1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 22:43:14 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into fpga

This commit is contained in:
Marc Majoral 2018-08-01 18:59:40 +02:00
commit 7e246dea29
899 changed files with 12386 additions and 10966 deletions

View File

@ -1,7 +1,7 @@
---
Language: Cpp
# BasedOnStyle: Google
# More info: http://clang.llvm.org/docs/ClangFormatStyleOptions.html
# More info: https://clang.llvm.org/docs/ClangFormatStyleOptions.html
AccessModifierOffset: -4
AlignAfterOpenBracket: DontAlign
AlignConsecutiveAssignments: false
@ -21,7 +21,7 @@ AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: false
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
@ -47,7 +47,7 @@ DerivePointerAlignment: true
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
ForEachMacros: [ foreach, Q_FOREACH, BOOST_FOREACH ]
IncludeCategories:
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
- Regex: '^<.*'
@ -88,4 +88,3 @@ Standard: Auto
TabWidth: 8
UseTab: Never
...

116
AUTHORS
View File

@ -1,59 +1,57 @@
GNSS-SDR Authorship
------------------------------------------------------------------------------
The GNSS-SDR project is hosted and sponsored by the Centre Tecnologic de
Telecomunicacions de Catalunya (CTTC), a non-profit research foundation located
in Castelldefels (40.396764 N, 3.713379 E), 20 km south of Barcelona, Spain.
GNSS-SDR is the by-product of GNSS research conducted at the Communications
Systems Division of CTTC, and it is the combined effort of students,
software engineers and researchers from different institutions around the World.
Contact Information
------------------------------------------------------------------------------
GNSS-SDR Homepage
----------------------------
http://gnss-sdr.org
CTTC Homepage
----------------------------
http://www.cttc.cat
Mailing Lists
----------------------------
gnss-sdr-developers@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers
Email
----------------------------
Inquiries beyond the mailing list can be sent to carles.fernandez@cttc.cat
List of authors
------------------------------------------------------------------------------
Carles Fernandez-Prades carles.fernandez@cttc.cat Project manager
Javier Arribas javier.arribas@cttc.es Developer
Luis Esteve Elfau luis@epsilon-formacion.com Developer
Antonio Ramos antonio.ramos@cttc.es Developer
Marc Majoral marc.majoral@cttc.cat Developer
Pau Closas pau.closas@northeastern.edu Consultant
Jordi Vila-Valls jordi.vila@cttc.cat Consultant
Carlos Aviles carlos.avilesr@googlemail.com Contributor
David Pubill david.pubill@cttc.cat Contributor
Mara Branzanti mara.branzanti@gmail.com Contributor
Marc Molina marc.molina.pena@gmail.com Contributor
Daniel Fehr daniel.co@bluewin.ch Contributor
Marc Sales marcsales92@gmail.com Contributor
Damian Miralles dmiralles2009@gmail.com Contributor
Andres Cecilia Luque a.cecilia.luque@gmail.com Contributor
Leonardo Tonetto tonetto.dev@gmail.com Contributor
Anthony Arnold anthony.arnold@uqconnect.edu.au Contributor
Fran Fabra fabra@ice.csic.es Contributor
Cillian O'Driscoll cillian.odriscoll@gmail.com Contributor
Gabriel Araujo gabriel.araujo.5000@gmail.com Contributor
Carlos Paniego carpanie@hotmail.com Artwork
GNSS-SDR Authorship
------------------------------------------------------------------------------
The GNSS-SDR project is hosted and sponsored by the Centre Tecnològic de
Telecomunicacions de Catalunya (CTTC), a non-profit research foundation located
in Castelldefels (40.396764 N, 3.713379 E), 20 km south of Barcelona, Spain.
GNSS-SDR is the by-product of GNSS research conducted at the Communications
Systems Division of CTTC, and it is the combined effort of students,
software engineers and researchers from different institutions around the World.
Contact Information
------------------------------------------------------------------------------
GNSS-SDR Homepage
----------------------------
https://gnss-sdr.org
CTTC Homepage
----------------------------
http://www.cttc.cat
Mailing Lists
----------------------------
gnss-sdr-developers@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers
Email
----------------------------
Inquiries beyond the mailing list can be sent to carles.fernandez@cttc.cat
List of authors
------------------------------------------------------------------------------
Carles Fernández-Prades carles.fernandez@cttc.cat Project manager
Javier Arribas javier.arribas@cttc.es Developer
Luis Esteve Elfau luis@epsilon-formacion.com Developer
Antonio Ramos antonio.ramosdet@gmail.com Developer
Marc Majoral marc.majoral@cttc.cat Developer
Jordi Vilà-Valls jordi.vila@cttc.cat Consultant
Pau Closas pau.closas@northeastern.edu Consultant
Álvaro Cebrián Juan acebrianjuan@gmail.com Contributor
Andres Cecilia Luque a.cecilia.luque@gmail.com Contributor
Anthony Arnold anthony.arnold@uqconnect.edu.au Contributor
Carlos Avilés carlos.avilesr@googlemail.com Contributor
Cillian O'Driscoll cillian.odriscoll@gmail.com Contributor
Damian Miralles dmiralles2009@gmail.com Contributor
Daniel Fehr daniel.co@bluewin.ch Contributor
David Pubill david.pubill@cttc.cat Contributor
Fran Fabra fabra@ice.csic.es Contributor
Gabriel Araujo gabriel.araujo.5000@gmail.com Contributor
Leonardo Tonetto tonetto.dev@gmail.com Contributor
Mara Branzanti mara.branzanti@gmail.com Contributor
Marc Molina marc.molina.pena@gmail.com Contributor
Marc Sales marcsales92@gmail.com Contributor
Carlos Paniego carpanie@hotmail.com Artwork

