alignment());
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
acc[n_vec] = _mm256_setzero_ps();
result[n_vec] = lv_cmake(0, 0);
}
// phase rotation registers
__m256 a, four_phase_acc_reg, yl, yh, tmp1, tmp1p, tmp2, tmp2p, z;
__attribute__((aligned(32))) lv_32fc_t four_phase_inc[4];
const lv_32fc_t phase_inc2 = phase_inc * phase_inc;
const lv_32fc_t phase_inc3 = phase_inc2 * phase_inc;
const lv_32fc_t phase_inc4 = phase_inc3 * phase_inc;
four_phase_inc[0] = phase_inc4;
four_phase_inc[1] = phase_inc4;
four_phase_inc[2] = phase_inc4;
four_phase_inc[3] = phase_inc4;
const __m256 four_phase_inc_reg = _mm256_load_ps((float*)four_phase_inc);
__attribute__((aligned(32))) lv_32fc_t four_phase_acc[4];
four_phase_acc[0] = _phase;
four_phase_acc[1] = _phase * phase_inc;
four_phase_acc[2] = _phase * phase_inc2;
four_phase_acc[3] = _phase * phase_inc3;
four_phase_acc_reg = _mm256_load_ps((float*)four_phase_acc);
const __m256 ylp = _mm256_moveldup_ps(four_phase_inc_reg);
const __m256 yhp = _mm256_movehdup_ps(four_phase_inc_reg);
for(unsigned int number = 0; number < avx_iters; number++)
{
// Phase rotation on operand in_common starts here:
a = _mm256_load_ps((float*)_in_common);
__builtin_prefetch(_in_common + 16);
yl = _mm256_moveldup_ps(four_phase_acc_reg); // Load yl with cr,cr,dr,dr
yh = _mm256_movehdup_ps(four_phase_acc_reg);
tmp1 = _mm256_mul_ps(a, yl);
tmp1p = _mm256_mul_ps(four_phase_acc_reg, ylp);
a = _mm256_shuffle_ps(a, a, 0xB1);
four_phase_acc_reg = _mm256_shuffle_ps(four_phase_acc_reg, four_phase_acc_reg, 0xB1);
tmp2 = _mm256_mul_ps(a, yh);
tmp2p = _mm256_mul_ps(four_phase_acc_reg, yhp);
z = _mm256_addsub_ps(tmp1, tmp2);
four_phase_acc_reg = _mm256_addsub_ps(tmp1p, tmp2p);
yl = _mm256_moveldup_ps(z); // Load yl with cr,cr,dr,dr
yh = _mm256_movehdup_ps(z);
//next two samples
_in_common += 4;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a = _mm256_load_ps((float*)&(_in_a[n_vec][number * 4]));
tmp1 = _mm256_mul_ps(a, yl);
a = _mm256_shuffle_ps(a, a, 0xB1);
tmp2 = _mm256_mul_ps(a, yh);
z = _mm256_addsub_ps(tmp1, tmp2);
acc[n_vec] = _mm256_add_ps(acc[n_vec], z);
}
// Regenerate phase
if ((number % 128) == 0)
{
tmp1 = _mm256_mul_ps(four_phase_acc_reg, four_phase_acc_reg);
tmp2 = _mm256_hadd_ps(tmp1, tmp1);
tmp1 = _mm256_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm256_sqrt_ps(tmp1);
four_phase_acc_reg = _mm256_div_ps(four_phase_acc_reg, tmp2);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
_mm256_store_ps((float*)dotProductVector, acc[n_vec]); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 4; ++i)
{
dotProduct = dotProduct + dotProductVector[i];
}
result[n_vec] = dotProduct;
}
volk_gnsssdr_free(acc);
tmp1 = _mm256_mul_ps(four_phase_acc_reg, four_phase_acc_reg);
tmp2 = _mm256_hadd_ps(tmp1, tmp1);
tmp1 = _mm256_shuffle_ps(tmp2, tmp2, 0xD8);
tmp2 = _mm256_sqrt_ps(tmp1);
four_phase_acc_reg = _mm256_div_ps(four_phase_acc_reg, tmp2);
_mm256_store_ps((float*)four_phase_acc, four_phase_acc_reg);
_phase = four_phase_acc[0];
_mm256_zeroupper();
for(unsigned int n = avx_iters * 4; n < num_points; n++)
{
tmp32_1 = *_in_common++ * _phase;
_phase *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * _in_a[n_vec][n];
result[n_vec] += tmp32_2;
}
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX */
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
static inline void volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_neon(lv_32fc_t* result, const lv_32fc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_32fc_t** in_a, int num_a_vectors, unsigned int num_points)
{
const unsigned int neon_iters = num_points / 4;
const lv_32fc_t** _in_a = in_a;
const lv_32fc_t* _in_common = in_common;
lv_32fc_t* _out = result;
lv_32fc_t _phase = (*phase);
lv_32fc_t tmp32_1, tmp32_2;
if (neon_iters > 0)
{
lv_32fc_t dotProduct = lv_cmake(0,0);
float32_t arg_phase0 = cargf(_phase);
float32_t arg_phase_inc = cargf(phase_inc);
float32_t phase_est;
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
float32x4_t _phase4_real = vld1q_f32(__phase4_real);
