1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into acq_performance

This commit is contained in:
Carles Fernandez 2018-06-20 10:17:25 +02:00
commit 8035050caa
5 changed files with 363 additions and 179 deletions

View File

@ -112,6 +112,13 @@ bool observables_dump_reader::open_obs_file(std::string out_file)
}
}
void observables_dump_reader::close_obs_file()
{
if (d_dump_file.is_open() == false)
{
d_dump_file.close();
}
}
observables_dump_reader::observables_dump_reader(int n_channels_)
{

View File

@ -44,6 +44,7 @@ public:
bool restart();
long int num_epochs();
bool open_obs_file(std::string out_file);
void close_obs_file();
//dump variables

View File

@ -89,15 +89,16 @@ bool tracking_true_obs_reader::open_obs_file(std::string out_file)
{
try
{
d_dump_file.clear();
d_dump_filename = out_file;
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::in | std::ios::binary);
std::cout << "Observables dump enabled, Log file: " << d_dump_filename.c_str() << std::endl;
std::cout << "Tracking Log file: " << d_dump_filename.c_str() << " open ok " << std::endl;
return true;
}
catch (const std::ifstream::failure &e)
{
std::cout << "Problem opening Observables dump Log file: " << d_dump_filename.c_str() << std::endl;
std::cout << "Problem opening Tracking dump Log file: " << d_dump_filename.c_str() << " Error: " << e.what() << std::endl;
return false;
}
}
@ -107,6 +108,13 @@ bool tracking_true_obs_reader::open_obs_file(std::string out_file)
}
}
void tracking_true_obs_reader::close_obs_file()
{
if (d_dump_file.is_open() == true)
{
d_dump_file.close();
}
}
tracking_true_obs_reader::~tracking_true_obs_reader()
{

View File

@ -43,6 +43,7 @@ public:
bool restart();
long int num_epochs();
bool open_obs_file(std::string out_file);
void close_obs_file();
bool d_dump;
double signal_timestamp_s;