View File

@ -1,4 +1,4 @@
# Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
# Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
#
# This file is part of GNSS-SDR.
#
@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
#
########################################################################
@ -51,7 +51,8 @@ option(ENABLE_ARRAY "Enable the use of CTTC's antenna array front-end as signal
option(ENABLE_GN3S "Enable the use of the GN3S dongle as signal source (experimental)" OFF)
option(ENABLE_PLUTOSDR "Enable the use of ADALM-PLUTO Evaluation Boards (Analog Devices Inc.), requires gr-iio" OFF)
option(ENABLE_FMCOMMS2 "Enable the use of FMCOMMS4-EBZ + ZedBoard hardware, requires gr-iio" OFF)
option(ENABLE_AD9361 "Enable the use of AD9361 directo to FPGA hardware, requires gr-iio" OFF)
option(ENABLE_AD9361 "Enable the use of AD9361 directo to FPGA hardware, requires libiio" OFF)
option(ENABLE_RAW_UDP "Enable the use of high-optimized custom UDP packet sample source, requires libpcap" OFF)
# Performance analysis tools
option(ENABLE_GPERFTOOLS "Enable linking to Gperftools libraries (tcmalloc and profiler)" OFF)
@ -317,6 +318,7 @@ set(GNSSSDR_APPLECLANG_MIN_VERSION "500")
set(GNSSSDR_GNURADIO_MIN_VERSION "3.7.3")
set(GNSSSDR_BOOST_MIN_VERSION "1.45")
set(GNSSSDR_PYTHON_MIN_VERSION "2.7")
set(GNSSSDR_PYTHON3_MIN_VERSION "3.4")
set(GNSSSDR_MAKO_MIN_VERSION "0.4.2")
set(GNSSSDR_ARMADILLO_MIN_VERSION "5.300.0")
set(GNSSSDR_MATIO_MIN_VERSION "1.5.3")
@ -354,7 +356,7 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
message(STATUS "Your GCC version is too old and does not support some C++ features required by GNSS-SDR. GCC version must be at least ${GNSSSDR_GCC_MIN_VERSION}")
if(${LINUX_DISTRIBUTION} MATCHES "Ubuntu")
if(${LINUX_VER} MATCHES "12.04")
message(STATUS "For instructions on how to upgrade GCC, check http://askubuntu.com/a/271561")
message(STATUS "For instructions on how to upgrade GCC, check https://askubuntu.com/a/271561")
endif(${LINUX_VER} MATCHES "12.04")
endif(${LINUX_DISTRIBUTION} MATCHES "Ubuntu")
message(FATAL_ERROR "Fatal error: GCC >= ${GNSSSDR_GCC_MIN_VERSION} required.")
@ -466,7 +468,7 @@ endif(ENABLE_UNIT_TESTING OR ENABLE_SYSTEM_TESTING)
################################################################################
# Boost - http://www.boost.org
# Boost - https://www.boost.org
################################################################################
if(UNIX AND EXISTS "/usr/lib64")
list(APPEND BOOST_LIBRARYDIR "/usr/lib64") # Fedora 64-bit fix
@ -490,7 +492,7 @@ endif(NOT Boost_FOUND)
################################################################################
# GNU Radio - http://gnuradio.org
# GNU Radio - https://gnuradio.org
################################################################################
set(GR_REQUIRED_COMPONENTS RUNTIME ANALOG BLOCKS FFT FILTER PMT)
find_package(Gnuradio)
@ -565,25 +567,28 @@ if(NOT VOLK_GNSSSDR_FOUND)
###############################
# Find Python required modules
###############################
include(SetupPython) #sets PYTHON_EXECUTABLE and PYTHON_DASH_B
GNSSSDR_PYTHON_CHECK_MODULE("python >= ${GNSSSDR_PYTHON_MIN_VERSION}" sys "sys.version.split()[0] >= '${GNSSSDR_PYTHON_MIN_VERSION}'" PYTHON_MIN_VER_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("mako >= ${GNSSSDR_MAKO_MIN_VERSION}" mako "mako.__version__ >= '${GNSSSDR_MAKO_MIN_VERSION}'" MAKO_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("six - python 2 and 3 compatibility library" six "True" SIX_FOUND)
include(SetupPython) # sets PYTHON_EXECUTABLE and search for required modules
if(NOT PYTHON_MIN_VER_FOUND)
message(FATAL_ERROR "Python ${GNSSSDR_PYTHON_MIN_VERSION} or greater required to build VOLK_GNSSSDR")
endif()
endif(NOT PYTHON_MIN_VER_FOUND)
if(${PYTHON3})
set(PYTHON_NAME "python3")
else(${PYTHON3})
set(PYTHON_NAME "python")
endif(${PYTHON3})
# Mako
if(NOT MAKO_FOUND)
message(STATUS "Mako templates not found. See http://www.makotemplates.org/ ")
message(STATUS "Mako template library not found. See http://www.makotemplates.org/ ")
message(STATUS " You can try to install it by typing:")
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(STATUS " sudo yum install python-mako")
message(STATUS " sudo yum install ${PYTHON_NAME}-mako")
elseif(${LINUX_DISTRIBUTION} MATCHES "openSUSE")
message(STATUS " sudo zypper install python-Mako")
message(STATUS " sudo zypper install ${PYTHON_NAME}-Mako")
else(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(STATUS " sudo apt-get install python-mako")
message(STATUS " sudo apt-get install ${PYTHON_NAME}-mako")
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(FATAL_ERROR "Mako templates required to build VOLK_GNSSSDR")
endif(NOT MAKO_FOUND)
@ -593,11 +598,11 @@ if(NOT VOLK_GNSSSDR_FOUND)
message(STATUS "python-six not found. See https://pythonhosted.org/six/ ")
message(STATUS " You can try to install it by typing:")
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(STATUS " sudo yum install python-six")
message(STATUS " sudo yum install ${PYTHON_NAME}-six")
elseif(${LINUX_DISTRIBUTION} MATCHES "openSUSE")
message(STATUS " sudo zypper install python-six")
message(STATUS " sudo zypper install ${PYTHON_NAME}-six")
else(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(STATUS " sudo apt-get install python-six")
message(STATUS " sudo apt-get install ${PYTHON_NAME}-six")
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(FATAL_ERROR "six - python 2 and 3 compatibility library required to build VOLK_GNSSSDR")
endif(NOT SIX_FOUND)
@ -825,9 +830,9 @@ ${CMAKE_CURRENT_SOURCE_DIR}/thirdparty/glog/glog-${GNSSSDR_GLOG_LOCAL_VERSION}/c
# Ensure that aclocal and libtool are present
if(OS_IS_LINUX)
if(EXISTS "/usr/bin/libtoolize")
if(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
if(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
# Everything ok, we can move on
else(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
else(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
message(" aclocal has not been found.")
message(" You can try to install it by typing:")
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
@ -838,7 +843,7 @@ ${CMAKE_CURRENT_SOURCE_DIR}/thirdparty/glog/glog-${GNSSSDR_GLOG_LOCAL_VERSION}/c
message(" sudo apt-get install automake")
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(FATAL_ERROR "aclocal is required to build glog from source")
endif(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
endif(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
else(EXISTS "/usr/bin/libtoolize")
message(" libtool has not been found.")
message(" You can try to install it by typing:")
@ -989,7 +994,7 @@ if(NOT ARMADILLO_FOUND OR ENABLE_OWN_ARMADILLO)
ExternalProject_Add(
armadillo-${armadillo_RELEASE}
PREFIX ${CMAKE_CURRENT_BINARY_DIR}/armadillo-${armadillo_RELEASE}
GIT_REPOSITORY https://github.com/conradsnicta/armadillo-code.git
GIT_REPOSITORY https://gitlab.com/conradsnicta/armadillo-code.git
GIT_TAG ${armadillo_BRANCH}
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/thirdparty/armadillo/armadillo-${armadillo_RELEASE}
BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/armadillo-${armadillo_RELEASE}
@ -1002,7 +1007,7 @@ if(NOT ARMADILLO_FOUND OR ENABLE_OWN_ARMADILLO)
ExternalProject_Add(
armadillo-${armadillo_RELEASE}
PREFIX ${CMAKE_CURRENT_BINARY_DIR}/armadillo-${armadillo_RELEASE}
GIT_REPOSITORY https://github.com/conradsnicta/armadillo-code.git
GIT_REPOSITORY https://gitlab.com/conradsnicta/armadillo-code.git
GIT_TAG ${armadillo_BRANCH}
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/thirdparty/armadillo/armadillo-${armadillo_RELEASE}
BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/armadillo-${armadillo_RELEASE}
@ -1032,7 +1037,7 @@ endif(NOT ARMADILLO_FOUND OR ENABLE_OWN_ARMADILLO)
################################################################################
# GnuTLS - http://www.gnutls.org/
# GnuTLS - https://www.gnutls.org/
################################################################################
find_package(GnuTLS)
find_library(GNUTLS_OPENSSL_LIBRARY NAMES gnutls-openssl libgnutls-openssl.so.27
@ -1119,9 +1124,9 @@ if(NOT MATIO_FOUND OR MATIO_VERSION_STRING VERSION_LESS ${GNSSSDR_MATIO_MIN_VERS
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(FATAL_ERROR "libtool is required to build matio from source")
endif(NOT EXISTS "/usr/bin/libtoolize")
if(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
if(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
message(STATUS "Automake found.")
else(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
else(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
message(" aclocal has not been found.")
message(" You can try to install it by typing:")
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
@ -1132,7 +1137,7 @@ if(NOT MATIO_FOUND OR MATIO_VERSION_STRING VERSION_LESS ${GNSSSDR_MATIO_MIN_VERS
message(" sudo apt-get install automake")
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
message(FATAL_ERROR "aclocal is required to build matio from source")
endif(EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
endif(EXISTS "/usr/bin/aclocal" OR EXISTS "/usr/bin/aclocal-1.16" OR EXISTS "/usr/bin/aclocal-1.15" OR EXISTS "/usr/bin/aclocal-1.14" OR EXISTS "/usr/bin/aclocal-1.13" OR EXISTS "/usr/bin/aclocal-1.11" OR EXISTS "/usr/bin/aclocal-1.10")
endif(OS_IS_LINUX)
find_package(HDF5)
if(HDF5_FOUND)
@ -1203,7 +1208,7 @@ if(ENABLE_UHD)
set(ENABLE_UHD OFF)
message(STATUS " The USRP Hardware Driver (UHD) signal source will not be built,")
message(STATUS " so all USRP-based front-ends will not be usable.")
message(STATUS " Please check http://files.ettus.com/manual/")
message(STATUS " Please check https://files.ettus.com/manual/")
else(NOT UHD_FOUND)
set(GR_REQUIRED_COMPONENTS UHD)
find_package(Gnuradio)
@ -1321,6 +1326,16 @@ else(ENABLE_CUDA)
message(STATUS "Enable it with 'cmake -DENABLE_CUDA=ON ../' to add support for GPU-based acceleration using CUDA." )
endif(ENABLE_CUDA)
###############################################################################
# CUSTOM UDP PACKET SOURCE (OPTIONAL)
###############################################################################
if(ENABLE_RAW_UDP)
message(STATUS "High-optimized custom UDP ip packet source will be enabled." )
message(STATUS "You can disable it with 'cmake -DENABLE_RAW_UDP=OFF ../'" )
else(ENABLE_RAW_UDP)
message(STATUS "High-optimized custom UDP ip packet source will be enabled." )
message(STATUS "You can disable it with 'cmake -DENABLE_RAW_UDP=OFF ../'" )
endif(ENABLE_RAW_UDP)
###############################################################################
@ -1430,7 +1445,7 @@ if(ENABLE_GPERFTOOLS)
endif(ENABLE_GPERFTOOLS)
if(ENABLE_GPERFTOOLS)
# Set GPerftools related flags if it is available
# See http://gperftools.googlecode.com/svn/trunk/README
# See https://github.com/gperftools/gperftools/blob/master/README
if(GPERFTOOLS_FOUND)
if(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)
set(MY_CXX_FLAGS "${MY_CXX_FLAGS} -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free")
@ -1455,7 +1470,6 @@ if(ENABLE_GPROF)
endif(ENABLE_GPROF)
########################################################################
# Set compiler flags
########################################################################
@ -1472,7 +1486,7 @@ if(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)
# set(MY_CXX_FLAGS "${MY_CXX_FLAGS} -std=c++17")
# endif(CMAKE_CXX_COMPILER_VERSION VERSION_LESS "8.0.0")
endif(CMAKE_CXX_COMPILER_VERSION VERSION_LESS "6.1.1")
set(MY_CXX_FLAGS "${MY_CXX_FLAGS} -Wall -Wextra") #Add warning flags: For "-Wall" see http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
set(MY_CXX_FLAGS "${MY_CXX_FLAGS} -Wall -Wextra") #Add warning flags: For "-Wall" see https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
endif(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)
# Support of C++17 is still not possible due to pm_remez.h (solved in GNU Radio 3.8)
@ -1515,7 +1529,7 @@ if(NOT (CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32) AND NOT (CMAKE_CXX_COMPILER_ID M
endif(NOT (CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32) AND NOT (CMAKE_CXX_COMPILER_ID MATCHES "Clang"))
# Processor-architecture related flags
# See http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html#i386-and-x86_002d64-Options
# See https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
if (NOT ARCH_COMPILER_FLAGS)
if(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)
if(OS_IS_MACOSX)
@ -1543,7 +1557,7 @@ set(MY_CXX_FLAGS "${MY_CXX_FLAGS} ${ARCH_COMPILER_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${MY_CXX_FLAGS}")
if(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)
#http://gcc.gnu.org/wiki/Visibility
# https://gcc.gnu.org/wiki/Visibility
add_definitions(-fvisibility=hidden)
endif(CMAKE_COMPILER_IS_GNUCXX AND NOT WIN32)