float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
lv_32fc_t phase2 = (lv_32fc_t)(_phase) * phase_inc;
lv_32fc_t phase3 = phase2 * phase_inc;
lv_32fc_t phase4 = phase3 * phase_inc;
__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((_phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((_phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
float32x4_t _phase_real = vld1q_f32(__phase_real);
float32x4_t _phase_imag = vld1q_f32(__phase_imag);
__VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
float32x4x2_t a_val, b_val, tmp32_real, tmp32_imag;
float32x4x2_t* accumulator1 = (float32x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(float32x4x2_t), volk_gnsssdr_get_alignment());
float32x4x2_t* accumulator2 = (float32x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(float32x4x2_t), volk_gnsssdr_get_alignment());
for(int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
accumulator1[n_vec].val[0] = vdupq_n_f32(0.0f);
accumulator1[n_vec].val[1] = vdupq_n_f32(0.0f);
accumulator2[n_vec].val[0] = vdupq_n_f32(0.0f);
accumulator2[n_vec].val[1] = vdupq_n_f32(0.0f);
}
for(unsigned int number = 0; number < neon_iters; number++)
{
/* load 4 complex numbers (float 32 bits each component) */
b_val = vld2q_f32((float32_t*)_in_common);
__builtin_prefetch(_in_common + 8);
_in_common += 4;
/* complex multiplication of four complex samples (float 32 bits each component) */
tmp32_real.val[0] = vmulq_f32(b_val.val[0], _phase_real);
tmp32_real.val[1] = vmulq_f32(b_val.val[1], _phase_imag);
tmp32_imag.val[0] = vmulq_f32(b_val.val[0], _phase_imag);
tmp32_imag.val[1] = vmulq_f32(b_val.val[1], _phase_real);
b_val.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
b_val.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
/* compute next four phases */
tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
// Regenerate phase
if ((number % 128) == 0)
{
phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
_phase = lv_cmake(cos(phase_est), sin(phase_est));
phase2 = _phase * phase_inc;
phase3 = phase2 * phase_inc;
phase4 = phase3 * phase_inc;
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((_phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((_phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
_phase_real = vld1q_f32(____phase_real);
_phase_imag = vld1q_f32(____phase_imag);
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
a_val = vld2q_f32((float32_t*)&(_in_a[n_vec][number * 4]));
// use 2 accumulators to remove inter-instruction data dependencies
accumulator1[n_vec].val[0] = vmlaq_f32(accumulator1[n_vec].val[0], a_val.val[0], b_val.val[0]);
accumulator2[n_vec].val[0] = vmlsq_f32(accumulator2[n_vec].val[0], a_val.val[1], b_val.val[1]);
accumulator1[n_vec].val[1] = vmlaq_f32(accumulator1[n_vec].val[1], a_val.val[0], b_val.val[1]);
accumulator2[n_vec].val[1] = vmlaq_f32(accumulator2[n_vec].val[1], a_val.val[1], b_val.val[0]);
}
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
accumulator1[n_vec].val[0] = vaddq_f32(accumulator1[n_vec].val[0], accumulator2[n_vec].val[0]);
accumulator1[n_vec].val[1] = vaddq_f32(accumulator1[n_vec].val[1], accumulator2[n_vec].val[1]);
}
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
vst2q_f32((float32_t*)dotProductVector, accumulator1[n_vec]); // Store the results back into the dot product vector
dotProduct = lv_cmake(0,0);
for (int i = 0; i < 4; ++i)
{
dotProduct = dotProduct + dotProductVector[i];
}
_out[n_vec] = dotProduct;
}
volk_gnsssdr_free(accumulator1);
volk_gnsssdr_free(accumulator2);
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
_phase = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
}
for(unsigned int n = neon_iters * 4; n < num_points; n++)
{
tmp32_1 = in_common[n] * _phase;
_phase *= phase_inc;
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
{
tmp32_2 = tmp32_1 * in_a[n_vec][n];
_out[n_vec] += tmp32_2;
}
}
(*phase) = _phase;
}
#endif /* LV_HAVE_NEON */
#endif /* INCLUDED_volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_H */