View File

@ -56,6 +56,9 @@
DEFINE_bool(plot_gps_l1_tracking_test, false, "Plots results of GpsL1CADllPllTrackingTest with gnuplot");
DEFINE_int32(extend_correlation_symbols, 1, "Set the tracking coherent correlation to N symbols (up to 20 for GPS L1 C/A)");
//Test output configuration
DEFINE_bool(plot_gps_l1_tracking_test, false, "Plots results of GpsL1CADllPllTrackingTest with gnuplot");
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GpsL1CADllPllTrackingTest_msg_rx;
@ -129,17 +132,17 @@ public:
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
int configure_generator();
int configure_generator(double CN0_dBHz, int file_idx);
int generate_signal();
void check_results_doppler(arma::vec& true_time_s,
std::vector<double> check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
void check_results_acc_carrier_phase(arma::vec& true_time_s,
std::vector<double> check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
void check_results_codephase(arma::vec& true_time_s,
std::vector<double> check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value);
@ -166,7 +169,7 @@ public:
};
int GpsL1CADllPllTrackingTest::configure_generator()
int GpsL1CADllPllTrackingTest::configure_generator(double CN0_dBHz, int file_idx)
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
@ -180,10 +183,10 @@ int GpsL1CADllPllTrackingTest::configure_generator()
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(FLAGS_CN0_dBHz); // Signal generator CN0
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data + std::to_string(file_idx); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(CN0_dBHz); // Signal generator CN0
return 0;
}
@ -235,7 +238,7 @@ void GpsL1CADllPllTrackingTest::configure_receiver()
}
void GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
std::vector<double> GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
@ -255,6 +258,10 @@ void GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
arma::vec err;
err = meas_value - true_value_interp;
//conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
@ -272,10 +279,11 @@ void GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_time_s,
std::vector<double> GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
@ -295,6 +303,9 @@ void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
//conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
double rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
@ -311,10 +322,11 @@ void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
std::vector<double> GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value)
@ -334,6 +346,9 @@ void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
arma::vec err;
err = meas_value - true_value_interp;
//conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
@ -351,164 +366,259 @@ void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Chips]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
{
// Configure the signal generator
configure_generator();
//*************************************************
//***** STEP 2: Prepare the parameters sweep ******
//*************************************************
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_disable_generator == false)
std::vector<double> generator_CN0_values;
std::vector<std::vector<double>> prompt_sweep;
std::vector<std::vector<double>> early_sweep;
std::vector<std::vector<double>> late_sweep;
std::vector<std::vector<double>> promptI_sweep;
std::vector<std::vector<double>> promptQ_sweep;
std::vector<std::vector<double>> CN0_dBHz_sweep;
//error vectors
std::vector<std::vector<double>> doppler_error_sweep;
std::vector<std::vector<double>> code_phase_error_sweep;
std::vector<std::vector<double>> acc_carrier_phase_error_sweep;
std::vector<std::vector<double>> trk_timestamp_s_sweep;
if (FLAGS_CN0_dBHz_start == FLAGS_CN0_dBHz_stop)
{
generate_signal();
generator_CN0_values.push_back(FLAGS_CN0_dBHz_start);
}
else
{
for (double cn0 = FLAGS_CN0_dBHz_start; cn0 > FLAGS_CN0_dBHz_stop; cn0 = cn0 - FLAGS_CN0_dB_step)
{
generator_CN0_values.push_back(cn0);
}
}
std::chrono::time_point<std::chrono::system_clock> start, end;
configure_receiver();
// open true observables log file written by the simulator
int test_satellite_PRN = 0;
double acq_delay_samples = 0.0;
double acq_doppler_hz = 0.0;
tracking_true_obs_reader true_obs_data;
int test_satellite_PRN = FLAGS_test_satellite_PRN;
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_); //std::make_shared<GpsL1CaDllPllCAidTracking>(config.get(), "Tracking_1C", 1, 1);
boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx> msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
// restart the epoch counter
true_obs_data.restart();
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD;
gnss_synchro.Acq_doppler_hz = true_obs_data.doppler_l1_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data;
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
// check results
// load the true values
long int nepoch = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << nepoch << std::endl;
arma::vec true_timestamp_s = arma::zeros(nepoch, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(nepoch, 1);
arma::vec true_Doppler_Hz = arma::zeros(nepoch, 1);
arma::vec true_prn_delay_chips = arma::zeros(nepoch, 1);
arma::vec true_tow_s = arma::zeros(nepoch, 1);
long int epoch_counter = 0;
while (true_obs_data.read_binary_obs())
//*********************************************
//***** STEP 3: Generate the input signal *****
//*********************************************
// use generator or use an external capture file
if (FLAGS_enable_external_signal_file)
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
epoch_counter++;
//todo: create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
}
else
{
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
// Configure the signal generator
configure_generator(generator_CN0_values.at(current_cn0_idx), current_cn0_idx);
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_disable_generator == false)
{
generate_signal();
}
// open true observables log file written by the simulator
}
}
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
//CN0 LOOP
nepoch = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;
arma::vec trk_timestamp_s = arma::zeros(nepoch, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(nepoch, 1);
arma::vec trk_Doppler_Hz = arma::zeros(nepoch, 1);
arma::vec trk_prn_delay_chips = arma::zeros(nepoch, 1);
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
epoch_counter = 0;
while (trk_dump.read_binary_obs())
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
//******************************************************************************************
//***** Obtain the initial signal sinchronization parameters (emulating an acquisition) ****
//******************************************************************************************
if (!FLAGS_enable_external_signal_file)
{
test_satellite_PRN = FLAGS_test_satellite_PRN;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
true_obs_data.close_obs_file();
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
acq_doppler_hz = true_obs_data.doppler_l1_hz;
acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD;
// restart the epoch counter
true_obs_data.restart();
}
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++;
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
}
//***** STEP 4: Configure the signal tracking parameters *****
//************************************************************