View File

@ -68,7 +68,7 @@ members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at [http://contributor-covenant.org/version/1/4][version]
available at [https://contributor-covenant.org/version/1/4][version]
[homepage]: http://contributor-covenant.org
[version]: http://contributor-covenant.org/version/1/4/
[homepage]: https://contributor-covenant.org
[version]: https://contributor-covenant.org/version/1/4/

View File

@ -128,7 +128,7 @@ $ git pull --rebase upstream next
### How to submit a pull request
Before submitting your code, please be sure to [apply clang-format](http://gnss-sdr.org/coding-style/#use-tools-for-automated-code-formatting).
Before submitting your code, please be sure to [apply clang-format](https://gnss-sdr.org/coding-style/#use-tools-for-automated-code-formatting).
When the contribution is ready, you can [submit a pull
request](https://github.com/gnss-sdr/gnss-sdr/compare/). Head to your
@ -146,24 +146,24 @@ accepted:
* Avoid platform-dependent code. If your code require external
dependencies, they must be available as packages in [Debian OldStable](https://wiki.debian.org/DebianOldStable).
* Write tests.
* Follow our [coding style guide](http://gnss-sdr.org/coding-style/).
* Follow our [coding style guide](https://gnss-sdr.org/coding-style/).
* Write a descriptive and detailed summary. Please consider that
reviewing pull requests is hard, so include as much information as
possible to make your pull request's intent clear.
For more details about Git usage, please check out [our
tutorial](http://gnss-sdr.org/docs/tutorials/using-git/).
tutorial](https://gnss-sdr.org/docs/tutorials/using-git/).
## Contributing to the website
The content of http://gnss-sdr.org lives in a GitHub repository at
The content of https://gnss-sdr.org lives in a GitHub repository at
https://github.com/gnss-sdr/geniuss-place
You can fork that repository, reproduce the entire website on your
computer using [Jekyll](https://jekyllrb.com/), do changes and submit
pull requests, just as explained above. For more details, please check
out [how to contribute](http://gnss-sdr.org/contribute/).
out [how to contribute](https://gnss-sdr.org/contribute/).
Last but not the least, you can leave your comments on the website.
@ -173,6 +173,6 @@ Last but not the least, you can leave your comments on the website.
![GeNiuSS
contributes](http://gnss-sdr.org/assets/images/geniuss-contribute.png)
contributes](https://gnss-sdr.org/assets/images/geniuss-contribute.png)
Thanks for your contribution to GNSS-SDR!

View File

@ -1,7 +1,7 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
@ -645,7 +645,7 @@ the "copyright" line and a pointer to where the full notice is found.
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
@ -664,11 +664,11 @@ might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
<https://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -5,22 +5,22 @@ tags:
- gnss
- gps
- Galileo
- Glonass
author:
- Carles Fernandez-Prades <carles.fernandez@cttc.es>
- Javier Arribas <javier.arribas@cttc.es>
- et altri (see AUTHORS file for a list of contributors)
copyright_owner:
- The Authors
dependencies: gnuradio (>= 3.7.3), armadillo, gflags, glog, gnutls
dependencies: gnuradio (>= 3.7.3), armadillo, gflags, glog, gnutls, matio
license: GPLv3+
repo: https://github.com/gnss-sdr/gnss-sdr
website: http://gnss-sdr.org
icon: http://a.fsdn.com/con/app/proj/gnss-sdr/screenshots/logo400x400.jpg
website: https://gnss-sdr.org
icon: https://raw.githubusercontent.com/gnss-sdr/gnss-sdr/master/docs/doxygen/images/gnss-sdr_logo.png
---
Global Navigation Satellite Systems receiver defined by software. It performs all the signal
processing from raw signal samples up to the computation of the Position-Velocity-Time solution,
including code and phase observables. It is able to work with raw data files or, if there is
computational power enough, in real time with suitable radiofrequency front-ends. This software
Global Navigation Satellite Systems receiver defined by software. It performs all the signal
processing from raw signal samples up to the computation of the Position-Velocity-Time solution,
including code and phase observables. It is able to work with raw data files or, if there is
computational power enough, in real time with suitable radiofrequency front-ends. This software
is mainly developed at [CTTC](http://www.cttc.es "Centre Tecnologic de Telecomunicacions de Catalunya")
with contributions from around the world. More info at [gnss-sdr.org](http://gnss-sdr.org "GNSS-SDR's Homepage").
with contributions from around the world. More info at [gnss-sdr.org](https://gnss-sdr.org "GNSS-SDR's Homepage").