View File

@ -0,0 +1,253 @@
/*!
* \file volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc.h
* \brief Volk puppet for the multiple 16-bit complex dot product kernel.
* \authors <ul>
* <li> Carles Fernandez Prades 2016 cfernandez at cttc dot cat
* </ul>
*
* Volk puppet for integrating the resampler into volk's test system
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef INCLUDED_volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_H
#define INCLUDED_volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_H
#include "volk_gnsssdr/volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn.h"
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <string.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_generic(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_generic_reload(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // Generic
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_generic_reload(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_generic_reload(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // Generic
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_u_sse3(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_u_sse3(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // SSE3
#ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_a_sse3(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_a_sse3(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // SSE3
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_u_avx(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_u_avx(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX
#ifdef LV_HAVE_AVX
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_a_avx(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_a_avx(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX
#ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_neon(lv_32fc_t* result, const lv_32fc_t* local_code, const lv_32fc_t* in, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.25;
float phase_step_rad = 0.1;
lv_32fc_t phase[1];
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
int num_a_vectors = 3;
lv_32fc_t** in_a = (lv_32fc_t**)volk_gnsssdr_malloc(sizeof(lv_32fc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
for(unsigned int n = 0; n < num_a_vectors; n++)
{
in_a[n] = (lv_32fc_t*)volk_gnsssdr_malloc(sizeof(lv_32fc_t) * num_points, volk_gnsssdr_get_alignment());
memcpy((lv_32fc_t*)in_a[n], (lv_32fc_t*)in, sizeof(lv_32fc_t) * num_points);
}
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn_neon(result, local_code, phase_inc[0], phase, (const lv_32fc_t**) in_a, num_a_vectors, num_points);
for(unsigned int n = 0; n < num_a_vectors; n++)
{
volk_gnsssdr_free(in_a[n]);
}
volk_gnsssdr_free(in_a);
}
#endif // AVX
#endif // INCLUDED_volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc_H