std::chrono::time_point<std::chrono::system_clock> start, end;
configure_receiver();
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
top_block = gr::make_top_block("Tracking test");
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx> msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
gnss_synchro.Acq_delay_samples = acq_delay_samples;
gnss_synchro.Acq_doppler_hz = acq_doppler_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data + std::to_string(current_cn0_idx);
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
//********************************************************************
//***** STEP 5: Perform the signal tracking and read the results *****
//********************************************************************
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds" << std::endl;
//check results
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
long int n_measured_epochs = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << n_measured_epochs << std::endl;
arma::vec trk_timestamp_s = arma::zeros(n_measured_epochs, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(n_measured_epochs, 1);
arma::vec trk_Doppler_Hz = arma::zeros(n_measured_epochs, 1);
arma::vec trk_prn_delay_chips = arma::zeros(n_measured_epochs, 1);
long int epoch_counter = 0;
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
while (trk_dump.read_binary_obs())
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++;
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
}
prompt_sweep.push_back(prompt);
early_sweep.push_back(early);
late_sweep.push_back(late);
promptI_sweep.push_back(promptI);
promptQ_sweep.push_back(promptQ);
CN0_dBHz_sweep.push_back(CN0_dBHz);
//***********************************************************
//***** STEP 6: Compare with true values (if available) *****
//***********************************************************
if (!FLAGS_enable_external_signal_file)
{
// load the true values
long int n_true_epochs = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << n_true_epochs << std::endl;
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
long int epoch_counter = 0;
while (true_obs_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
epoch_counter++;
}
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
std::vector<double> doppler_error_hz;
std::vector<double> code_phase_error_chips;
std::vector<double> acc_carrier_phase_hz;
doppler_error_hz = check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
code_phase_error_chips = check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
acc_carrier_phase_hz = check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
//save tracking measurement timestamps to std::vector
std::vector<double> vector_trk_timestamp_s(trk_timestamp_s.colptr(0), trk_timestamp_s.colptr(0) + trk_timestamp_s.n_rows);
trk_timestamp_s_sweep.push_back(vector_trk_timestamp_s);
doppler_error_sweep.push_back(doppler_error_hz);
code_phase_error_sweep.push_back(code_phase_error_chips);
acc_carrier_phase_error_sweep.push_back(acc_carrier_phase_hz);
}
} //CN0 LOOP
//********************************
//***** STEP 7: Plot results *****
//********************************
if (FLAGS_plot_gps_l1_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
@ -526,49 +636,106 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
std::vector<double> timevec;
double t = 0.0;
for (auto it = prompt.begin(); it != prompt.end(); it++)
{
timevec.push_back(t);
t = t + GPS_L1_CA_CODE_PERIOD;
}
Gnuplot g1("linespoints");
g1.set_title("GPS L1 C/A signal tracking correlators' output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
g1.cmd("set key box opaque");
unsigned int decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
g1.plot_xy(timevec, prompt, "Prompt", decimate);
g1.plot_xy(timevec, early, "Early", decimate);
g1.plot_xy(timevec, late, "Late", decimate);
g1.savetops("Correlators_outputs");
g1.savetopdf("Correlators_outputs", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("Constellation diagram (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
g2.cmd("set size ratio -1");
g2.plot_xy(promptI, promptQ);
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
g2.showonscreen(); // window output
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
timevec.clear();
//todo: timevector MUST BE READED from the trk output file
double t = 0.0;
for (auto it = prompt_sweep.at(current_cn0_idx).begin(); it != prompt_sweep.at(current_cn0_idx).end(); it++)
{
timevec.push_back(t);
t = t + GPS_L1_CA_CODE_PERIOD;
}
Gnuplot g1("linespoints");
g1.set_title("[" + std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz ] GPS L1 C/A signal tracking correlators' output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
g1.cmd("set key box opaque");
g1.plot_xy(timevec, prompt_sweep.at(current_cn0_idx), "Prompt", decimate);
g1.plot_xy(timevec, early_sweep.at(current_cn0_idx), "Early", decimate);
g1.plot_xy(timevec, late_sweep.at(current_cn0_idx), "Late", decimate);
g1.savetops("Correlators_outputs");
g1.savetopdf("Correlators_outputs", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("[" + std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz ] Constellation diagram (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
g2.cmd("set size ratio -1");
g2.plot_xy(promptI_sweep.at(current_cn0_idx), promptQ_sweep.at(current_cn0_idx));
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
g2.showonscreen(); // window output
}
Gnuplot g3("linespoints");
g3.set_title("GPS L1 C/A tracking CN0 output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Reported CN0 [dB-Hz]");
g3.cmd("set key box opaque");
g3.plot_xy(timevec, CN0_dBHz, "Prompt", decimate);
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g3.plot_xy(timevec, CN0_dBHz_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g3.set_legend();
g3.savetops("CN0_output");
g3.savetopdf("CN0_output", 18);
g3.showonscreen(); // window output
Gnuplot g4("points");
g4.set_title("Doppler error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g4.set_grid();
g4.set_xlabel("Time [s]");
g4.set_ylabel("Dopper error [Hz]");
g4.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g4.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), doppler_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g4.set_legend();
g4.savetops("Doppler_error_output");
g4.savetopdf("Doppler_error_output", 18);
g4.showonscreen(); // window output
Gnuplot g5("points");
g5.set_title("Code delay error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5.set_grid();
g5.set_xlabel("Time [s]");
g5.set_ylabel("Code delay error [Chips]");
g5.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g5.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), code_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g5.set_legend();
g5.savetops("Code_error_output");
g5.savetopdf("Code_error_output", 18);
g5.showonscreen(); // window output
Gnuplot g6("points");
g6.set_title("Accumulated carrier phase error (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g6.set_grid();
g6.set_xlabel("Time [s]");
g6.set_ylabel("Accumulated carrier phase error [Cycles]");
g6.cmd("set key box opaque");
for (int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g6.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), acc_carrier_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g6.set_legend();
g6.savetops("Carrier_phase_error_output");
g6.savetopdf("Carrier_phase_error_output", 18);
g6.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{