141
README.md
View File

@ -1,4 +1,4 @@
[![](./docs/doxygen/images/gnss-sdr_logo.png)](http://gnss-sdr.org "GNSS-SDR website")
[![](./docs/doxygen/images/gnss-sdr_logo.png)](https://gnss-sdr.org "GNSS-SDR website")
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
@ -6,27 +6,27 @@
This program is a software-defined receiver which is able to process (that is, to perform detection, synchronization, demodulation and decoding of the navigation message, computation of observables and, finally, computation of position fixes) the following Global Navigation Satellite System's signals:
In the L1 band (centered at 1575.42 MHz):
- &#128752; GPS L1 C/A :white_check_mark:
- &#128752; Galileo E1b/c :white_check_mark:
- &#128752; GLONASS L1 C/A :white_check_mark:
In the L1 band:
- &#128752; GPS L1 C/A (centered at 1575.42 MHz) :white_check_mark:
- &#128752; Galileo E1b/c (centered at 1575.42 MHz) :white_check_mark:
- &#128752; GLONASS L1 C/A (centered at 1601.72 MHz) :white_check_mark:
In the L2 band (centered at 1227.60 MHz):
- &#128752; GPS L2C :white_check_mark:
- &#128752; GLONASS L2 C/A :white_check_mark:
In the L2 band:
- &#128752; GPS L2C (centered at 1227.60 MHz) :white_check_mark:
- &#128752; GLONASS L2 C/A (centered at 1246 MHz) :white_check_mark:
In the L5 band (centered at 1176.45 MHz):
- &#128752; GPS L5 :white_check_mark:
- &#128752; Galileo E5a :white_check_mark:
In the L5 band:
- &#128752; GPS L5 (centered at 1176.45 MHz) :white_check_mark:
- &#128752; Galileo E5a (centered at 1176.45 MHz) :white_check_mark:
GNSS-SDR provides interfaces for a wide range of radio frequency front-ends, generates processing outputs in standard formats, allows for the full inspection of the whole signal processing chain, and offers a framework for the development of new features. Please visit [http://gnss-sdr.org](http://gnss-sdr.org "GNSS-SDR website") for more information about this open source software-defined GNSS receiver.
GNSS-SDR provides interfaces for a wide range of radio frequency front-ends and raw sample file formats, generates processing outputs in standard formats, allows for the full inspection of the whole signal processing chain, and offers a framework for the development of new features. Please visit [https://gnss-sdr.org](https://gnss-sdr.org "GNSS-SDR website") for more information about this open source software-defined GNSS receiver.
# How to build GNSS-SDR
This section describes how to set up the compilation environment in GNU/Linux or [macOS / Mac OS X](#macosx), and to build GNSS-SDR. See also our [build and install page](http://gnss-sdr.org/build-and-install/ "GNSS-SDR's Build and Install").
This section describes how to set up the compilation environment in GNU/Linux or [macOS / Mac OS X](#macosx), and to build GNSS-SDR. See also our [build and install page](https://gnss-sdr.org/build-and-install/ "GNSS-SDR's Build and Install").
GNU/Linux
@ -64,7 +64,7 @@ $ sudo apt-get install build-essential cmake git libboost-dev libboost-date-time
libboost-system-dev libboost-filesystem-dev libboost-thread-dev libboost-chrono-dev \
libboost-serialization-dev liblog4cpp5-dev libuhd-dev gnuradio-dev gr-osmosdr \
libblas-dev liblapack-dev libarmadillo-dev libgflags-dev libgoogle-glog-dev \
libgnutls-openssl-dev python-mako python-six libmatio-dev googletest
libgnutls-openssl-dev libpcap-dev python-mako python-six libmatio-dev googletest
~~~~~~
Please note that `googletest` was named `libgtest-dev` in distributions older than Debian 9 "stretch" and Ubuntu 17.04 "zesty".
@ -85,7 +85,7 @@ $ sudo yum install make automake gcc gcc-c++ kernel-devel cmake git boost-devel
boost-date-time boost-system boost-filesystem boost-thread boost-chrono \
boost-serialization log4cpp-devel gnuradio-devel gr-osmosdr-devel \
blas-devel lapack-devel matio-devel armadillo-devel gflags-devel \
glog-devel openssl-devel python-mako python-six
glog-devel openssl-devel libpcap-devel python-mako python-six
~~~~~~
Once you have installed these packages, you can jump directly to [download the source code and build GNSS-SDR](#download-and-build-linux).
@ -102,7 +102,7 @@ $ sudo yum install make automake gcc gcc-c++ kernel-devel libtool \
hdf5-devel cmake git boost-devel boost-date-time boost-system \
boost-filesystem boost-thread boost-chrono boost-serialization \
log4cpp-devel gnuradio-devel gr-osmosdr-devel blas-devel lapack-devel \
armadillo-devel openssl-devel python-mako python-six
armadillo-devel openssl-devel libpcap-devel python-mako python-six
~~~~~~
Once you have installed these packages, you can jump directly to [download the source code and build GNSS-SDR](#download-and-build-linux).
@ -113,15 +113,15 @@ If you are using Arch Linux (with base-devel group installed):
~~~~~~
$ pacman -S cmake git boost boost-libs log4cpp libvolk gnuradio gnuradio-osmosdr \
blas lapack gflags google-glog gnutls openssl python2-mako python2-six \
libmatio gtest
blas lapack gflags google-glog openssl python2-mako python2-six \
libmatio libpcap gtest
~~~~~~
Once you have installed these packages, you can jump directly to [download the source code and build GNSS-SDR](#download-and-build-linux).
### Alternative 2: Install dependencies using PyBOMBS
This option is adequate if you are interested in development, in working with the most recent versions of software dependencies, want more fine tuning on the installed versions, or simply in building everything from the scratch just for the fun of it. In such cases, we recommend to use [PyBOMBS](http://gnuradio.org/pybombs "Python Build Overlay Managed Bundle System wiki") (Python Build Overlay Managed Bundle System), GNU Radio's meta-package manager tool that installs software from source, or whatever the local package manager is, that automatically does all the work for you. Please take a look at the configuration options and general PyBOMBS usage at https://github.com/gnuradio/pybombs. Here we provide a quick step-by-step tutorial.
This option is adequate if you are interested in development, in working with the most recent versions of software dependencies, want more fine tuning on the installed versions, or simply in building everything from the scratch just for the fun of it. In such cases, we recommend to use [PyBOMBS](https://github.com/gnuradio/pybombs "Python Build Overlay Managed Bundle System") (Python Build Overlay Managed Bundle System), GNU Radio's meta-package manager tool that installs software from source, or whatever the local package manager is, that automatically does all the work for you. Please take a look at the configuration options and general PyBOMBS usage at https://github.com/gnuradio/pybombs. Here we provide a quick step-by-step tutorial.
First of all, install some basic packages:
@ -182,18 +182,19 @@ or manually as explained below, and then please follow instructions on how to [d
#### Install [Armadillo](http://arma.sourceforge.net/ "Armadillo's Homepage"), a C++ linear algebra library:
~~~~~~
$ sudo apt-get install libopenblas-dev liblapack-dev # For Debian/Ubuntu/LinuxMint
$ sudo apt-get install libblas-dev liblapack-dev # For Debian/Ubuntu/LinuxMint
$ sudo yum install lapack-devel blas-devel # For Fedora/CentOS/RHEL
$ sudo zypper install lapack-devel blas-devel # For OpenSUSE
$ wget http://sourceforge.net/projects/arma/files/armadillo-8.500.0.tar.xz
$ tar xvfz armadillo-8.500.0.tar.xz
$ cd armadillo-8.500.0
$ sudo pacman -S blas lapack # For Arch Linux
$ wget https://sourceforge.net/projects/arma/files/armadillo-8.500.1.tar.xz
$ tar xvfz armadillo-8.500.1.tar.xz
$ cd armadillo-8.500.1
$ cmake .
$ make
$ sudo make install
~~~~~~
The full stop separated from ```cmake``` by a space is important. [CMake](http://www.cmake.org/ "CMake's Homepage") will figure out what other libraries are currently installed and will modify Armadillo's configuration correspondingly. CMake will also generate a run-time armadillo library, which is a combined alias for all the relevant libraries present on your system (eg. BLAS, LAPACK and ATLAS).
The full stop separated from ```cmake``` by a space is important. [CMake](https://cmake.org/ "CMake's Homepage") will figure out what other libraries are currently installed and will modify Armadillo's configuration correspondingly. CMake will also generate a run-time armadillo library, which is a combined alias for all the relevant libraries present on your system (eg. BLAS, LAPACK and ATLAS).