View File

@ -433,6 +433,342 @@ static inline void volk_gnsssdr_s32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, co
#endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/
* Adapted to AVX2 by Carles Fernandez, based on original SSE2 code by Julien Pommier*/
static inline void volk_gnsssdr_s32f_sincos_32fc_a_avx2(lv_32fc_t* out, const float phase_inc, float* phase, unsigned int num_points)
{
lv_32fc_t* bPtr = out;
const unsigned int avx_iters = num_points / 8;
unsigned int number = 0;
float _phase = (*phase);
__m256 sine, cosine, x, eight_phases_reg;
__m256 xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
__m256i emm0, emm2, emm4;
__m128 aux, c1, s1;
/* declare some AXX2 constants */
static const int _ps_inv_sign_mask[8] __attribute__((aligned(32))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
static const int _ps_sign_mask[8] __attribute__((aligned(32))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
static const float _ps_cephes_FOPI[8] __attribute__((aligned(32))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
static const int _pi32_1[8] __attribute__((aligned(32))) = { 1, 1, 1, 1, 1, 1, 1, 1 };
static const int _pi32_inv1[8] __attribute__((aligned(32))) = { ~1, ~1, ~1, ~1, ~1, ~1, ~1, ~1 };
static const int _pi32_2[8] __attribute__((aligned(32))) = { 2, 2, 2, 2, 2, 2, 2, 2 };
static const int _pi32_4[8] __attribute__((aligned(32))) = { 4, 4, 4, 4, 4, 4, 4, 4 };
static const float _ps_minus_cephes_DP1[8] __attribute__((aligned(32))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
static const float _ps_minus_cephes_DP2[8] __attribute__((aligned(32))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
static const float _ps_minus_cephes_DP3[8] __attribute__((aligned(32))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
static const float _ps_coscof_p0[8] __attribute__((aligned(32))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
static const float _ps_coscof_p1[8] __attribute__((aligned(32))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
static const float _ps_coscof_p2[8] __attribute__((aligned(32))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
static const float _ps_sincof_p0[8] __attribute__((aligned(32))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
static const float _ps_sincof_p1[8] __attribute__((aligned(32))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
static const float _ps_sincof_p2[8] __attribute__((aligned(32))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
static const float _ps_0p5[8] __attribute__((aligned(32))) = { 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f };
static const float _ps_1[8] __attribute__((aligned(32))) = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f };
float eight_phases[8] __attribute__((aligned(32))) = { _phase, _phase + phase_inc, _phase + 2 * phase_inc, _phase + 3 * phase_inc, _phase + 4 * phase_inc, _phase + 5 * phase_inc, _phase + 6 * phase_inc, _phase + 7 * phase_inc };
float eight_phases_inc[8] __attribute__((aligned(32))) = { 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc };
eight_phases_reg = _mm256_load_ps(eight_phases);
const __m256 eight_phases_inc_reg = _mm256_load_ps(eight_phases_inc);
for(;number < avx_iters; number++)
{
x = eight_phases_reg;
sign_bit_sin = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(__m256*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(__m256*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(__m256*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm256_add_epi32(emm2, *(__m256i *)_pi32_1);
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_inv1);
y = _mm256_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm256_and_si256(emm2, *(__m256i *)_pi32_4);
emm0 = _mm256_slli_epi32(emm0, 29);
__m256 swap_sign_bit_sin = _mm256_castsi256_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_2);
emm2 = _mm256_cmpeq_epi32(emm2, _mm256_setzero_si256());
__m256 poly_mask = _mm256_castsi256_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic”
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(__m256*)_ps_minus_cephes_DP1;
xmm2 = *(__m256*)_ps_minus_cephes_DP2;
xmm3 = *(__m256*)_ps_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
emm4 = _mm256_sub_epi32(emm4, *(__m256i *)_pi32_2);
emm4 = _mm256_andnot_si256(emm4, *(__m256i *)_pi32_4);
emm4 = _mm256_slli_epi32(emm4, 29);
__m256 sign_bit_cos = _mm256_castsi256_ps(emm4);
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
__m256 z = _mm256_mul_ps(x, x);
y = *(__m256*)_ps_coscof_p0;
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
__m256 tmp = _mm256_mul_ps(z, *(__m256*)_ps_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(__m256*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
__m256 y2 = *(__m256*)_ps_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
__m256 ysin2 = _mm256_and_ps(xmm3, y2);
__m256 ysin1 = _mm256_andnot_ps(xmm3, y);
y2 = _mm256_sub_ps(y2, ysin2);
y = _mm256_sub_ps(y, ysin1);
xmm1 = _mm256_add_ps(ysin1, ysin2);
xmm2 = _mm256_add_ps(y, y2);
/* update the sign */
sine = _mm256_xor_ps(xmm1, sign_bit_sin);
cosine = _mm256_xor_ps(xmm2, sign_bit_cos);
/* write the output */
s1 = _mm256_extractf128_ps(sine, 0);
c1 = _mm256_extractf128_ps(cosine, 0);
aux = _mm_unpacklo_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
s1 = _mm256_extractf128_ps(sine, 1);
c1 = _mm256_extractf128_ps(cosine, 1);
aux = _mm_unpacklo_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_store_ps((float*)bPtr, aux);
bPtr += 2;
eight_phases_reg = _mm256_add_ps(eight_phases_reg, eight_phases_inc_reg);
}
_mm256_zeroupper();
_phase = _phase + phase_inc * (avx_iters * 8);
for(number = avx_iters * 8; number < num_points; number++)
{
out[number] = lv_cmake((float)cos(_phase), (float)sin(_phase) );
_phase += phase_inc;
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_AVX2
#include <immintrin.h>
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/
* Adapted to AVX2 by Carles Fernandez, based on original SSE2 code by Julien Pommier*/
static inline void volk_gnsssdr_s32f_sincos_32fc_u_avx2(lv_32fc_t* out, const float phase_inc, float* phase, unsigned int num_points)
{
lv_32fc_t* bPtr = out;
const unsigned int avx_iters = num_points / 8;
unsigned int number = 0;
float _phase = (*phase);
__m256 sine, cosine, x, eight_phases_reg;
__m256 xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
__m256i emm0, emm2, emm4;
__m128 aux, c1, s1;
/* declare some AXX2 constants */
static const int _ps_inv_sign_mask[8] __attribute__((aligned(32))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
static const int _ps_sign_mask[8] __attribute__((aligned(32))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
static const float _ps_cephes_FOPI[8] __attribute__((aligned(32))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
static const int _pi32_1[8] __attribute__((aligned(32))) = { 1, 1, 1, 1, 1, 1, 1, 1 };
static const int _pi32_inv1[8] __attribute__((aligned(32))) = { ~1, ~1, ~1, ~1, ~1, ~1, ~1, ~1 };
static const int _pi32_2[8] __attribute__((aligned(32))) = { 2, 2, 2, 2, 2, 2, 2, 2 };
static const int _pi32_4[8] __attribute__((aligned(32))) = { 4, 4, 4, 4, 4, 4, 4, 4 };
static const float _ps_minus_cephes_DP1[8] __attribute__((aligned(32))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
static const float _ps_minus_cephes_DP2[8] __attribute__((aligned(32))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
static const float _ps_minus_cephes_DP3[8] __attribute__((aligned(32))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
static const float _ps_coscof_p0[8] __attribute__((aligned(32))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
static const float _ps_coscof_p1[8] __attribute__((aligned(32))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
static const float _ps_coscof_p2[8] __attribute__((aligned(32))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
static const float _ps_sincof_p0[8] __attribute__((aligned(32))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
static const float _ps_sincof_p1[8] __attribute__((aligned(32))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
static const float _ps_sincof_p2[8] __attribute__((aligned(32))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