@ -245,11 +246,13 @@ changing `/home/username/googletest-release-1.8.0/googletest` by the actual dire
#### Install the [GnuTLS](http://www.gnutls.org/ "GnuTLS's Homepage") or [OpenSSL](https://www.openssl.org/ "OpenSSL's Homepage") libraries:
#### Install the [GnuTLS](https://www.gnutls.org/ "GnuTLS's Homepage") or [OpenSSL](https://www.openssl.org/ "OpenSSL's Homepage") libraries:
~~~~~~
$ sudo apt-get install libgnutls-openssl-dev # For Debian/Ubuntu/LinuxMint
$ sudo yum install openssl-devel # For Fedora/CentOS/RHEL
$ sudo zypper install openssl-devel # For OpenSUSE
$ sudo pacman -S openssl # For Arch Linux
~~~~~~
In case the GnuTLS library with openssl extensions package is not available in your GNU/Linux distribution, GNSS-SDR can also work well with OpenSSL.
@ -286,7 +289,7 @@ By default, you will be in the 'master' branch of the Git repository, which corr
$ git checkout next
~~~~~~
More information about GNSS-SDR-specific Git usage and pointers to further readings can be found at our [Git tutorial](http://gnss-sdr.org/docs/tutorials/using-git/ "Using Git").
More information about GNSS-SDR-specific Git usage and pointers to further readings can be found at our [Git tutorial](https://gnss-sdr.org/docs/tutorials/using-git/ "Using Git").
### Build and install GNSS-SDR
@ -507,7 +510,7 @@ $ sudo make install
Using this option, all SIMD instructions are exclusively accessed via VOLK, which automatically includes versions of each function for different SIMD instruction sets, then detects at runtime which to use, or if there are none, substitutes a generic, non-SIMD implementation.
More details can be found in our tutorial about [GNSS-SDR configuration options at building time](http://gnss-sdr.org/docs/tutorials/using-git/ "Configuration options at building time").
More details can be found in our tutorial about [GNSS-SDR configuration options at building time](https://gnss-sdr.org/docs/tutorials/using-git/ "Configuration options at building time").
<a name="macosx">macOS and Mac OS X</a>
@ -516,7 +519,7 @@ More details can be found in our tutorial about [GNSS-SDR configuration options
### macOS 10.13 (High Sierra) and 10.12 (Sierra), Mac OS X 10.11 (El Capitan), 10.10 (Yosemite) and 10.9 (Mavericks).
If you still have not installed [Xcode](http://developer.apple.com/xcode/ "Xcode"), do it now from the App Store (it's free). You will also need the Xcode Command Line Tools. Launch the Terminal, found in /Applications/Utilities/, and type:
If you still have not installed [Xcode](https://developer.apple.com/xcode/ "Xcode"), do it now from the App Store (it's free). You will also need the Xcode Command Line Tools. Launch the Terminal, found in /Applications/Utilities/, and type:
~~~~~~
$ xcode-select --install
@ -532,7 +535,7 @@ Software pre-requisites can be installed using either [Macports](#macports) or [
#### <a name="macports">Macports</a>
First, [install Macports](http://www.macports.org/install.php). If you are upgrading from a previous installation, please follow the [migration rules](http://trac.macports.org/wiki/Migration).
First, [install Macports](https://www.macports.org/install.php). If you are upgrading from a previous installation, please follow the [migration rules](https://trac.macports.org/wiki/Migration).
In a terminal, type:
@ -625,7 +628,7 @@ GNSS-SDR comes with a library which is a module of the Vector-Optimized Library
###### Other package managers
GNU Radio and other dependencies can also be installed using other package managers than Macports, such as [Fink](http://www.finkproject.org/ "Fink") or [Homebrew](http://brew.sh/ "Homebrew"). Since the version of Python that ships with OS X is great for learning but it is not good for development, you could have another Python executable in a non-standard location. If that is the case, you need to inform GNSS-SDR's configuration system by defining the `PYTHON_EXECUTABLE` variable as:
GNU Radio and other dependencies can also be installed using other package managers than Macports, such as [Fink](http://www.finkproject.org/ "Fink") or [Homebrew](https://brew.sh/ "Homebrew"). Since the version of Python that ships with OS X is great for learning but it is not good for development, you could have another Python executable in a non-standard location. If that is the case, you need to inform GNSS-SDR's configuration system by defining the `PYTHON_EXECUTABLE` variable as:
~~~~~~
cmake -DPYTHON_EXECUTABLE=/path/to/bin/python ../
@ -646,9 +649,9 @@ Other builds
---------
* **Docker container**: A technology providing operating-system-level virtualization to build, ship, and run distributed applications, whether on laptops, data center VMs, or the cloud. Visit [https://github.com/carlesfernandez/docker-gnsssdr](https://github.com/carlesfernandez/docker-gnsssdr) or [https://github.com/carlesfernandez/docker-pybombs-gnsssdr](https://github.com/carlesfernandez/docker-pybombs-gnsssdr) for instructions.
* **Snap packages**: [Snaps](http://snapcraft.io) are universal Linux packages aimed to work on any distribution or device, from IoT devices to servers, desktops to mobile devices. Visit [https://github.com/carlesfernandez/snapcraft-sandbox](https://github.com/carlesfernandez/snapcraft-sandbox) for instructions.
* **Snap packages**: [Snaps](https://snapcraft.io) are universal Linux packages aimed to work on any distribution or device, from IoT devices to servers, desktops to mobile devices. Visit [https://github.com/carlesfernandez/snapcraft-sandbox](https://github.com/carlesfernandez/snapcraft-sandbox) for instructions.
* **GNSS-SDR in embedded platforms**: we provide a Software Development Kit (SDK) based on [OpenEmbedded](http://www.openembedded.org/wiki/Main_Page) for cross-compiling GNSS-SDR in your desktop computer and for producing executables that can run in embedded platforms, such as a Zedboard or a Raspberry Pi 3. Visit [Cross-compiling GNSS-SDR](http://gnss-sdr.org/docs/tutorials/cross-compiling/) for instructions.
* **GNSS-SDR in embedded platforms**: we provide a Software Development Kit (SDK) based on [OpenEmbedded](http://www.openembedded.org/wiki/Main_Page) for cross-compiling GNSS-SDR in your desktop computer and for producing executables that can run in embedded platforms, such as a Zedboard or a Raspberry Pi 3. Visit [Cross-compiling GNSS-SDR](https://gnss-sdr.org/docs/tutorials/cross-compiling/) for instructions.
Updating GNSS-SDR
@ -680,9 +683,9 @@ Before rebuilding the source code, it is safe (and recommended) to remove the re
$ rm -rf gnss-sdr/build/*
~~~~~~
If you are interested in contributing to the development of GNSS-SDR, please check out [how to do it](http://gnss-sdr.org/contribute/ "How to contribute to GNSS-SDR source code").
If you are interested in contributing to the development of GNSS-SDR, please check out [how to do it](https://gnss-sdr.org/contribute/ "How to contribute to GNSS-SDR source code").
There is a more controlled way to upgrade your repository, which is to use the Git commands ```fetch``` and ```merge```, as described in our [Git Tutorial](http://gnss-sdr.org/docs/tutorials/using-git/ "Using Git").
There is a more controlled way to upgrade your repository, which is to use the Git commands ```fetch``` and ```merge```, as described in our [Git Tutorial](https://gnss-sdr.org/docs/tutorials/using-git/ "Using Git").
@ -694,11 +697,11 @@ Getting started
1. After building the code, you will find the ```gnss-sdr``` executable file at gnss-sdr/install. You can make it available everywhere else by ```sudo make install```. Run the profilers ```volk_profile``` and ```volk_gnsssdr_profile``` for testing all available VOLK kernels for each architecture supported by your processor. This only has to be done once.
2. In post-processing mode, you have to provide a captured GNSS signal file.
1. The signal file can be easily recorded using the GNU Radio file sink in ```gr_complex<float>``` mode.
2. You will need a GPS active antenna, a [USRP](http://www.ettus.com/product) and a suitable USRP daughter board to receive GPS L1 C/A signals. GNSS-SDR require to have at least 2 MHz of bandwidth in 1.57542 GHz. (remember to enable the DC bias with the daughter board jumper).
2. You will need a GPS active antenna, a [USRP](https://www.ettus.com/product) and a suitable USRP daughter board to receive GPS L1 C/A signals. GNSS-SDR require to have at least 2 MHz of bandwidth in 1.57542 GHz. (remember to enable the DC bias with the daughter board jumper).