static const float _ps_0p5[8] __attribute__((aligned(32))) = { 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f };
static const float _ps_1[8] __attribute__((aligned(32))) = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f };
float eight_phases[8] __attribute__((aligned(32))) = { _phase, _phase + phase_inc, _phase + 2 * phase_inc, _phase + 3 * phase_inc, _phase + 4 * phase_inc, _phase + 5 * phase_inc, _phase + 6 * phase_inc, _phase + 7 * phase_inc };
float eight_phases_inc[8] __attribute__((aligned(32))) = { 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc, 8 * phase_inc };
eight_phases_reg = _mm256_load_ps(eight_phases);
const __m256 eight_phases_inc_reg = _mm256_load_ps(eight_phases_inc);
for(;number < avx_iters; number++)
{
x = eight_phases_reg;
sign_bit_sin = x;
/* take the absolute value */
x = _mm256_and_ps(x, *(__m256*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(__m256*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm256_mul_ps(x, *(__m256*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm256_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm256_add_epi32(emm2, *(__m256i *)_pi32_1);
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_inv1);
y = _mm256_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm256_and_si256(emm2, *(__m256i *)_pi32_4);
emm0 = _mm256_slli_epi32(emm0, 29);
__m256 swap_sign_bit_sin = _mm256_castsi256_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm256_and_si256(emm2, *(__m256i *)_pi32_2);
emm2 = _mm256_cmpeq_epi32(emm2, _mm256_setzero_si256());
__m256 poly_mask = _mm256_castsi256_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic”
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(__m256*)_ps_minus_cephes_DP1;
xmm2 = *(__m256*)_ps_minus_cephes_DP2;
xmm3 = *(__m256*)_ps_minus_cephes_DP3;
xmm1 = _mm256_mul_ps(y, xmm1);
xmm2 = _mm256_mul_ps(y, xmm2);
xmm3 = _mm256_mul_ps(y, xmm3);
x = _mm256_add_ps(x, xmm1);
x = _mm256_add_ps(x, xmm2);
x = _mm256_add_ps(x, xmm3);
emm4 = _mm256_sub_epi32(emm4, *(__m256i *)_pi32_2);
emm4 = _mm256_andnot_si256(emm4, *(__m256i *)_pi32_4);
emm4 = _mm256_slli_epi32(emm4, 29);
__m256 sign_bit_cos = _mm256_castsi256_ps(emm4);
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
__m256 z = _mm256_mul_ps(x, x);
y = *(__m256*)_ps_coscof_p0;
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p1);
y = _mm256_mul_ps(y, z);
y = _mm256_add_ps(y, *(__m256*)_ps_coscof_p2);
y = _mm256_mul_ps(y, z);
y = _mm256_mul_ps(y, z);
__m256 tmp = _mm256_mul_ps(z, *(__m256*)_ps_0p5);
y = _mm256_sub_ps(y, tmp);
y = _mm256_add_ps(y, *(__m256*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
__m256 y2 = *(__m256*)_ps_sincof_p0;
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p1);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_add_ps(y2, *(__m256*)_ps_sincof_p2);
y2 = _mm256_mul_ps(y2, z);
y2 = _mm256_mul_ps(y2, x);
y2 = _mm256_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
__m256 ysin2 = _mm256_and_ps(xmm3, y2);
__m256 ysin1 = _mm256_andnot_ps(xmm3, y);
y2 = _mm256_sub_ps(y2, ysin2);
y = _mm256_sub_ps(y, ysin1);
xmm1 = _mm256_add_ps(ysin1, ysin2);
xmm2 = _mm256_add_ps(y, y2);
/* update the sign */
sine = _mm256_xor_ps(xmm1, sign_bit_sin);
cosine = _mm256_xor_ps(xmm2, sign_bit_cos);
/* write the output */
s1 = _mm256_extractf128_ps(sine, 0);
c1 = _mm256_extractf128_ps(cosine, 0);
aux = _mm_unpacklo_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
s1 = _mm256_extractf128_ps(sine, 1);
c1 = _mm256_extractf128_ps(cosine, 1);
aux = _mm_unpacklo_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
aux = _mm_unpackhi_ps(c1, s1);
_mm_storeu_ps((float*)bPtr, aux);
bPtr += 2;
eight_phases_reg = _mm256_add_ps(eight_phases_reg, eight_phases_inc_reg);
}
_mm256_zeroupper();
_phase = _phase + phase_inc * (avx_iters * 8);
for(number = avx_iters * 8; number < num_points; number++)
{
out[number] = lv_cmake((float)cos(_phase), (float)sin(_phase) );
_phase += phase_inc;
}
(*phase) = _phase;
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
/* Adapted from http://gruntthepeon.free.fr/ssemath/neon_mathfun.h, original code from Julien Pommier */