We use a [DBSRX2](https://www.ettus.com/product/details/DBSRX2) to do the task, but you can try the newer Ettus' daughter boards as well.
3. The easiest way to capture a signal file is to use the GNU Radio Companion GUI. Only two blocks are needed: a USRP signal source connected to complex float file sink. You need to tune the USRP central frequency and decimation factor using USRP signal source properties box. We suggest using a decimation factor of 20 if you use the USRP2. This will give you 100/20 = 5 MSPS which will be enough to receive GPS L1 C/A signals. The front-end gain should also be configured. In our test with the DBSRX2 we obtained good results with ```G=50```.
4. Capture at least 80 seconds of signal in open sky conditions. During the process, be aware of USRP driver buffer underruns messages. If your hard disk is not fast enough to write data at this speed you can capture to a virtual RAM drive. 80 seconds of signal at 5 MSPS occupies less than 3 Gbytes using ```gr_complex<float>```.
5. If you have no access to an RF front-end, you can download a sample raw data file (that contains GPS and Galileo signals) from [here](http://sourceforge.net/projects/gnss-sdr/files/data/).
5. If you have no access to an RF front-end, you can download a sample raw data file (that contains GPS and Galileo signals) from [here](https://sourceforge.net/projects/gnss-sdr/files/data/).
3. You are ready to configure the receiver to use your captured file among other parameters:
1. The default configuration file resides at [/usr/local/share/gnss-sdr/conf/default.conf](./conf/gnss-sdr.conf).
2. You need to review/modify at least the following settings:
@ -712,7 +715,7 @@ We use a [DBSRX2](https://www.ettus.com/product/details/DBSRX2) to do the task,
```$ gnss-sdr --config_file=/path/to/my_receiver.conf```
The program reports the current status in text mode, directly to the terminal window. If all goes well, and GNSS-SDR is able to successfully track and decode at least 4 satellites, you will get PVT fixes. The program will write .kml, .geojson and RINEX files in the folder from which ```gnss-sdr``` was run. In addition to the console output, GNSS-SDR also writes log files at /tmp/ (configurable with the commandline flag ```./gnss-sdr --log_dir=/path/to/log```).
For more information, check out our [quick start guide](http://gnss-sdr.org/quick-start-guide/).
For more information, check out our [quick start guide](https://gnss-sdr.org/quick-start-guide/).
Using GNSS-SDR
@ -764,7 +767,7 @@ The name of these parameters can be anything but one reserved word: implementati
SignalConditioner.implementation=Pass_Through
~~~~~~
Since the configuration is just a set of property names and values without any meaning or syntax, the system is very versatile and easily extendable. Adding new properties to the system only implies modifications in the classes that will make use of these properties. In addition, the configuration files are not checked against any strict syntax so it is always in a correct status (as long as it contains pairs of property names and values in the [INI format](http://en.wikipedia.org/wiki/INI_file)).
Since the configuration is just a set of property names and values without any meaning or syntax, the system is very versatile and easily extendable. Adding new properties to the system only implies modifications in the classes that will make use of these properties. In addition, the configuration files are not checked against any strict syntax so it is always in a correct status (as long as it contains pairs of property names and values in the [INI format](https://en.wikipedia.org/wiki/INI_file)).
@ -772,7 +775,7 @@ Since the configuration is just a set of property names and values without any m
Hence, the application defines a simple accessor class to fetch the configuration pairs of values and passes them to a factory class called [GNSSBlockFactory](./src/core/receiver/gnss_block_factory.h). This factory decides, according to the configuration, which class needs to be instantiated and which parameters should be passed to the constructor. Hence, the factory encapsulates the complexity of blocks' instantiation. With that approach, adding a new block that requires new parameters will be as simple as adding the block class and modifying the factory to be able to instantiate it. This loose coupling between the blocks' implementations and the syntax of the configuration enables extending the application capacities in a high degree. It also allows producing fully customized receivers, for instance a testbed for acquisition algorithms, and to place observers at any point of the receiver chain.
More information can be found at the [Control Plane page](http://gnss-sdr.org/docs/control-plane/).
More information can be found at the [Control Plane page](https://gnss-sdr.org/docs/control-plane/).
Signal Processing plane
@ -800,7 +803,7 @@ Internally, GNSS-SDR makes use of the complex data types defined by [VOLK](http:
- **`gr_complex`**: Complex samples, with real and imaginary parts of type `float`. C++ type name: `std::complex<float>`.
More information about the available processing blocks and their configuration parameters can be found at the [Signal Processing Blocks documentation page](http://gnss-sdr.org/docs/sp-blocks/).
More information about the available processing blocks and their configuration parameters can be found at the [Signal Processing Blocks documentation page](https://gnss-sdr.org/docs/sp-blocks/).
### Signal Source
@ -875,7 +878,7 @@ SignalSource.big_endian_bytes=false
***Example: UHD Signal Source***
The user may prefer to use a [UHD](http://code.ettus.com/redmine/ettus/projects/uhd/wiki)-compatible RF front-end and try real-time processing. For instance, for a USRP1 + DBSRX daughterboard, use:
The user may prefer to use a [UHD](https://files.ettus.com/manual/)-compatible RF front-end and try real-time processing. For instance, for a USRP1 + DBSRX daughterboard, use:
~~~~~~
;######### SIGNAL_SOURCE CONFIG ############
@ -994,7 +997,7 @@ SignalSource.dump1=false
~~~~~~
More documentation and examples are available at the [Signal Source Blocks page](http://gnss-sdr.org/docs/sp-blocks/signal-source/).
More documentation and examples are available at the [Signal Source Blocks page](https://gnss-sdr.org/docs/sp-blocks/signal-source/).
### Signal Conditioner
@ -1015,7 +1018,7 @@ If you need to adapt some aspect of your signal, you can enable the Signal Condi
SignalConditioner.implementation=Signal_Conditioner
~~~~~~
More documentation at the [Signal Conditioner Blocks page](http://gnss-sdr.org/docs/sp-blocks/signal-conditioner/).
More documentation at the [Signal Conditioner Blocks page](https://gnss-sdr.org/docs/sp-blocks/signal-conditioner/).
#### Data type adapter
@ -1027,11 +1030,11 @@ This block changes the type of input data samples. If your signal source deliver
DataTypeAdapter.implementation=Ishort_To_Complex
~~~~~~
More documentation at the [Data Type Adapter Blocks page](http://gnss-sdr.org/docs/sp-blocks/data-type-adapter/).
More documentation at the [Data Type Adapter Blocks page](https://gnss-sdr.org/docs/sp-blocks/data-type-adapter/).
#### Input filter
This block filters the input data. It can be combined with frequency translation for IF signals. The computation of the filter taps is based on parameters of GNU Radio's function [pm_remez](http://gnuradio.org/doc/doxygen/pm__remez_8h.html), that calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, the desired response on those bands, and the weight given to the error in those bands.
This block filters the input data. It can be combined with frequency translation for IF signals. The computation of the filter taps is based on parameters of GNU Radio's function [pm_remez](https://gnuradio.org/doc/doxygen/pm__remez_8h.html), that calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, the desired response on those bands, and the weight given to the error in those bands.
The block can be configured like this:
@ -1082,7 +1085,7 @@ InputFilter.IF=0
InputFilter.decimation_factor=1
~~~~~~
More documentation at the [Input Filter Blocks page](http://gnss-sdr.org/docs/sp-blocks/input-filter/).
More documentation at the [Input Filter Blocks page](https://gnss-sdr.org/docs/sp-blocks/input-filter/).