View File

@ -83,6 +83,26 @@ static inline void volk_gnsssdr_s32f_sincospuppet_32fc_u_sse2(lv_32fc_t* out, co
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_a_avx2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{
float phase[1];
phase[0] = 3;
volk_gnsssdr_s32f_sincos_32fc_a_avx2(out, phase_inc, phase, num_points);
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_AVX2
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_u_avx2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{
float phase[1];
phase[0] = 3;
volk_gnsssdr_s32f_sincos_32fc_u_avx2(out, phase_inc, phase, num_points);
}
#endif /* LV_HAVE_AVX2 */
#ifdef LV_HAVE_NEON
static inline void volk_gnsssdr_s32f_sincospuppet_32fc_neon(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
{

View File

@ -89,6 +89,7 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
(VOLK_INIT_PUPP(volk_gnsssdr_32fc_x2_rotator_dotprodxnpuppet_32fc, volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn, test_params_int1))
;
return test_cases;

View File

@ -35,8 +35,29 @@
#include "cpu_multicorrelator.h"
#include <cmath>
#include <iostream>
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
cpu_multicorrelator::cpu_multicorrelator()
{
d_sig_in = NULL;
d_local_code_in = NULL;
d_shifts_chips = NULL;
d_corr_out = NULL;
d_local_codes_resampled = NULL;
d_code_length_chips = 0;
d_n_correlators = 0;
}
cpu_multicorrelator::~cpu_multicorrelator()
{
if(d_local_codes_resampled != NULL)
{
cpu_multicorrelator::free();
}
}
bool cpu_multicorrelator::init(
@ -47,13 +68,7 @@ bool cpu_multicorrelator::init(
// ALLOCATE MEMORY FOR INTERNAL vectors
size_t size = max_signal_length_samples * sizeof(std::complex<float>);
// NCO signal
d_nco_in = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
// Doppler-free signal
d_sig_doppler_wiped = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
d_local_codes_resampled = new std::complex<float>*[n_correlators];
d_local_codes_resampled = static_cast<std::complex<float>**>(volk_malloc(n_correlators * sizeof(std::complex<float>), volk_get_alignment()));
for (int n = 0; n < n_correlators; n++)
{
d_local_codes_resampled[n] = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
@ -86,8 +101,7 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
}
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
void cpu_multicorrelator::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
{
float local_code_chip_index;
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
@ -95,7 +109,7 @@ void cpu_multicorrelator::update_local_code(int correlator_length_samples,float
for (int n = 0; n < correlator_length_samples; n++)
{
// resample code for current tap
local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
local_code_chip_index = std::fmod(code_phase_step_chips * static_cast<float>(n) + d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
@ -104,20 +118,6 @@ void cpu_multicorrelator::update_local_code(int correlator_length_samples,float
}
void cpu_multicorrelator::update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad)
{
float sin_f, cos_f;
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(rem_carr_phase_rad);
for(int i = 0; i < correlator_length_samples; i++)
{
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
d_nco_in[i] = std::complex<float>(cos_f, -sin_f);
phase_rad_i += phase_step_rad_i;
}
}
bool cpu_multicorrelator::Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad,
float phase_step_rad,
@ -125,44 +125,24 @@ bool cpu_multicorrelator::Carrier_wipeoff_multicorrelator_resampler(
float code_phase_step_chips,
int signal_length_samples)
{
//update_local_carrier(signal_length_samples, rem_carrier_phase_in_rad, phase_step_rad); //replaced by VOLK phase rotator
//volk_32fc_x2_multiply_32fc(d_sig_doppler_wiped, d_sig_in, d_nco_in, signal_length_samples); //replaced by VOLK phase rotator
update_local_code(signal_length_samples, rem_code_phase_chips, code_phase_step_chips);
// Regenerate phase at each call in order to avoid numerical issues
lv_32fc_t phase_offset_as_complex[1];
phase_offset_as_complex[0] = lv_cmake(std::cos(rem_carrier_phase_in_rad), -std::sin(rem_carrier_phase_in_rad));
volk_32fc_s32fc_x2_rotator_32fc(d_sig_doppler_wiped, d_sig_in, std::exp(lv_32fc_t(0, -phase_step_rad)), phase_offset_as_complex, signal_length_samples);
update_local_code(signal_length_samples,rem_code_phase_chips, code_phase_step_chips);
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
{
volk_32fc_x2_dot_prod_32fc(&d_corr_out[current_correlator_tap], d_sig_doppler_wiped, d_local_codes_resampled[current_correlator_tap], signal_length_samples);
}
// call VOLK_GNSSSDR kernel
volk_gnsssdr_32fc_x2_rotator_dot_prod_32fc_xn(d_corr_out, d_sig_in, std::exp(lv_32fc_t(0, - phase_step_rad)), phase_offset_as_complex, (const lv_32fc_t**)d_local_codes_resampled, d_n_correlators, signal_length_samples);
return true;
}
cpu_multicorrelator::cpu_multicorrelator()
{
d_sig_in = NULL;
d_nco_in = NULL;
d_sig_doppler_wiped = NULL;
d_local_code_in = NULL;
d_shifts_chips = NULL;
d_corr_out = NULL;
d_local_codes_resampled = NULL;
d_code_length_chips = 0;
d_n_correlators = 0;
}
bool cpu_multicorrelator::free()
{
// Free memory
if (d_sig_doppler_wiped != NULL) volk_free(d_sig_doppler_wiped);
if (d_nco_in != NULL) volk_free(d_nco_in);
for (int n = 0; n < d_n_correlators; n++)
{
volk_free(d_local_codes_resampled[n]);
}
delete d_local_codes_resampled;
volk_free(d_local_codes_resampled);
return true;
}

View File

@ -45,27 +45,23 @@ class cpu_multicorrelator
{
public:
cpu_multicorrelator();
~cpu_multicorrelator();
bool init(int max_signal_length_samples, int n_correlators);
bool set_local_code_and_taps(int code_length_chips, const std::complex<float>* local_code_in, float *shifts_chips);
bool set_input_output_vectors(std::complex<float>* corr_out, const std::complex<float>* sig_in);
void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips);
void update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad);
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
bool free();
private:
// Allocate the device input vectors
const std::complex<float> *d_sig_in;
std::complex<float> *d_nco_in;
std::complex<float> **d_local_codes_resampled;
std::complex<float> *d_sig_doppler_wiped;
const std::complex<float> *d_local_code_in;
std::complex<float> *d_corr_out;
float *d_shifts_chips;
int d_code_length_chips;
int d_n_correlators;
bool update_local_code();
bool update_local_carrier();
};

View File

@ -44,14 +44,10 @@ bool cpu_multicorrelator_16sc::init(
// ALLOCATE MEMORY FOR INTERNAL vectors
size_t size = max_signal_length_samples * sizeof(lv_16sc_t);
// NCO signal (not needed if the rotator+dot_product kernel is used)
//d_nco_in = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(size, volk_gnsssdr_get_alignment()));
// Doppler-free signal (not needed if the rotator+dot_product kernel is used)
//d_sig_doppler_wiped = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(size, volk_gnsssdr_get_alignment()));
d_n_correlators = n_correlators;
d_tmp_code_phases_chips = static_cast<float*>(volk_gnsssdr_malloc(n_correlators*sizeof(float), volk_gnsssdr_get_alignment()));
d_local_codes_resampled = new lv_16sc_t*[n_correlators];
d_tmp_code_phases_chips = static_cast<float*>(volk_gnsssdr_malloc(n_correlators * sizeof(float), volk_gnsssdr_get_alignment()));
d_local_codes_resampled = static_cast<lv_16sc_t**>(volk_gnsssdr_malloc(n_correlators * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
for (int n = 0; n < n_correlators; n++)
{
d_local_codes_resampled[n] = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(size, volk_gnsssdr_get_alignment()));
@ -81,21 +77,21 @@ bool cpu_multicorrelator_16sc::set_input_output_vectors(lv_16sc_t* corr_out, con
return true;
}
void cpu_multicorrelator_16sc::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
void cpu_multicorrelator_16sc::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
{
for (int n = 0; n < d_n_correlators; n++)
{
d_tmp_code_phases_chips[n] = d_shifts_chips[n] - rem_code_phase_chips;
}
for (int n = 0; n < d_n_correlators; n++)
{
d_tmp_code_phases_chips[n] = d_shifts_chips[n] - rem_code_phase_chips;
}
volk_gnsssdr_16ic_xn_resampler_16ic_xn(d_local_codes_resampled,
d_local_code_in,
d_tmp_code_phases_chips,
code_phase_step_chips,
correlator_length_samples,
d_n_correlators,
d_code_length_chips);
volk_gnsssdr_16ic_xn_resampler_16ic_xn(d_local_codes_resampled,
d_local_code_in,
d_tmp_code_phases_chips,
code_phase_step_chips,
correlator_length_samples,
d_n_correlators,
d_code_length_chips);
}
@ -107,13 +103,11 @@ bool cpu_multicorrelator_16sc::Carrier_wipeoff_multicorrelator_resampler(
int signal_length_samples)
{
update_local_code(signal_length_samples, rem_code_phase_chips, code_phase_step_chips);
// Regenerate phase at each call in order to avoid numerical issues
lv_32fc_t phase_offset_as_complex[1];
phase_offset_as_complex[0] = lv_cmake(std::cos(rem_carrier_phase_in_rad), -std::sin(rem_carrier_phase_in_rad));
//replaced by integrated rotator + dot_product kernel
//volk_gnsssdr_16ic_s32fc_x2_rotator_16ic(d_sig_doppler_wiped, d_sig_in, std::exp(lv_32fc_t(0, -phase_step_rad)), phase_offset_as_complex, signal_length_samples);
//volk_gnsssdr_16ic_x2_dot_prod_16ic_xn(d_corr_out, d_sig_doppler_wiped, (const lv_16sc_t**)d_local_codes_resampled, d_n_correlators, signal_length_samples);
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn(d_corr_out, d_sig_in, std::exp(lv_32fc_t(0, -phase_step_rad)), phase_offset_as_complex, (const lv_16sc_t**)d_local_codes_resampled, d_n_correlators, signal_length_samples);
// call VOLK_GNSSSDR kernel
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn(d_corr_out, d_sig_in, std::exp(lv_32fc_t(0, -phase_step_rad)), phase_offset_as_complex, (const lv_16sc_t**)d_local_codes_resampled, d_n_correlators, signal_length_samples);
return true;
}
@ -121,8 +115,6 @@ bool cpu_multicorrelator_16sc::Carrier_wipeoff_multicorrelator_resampler(
cpu_multicorrelator_16sc::cpu_multicorrelator_16sc()
{
d_sig_in = NULL;
//d_nco_in = NULL;
//d_sig_doppler_wiped = NULL;
d_local_code_in = NULL;
d_shifts_chips = NULL;
d_corr_out = NULL;
@ -131,17 +123,25 @@ cpu_multicorrelator_16sc::cpu_multicorrelator_16sc()
d_n_correlators = 0;
}
cpu_multicorrelator_16sc::~cpu_multicorrelator_16sc()
{
if(d_local_codes_resampled != NULL)
{
cpu_multicorrelator_16sc::free();
}
}
bool cpu_multicorrelator_16sc::free()
{
// Free memory
//if (d_sig_doppler_wiped != NULL) volk_gnsssdr_free(d_sig_doppler_wiped);
//if (d_nco_in != NULL) volk_gnsssdr_free(d_nco_in);
if (d_tmp_code_phases_chips != NULL) volk_gnsssdr_free(d_tmp_code_phases_chips);
if (d_tmp_code_phases_chips != NULL) volk_gnsssdr_free(d_tmp_code_phases_chips);
for (int n = 0; n < d_n_correlators; n++)
{
volk_gnsssdr_free(d_local_codes_resampled[n]);
}
delete d_local_codes_resampled;
volk_gnsssdr_free(d_local_codes_resampled);
return true;
}

View File

@ -45,6 +45,7 @@ class cpu_multicorrelator_16sc
{
public:
cpu_multicorrelator_16sc();
~cpu_multicorrelator_16sc();
bool init(int max_signal_length_samples, int n_correlators);
bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
bool set_input_output_vectors(lv_16sc_t* corr_out, const lv_16sc_t* sig_in);
@ -55,18 +56,14 @@ public:
private:
// Allocate the device input vectors
const lv_16sc_t *d_sig_in;
//lv_16sc_t *d_nco_in;
float *d_tmp_code_phases_chips;
lv_16sc_t **d_local_codes_resampled;
//lv_16sc_t *d_sig_doppler_wiped;
const lv_16sc_t *d_local_code_in;
lv_16sc_t *d_corr_out;
float *d_shifts_chips;
int d_code_length_chips;
int d_n_correlators;
bool update_local_code();
bool update_local_carrier();
};
#endif /* CPU_MULTICORRELATOR_H_ */
#endif /* GNSS_SDR_CPU_MULTICORRELATOR_H_ */