#### Resampler
@ -1100,7 +1103,7 @@ Resampler.sample_freq_in=8000000 ; sample frequency of the input signal
Resampler.sample_freq_out=4000000 ; desired sample frequency of the output signal
~~~~~~
More documentation at the [Resampler Blocks page](http://gnss-sdr.org/docs/sp-blocks/resampler/).
More documentation at the [Resampler Blocks page](https://gnss-sdr.org/docs/sp-blocks/resampler/).
### Channel
@ -1150,13 +1153,13 @@ This module is also in charge of managing the interplay between acquisition and
The abstract class [ChannelInterface](./src/core/interfaces/channel_interface.h) represents an interface to a channel GNSS block. Check [Channel](./src/algorithms/channel/adapters/channel.h) for an actual implementation.
More documentation at the [Channels page](http://gnss-sdr.org/docs/sp-blocks/channels/).
More documentation at the [Channels page](https://gnss-sdr.org/docs/sp-blocks/channels/).
#### Acquisition
The first task of a GNSS receiver is to detect the presence or absence of in-view satellites. This is done by the acquisition system process, which also provides a coarse estimation of two signal parameters: the frequency shift with respect to the nominal IF frequency, and a delay term which allows the receiver to create a local code aligned with the incoming code. [AcquisitionInterface](./src/core/interfaces/acquisition_interface.h) is the common interface for all the acquisition algorithms and their corresponding implementations. Algorithms' interface, that may vary depending on the use of information external to the receiver, such as in Assisted GNSS, is defined in classes referred to as *adapters*. These adapters wrap the GNU Radio blocks interface into a compatible interface expected by AcquisitionInterface. This allows the use of existing GNU Radio blocks derived from ```gr::block```, and ensures that newly developed implementations will also be reusable in other GNU Radio-based applications. Moreover, it adds still another layer of abstraction, since each given acquisition algorithm can have different implementations (for instance using different numerical libraries). In such a way, implementations can be continuously improved without having any impact neither on the algorithm interface nor the general acquisition interface.
The first task of a GNSS receiver is to detect the presence or absence of in-view satellites. This is done by the acquisition system process, which also provides a coarse estimation of two signal parameters: the frequency shift with respect to the nominal frequency, and a delay term which allows the receiver to create a local code aligned with the incoming code. [AcquisitionInterface](./src/core/interfaces/acquisition_interface.h) is the common interface for all the acquisition algorithms and their corresponding implementations. Algorithms' interface, that may vary depending on the use of information external to the receiver, such as in Assisted GNSS, is defined in classes referred to as *adapters*. These adapters wrap the GNU Radio blocks interface into a compatible interface expected by AcquisitionInterface. This allows the use of existing GNU Radio blocks derived from ```gr::block```, and ensures that newly developed implementations will also be reusable in other GNU Radio-based applications. Moreover, it adds still another layer of abstraction, since each given acquisition algorithm can have different implementations (for instance using different numerical libraries). In such a way, implementations can be continuously improved without having any impact neither on the algorithm interface nor the general acquisition interface.
Check [GpsL1CaPcpsAcquisition](./src/algorithms/acquisition/adapters/gps_l1_ca_pcps_acquisition.h) and [GalileoE1PcpsAmbiguousAcquisition](./src/algorithms/acquisition/adapters/galileo_e1_pcps_ambiguous_acquisition.h) for examples of adapters from a Parallel Code Phase Search (PCPS) acquisition block, and [pcps_acquisition_cc](./src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_cc.h) for an example of a block implementation. The source code of all the available acquisition algorithms is located at:
@ -1169,14 +1172,13 @@ Check [GpsL1CaPcpsAcquisition](./src/algorithms/acquisition/adapters/gps_l1_ca_p
|---------gnuradio_blocks <- Signal processing blocks implementation
~~~~~~
The user can select a given implementation for the algorithm to be used in each receiver channel, as well as their parameters, in the configuration file. For a GPS l1 C/A receiver:
The user can select a given implementation for the algorithm to be used in each receiver channel, as well as their parameters, in the configuration file. For a GPS L1 C/A receiver:
~~~~~~
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition ; Acquisition algorithm selection for this channel
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0 ; Signal intermediate frequency in [Hz]
Acquisition_1C.sampled_ms=1 ; Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1 ; Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.threshold=0.005 ; Acquisition threshold
Acquisition_1C.pfa=0.0001 ; Acquisition false alarm probability. This option overrides the threshold option.
; Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
@ -1192,8 +1194,7 @@ and, for Galileo E1B channels:
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
Acquisition_1B.item_type=gr_complex
Acquisition_1B.if=0
Acquisition_1B.sampled_ms=4
Acquisition_1B.coherent_integration_time_ms=4
Acquisition_1B.pfa=0.0000008
Acquisition_1B.doppler_max=15000
Acquisition_1B.doppler_step=125
@ -1201,7 +1202,7 @@ Acquisition_1B.dump=false
Acquisition_1B.dump_filename=./acq_dump.dat
~~~~~~
More documentation at the [Acquisition Blocks page](http://gnss-sdr.org/docs/sp-blocks/acquisition/).
More documentation at the [Acquisition Blocks page](https://gnss-sdr.org/docs/sp-blocks/acquisition/).
#### Tracking
@ -1251,7 +1252,7 @@ Tracking_1B.dump=false
Tracking_1B.dump_filename=../data/veml_tracking_ch_
~~~~~~
More documentation at the [Tracking Blocks page](http://gnss-sdr.org/docs/sp-blocks/tracking/).
More documentation at the [Tracking Blocks page](https://gnss-sdr.org/docs/sp-blocks/tracking/).
#### Decoding of the navigation message
@ -1279,7 +1280,7 @@ TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
~~~~~~
More documentation at the [Telemetry Decoder Blocks page](http://gnss-sdr.org/docs/sp-blocks/telemetry-decoder/).
More documentation at the [Telemetry Decoder Blocks page](https://gnss-sdr.org/docs/sp-blocks/telemetry-decoder/).
#### Observables
@ -1297,11 +1298,11 @@ Observables.dump=false
Observables.dump_filename=./observables.dat
~~~~~~
More documentation at the [Observables Blocks page](http://gnss-sdr.org/docs/sp-blocks/observables/).
More documentation at the [Observables Blocks page](https://gnss-sdr.org/docs/sp-blocks/observables/).
#### Computation of Position, Velocity and Time
Although data processing for obtaining high-accuracy PVT solutions is out of the scope of GNSS-SDR, we provide a module that can compute simple least square solutions (stored in GIS-friendly formats such as [GeoJSON](http://geojson.org/geojson-spec.html) and [KML](http://www.opengeospatial.org/standards/kml), or transmitted via serial port as [NMEA 0183](https://en.wikipedia.org/wiki/NMEA_0183) messages), and leaves room for more sophisticated positioning methods by storing observables and navigation data in [RINEX](https://en.wikipedia.org/wiki/RINEX) files (v2.11 or v3.02), and generating [RTCM](http://www.rtcm.org "Radio Technical Commission for Maritime Services") 3.2 messages that can be disseminated through the Internet in real time.
Although data processing for obtaining high-accuracy PVT solutions is out of the scope of GNSS-SDR, we provide a module that can compute position fixes (stored in GIS-friendly formats such as [GeoJSON](https://tools.ietf.org/html/rfc7946), [GPX](http://www.topografix.com/gpx.asp) and [KML](http://www.opengeospatial.org/standards/kml), or transmitted via serial port as [NMEA 0183](https://en.wikipedia.org/wiki/NMEA_0183) messages), and leaves room for more sophisticated positioning methods by storing observables and navigation data in [RINEX](https://en.wikipedia.org/wiki/RINEX) files (v2.11 or v3.02), and generating [RTCM](http://www.rtcm.org "Radio Technical Commission for Maritime Services") 3.2 messages that can be disseminated through the Internet in real time.
The common interface is [PvtInterface](./src/core/interfaces/pvt_interface.h).
@ -1332,18 +1333,20 @@ PVT.rtcm_MT1077_rate_ms=1000
**Notes on the output formats:**
* **GeoJSON** is a geospatial data interchange format based on JavaScript Object Notation (JSON) supported by numerous mapping and GIS software packages, including [OpenLayers](http://openlayers.org), [Leaflet](http://leafletjs.com), [MapServer](http://www.mapserver.org), [GeoServer](http://geoserver.org), [GeoDjango](https://www.djangoproject.com), [GDAL](http://www.gdal.org), and [CartoDB](https://cartodb.com). It is also possible to use GeoJSON with [PostGIS](http://postgis.net) and [Mapnik](http://mapnik.org), both of which handle the format via the GDAL OGR conversion library. The [Google Maps Javascript API](https://developers.google.com/maps/documentation/javascript/) v3 directly supports the [integration of GeoJSON data layers](https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple), and [GitHub also supports GeoJSON rendering](https://github.com/blog/1528-there-s-a-map-for-that).
* **GeoJSON** is a geospatial data interchange format based on JavaScript Object Notation (JSON) supported by numerous mapping and GIS software packages, including [OpenLayers](https://openlayers.org), [Leaflet](https://leafletjs.com), [MapServer](http://www.mapserver.org), [GeoServer](http://geoserver.org), [GeoDjango](https://www.djangoproject.com), [GDAL](http://www.gdal.org), and [CartoDB](https://cartodb.com). It is also possible to use GeoJSON with [PostGIS](https://postgis.net/) and [Mapnik](http://mapnik.org), both of which handle the format via the GDAL OGR conversion library. The [Google Maps Javascript API](https://developers.google.com/maps/documentation/javascript/) v3 directly supports the [integration of GeoJSON data layers](https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple), and [GitHub also supports GeoJSON rendering](https://github.com/blog/1528-there-s-a-map-for-that).
* **KML** (Keyhole Markup Language) is an XML grammar used to encode and transport representations of geographic data for display in an earth browser. KML is an open standard officially named the OpenGIS KML Encoding Standard (OGC KML), and it is maintained by the Open Geospatial Consortium, Inc. (OGC). KML files can be displayed in geobrowsers such as [Google Earth](https://www.google.com/earth/), [Marble](https://marble.kde.org), [osgEarth](http://osgearth.org), or used with the [NASA World Wind SDK for Java](http://worldwind.arc.nasa.gov/java/).
* **KML** (Keyhole Markup Language) is an XML grammar used to encode and transport representations of geographic data for display in an earth browser. KML is an open standard officially named the OpenGIS KML Encoding Standard (OGC KML), and it is maintained by the Open Geospatial Consortium, Inc. (OGC). KML files can be displayed in geobrowsers such as [Google Earth](https://www.google.com/earth/), [Marble](https://marble.kde.org), [osgEarth](http://osgearth.org), or used with the [NASA World Wind SDK for Java](https://worldwind.arc.nasa.gov/java/).
* **NMEA 0183** is a combined electrical and data specification for communication between marine electronics such as echo sounder, sonars, anemometer, gyrocompass, autopilot, GPS receivers and many other types of instruments. It has been defined by, and is controlled by, the U.S. [National Marine Electronics Association](http://www.nmea.org/). The NMEA 0183 standard uses a simple ASCII, serial communications protocol that defines how data are transmitted in a *sentence* from one *talker* to multiple *listeners* at a time. Through the use of intermediate expanders, a talker can have a unidirectional conversation with a nearly unlimited number of listeners, and using multiplexers, multiple sensors can talk to a single computer port. At the application layer, the standard also defines the contents of each sentence (message) type, so that all listeners can parse messages accurately. Those messages can be sent through the serial port (that could be for instance a Bluetooth link) and be used/displayed by a number of software applications such as [gpsd](http://www.catb.org/gpsd/ "The UNIX GPS daemon"), [JOSM](https://josm.openstreetmap.de/ "The Java OpenStreetMap Editor"), [OpenCPN](http://opencpn.org/ocpn/ "Open Chart Plotter Navigator"), and many others (and maybe running on other devices).
* **GPX** (the GPS Exchange Format) is a light-weight XML data format for the interchange of GPS data (waypoints, routes, and tracks) between applications and Web services on the Internet. The format is open and can be used without the need to pay license fees, and it is supported by a [large list of software tools](http://www.topografix.com/gpx_resources.asp).
* **NMEA 0183** is a combined electrical and data specification for communication between marine electronics such as echo sounder, sonars, anemometer, gyrocompass, autopilot, GPS receivers and many other types of instruments. It has been defined by, and is controlled by, the U.S. [National Marine Electronics Association](http://www.nmea.org/). The NMEA 0183 standard uses a simple ASCII, serial communications protocol that defines how data are transmitted in a *sentence* from one *talker* to multiple *listeners* at a time. Through the use of intermediate expanders, a talker can have a unidirectional conversation with a nearly unlimited number of listeners, and using multiplexers, multiple sensors can talk to a single computer port. At the application layer, the standard also defines the contents of each sentence (message) type, so that all listeners can parse messages accurately. Those messages can be sent through the serial port (that could be for instance a Bluetooth link) and be used/displayed by a number of software applications such as [gpsd](http://www.catb.org/gpsd/ "The UNIX GPS daemon"), [JOSM](https://josm.openstreetmap.de/ "The Java OpenStreetMap Editor"), [OpenCPN](https://opencpn.org/ "Open Chart Plotter Navigator"), and many others (and maybe running on other devices).
* **RINEX** (Receiver Independent Exchange Format) is an interchange format for raw satellite navigation system data, covering observables and the information contained in the navigation message broadcast by GNSS satellites. This allows the user to post-process the received data to produce a more accurate result (usually with other data unknown to the original receiver, such as better models of the atmospheric conditions at time of measurement). RINEX files can be used by software packages such as [GPSTk](http://www.gpstk.org), [RTKLIB](http://www.rtklib.com/) and [gLAB](http://gage14.upc.es/gLAB/). GNSS-SDR by default generates RINEX version [3.02](https://igscb.jpl.nasa.gov/igscb/data/format/rinex302.pdf). If [2.11](https://igscb.jpl.nasa.gov/igscb/data/format/rinex211.txt) is needed, it can be requested through the `rinex_version` parameter in the configuration file:
~~~~~~
PVT.rinex_version=2
~~~~~~
* **RTCM SC-104** provides standards that define the data structure for differential GNSS correction information for a variety of differential correction applications. Developed by the Radio Technical Commission for Maritime Services ([RTCM](http://www.rtcm.org/overview.php#Standards "Radio Technical Commission for Maritime Services")), they have become an industry standard for communication of correction information. GNSS-SDR implements RTCM version 3.2, defined in the document *RTCM 10403.2, Differential GNSS (Global Navigation Satellite Systems) Services - Version 3* (February 1, 2013), which can be [purchased online](https://ssl29.pair.com/dmarkle/puborder.php?show=3 "RTCM Online Publication Order Form"). By default, the generated RTCM binary messages are dumped into a text file in hexadecimal format. However, GNSS-SDR is equipped with a TCP/IP server, acting as an NTRIP source that can feed an NTRIP server. NTRIP (Networked Transport of RTCM via Internet Protocol) is an open standard protocol that can be freely downloaded from [BKG](http://igs.bkg.bund.de/root_ftp/NTRIP/documentation/NtripDocumentation.pdf "Networked Transport of RTCM via Internet Protocol (Ntrip) Version 1.0"), and it is designed for disseminating differential correction data (*e.g.* in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet. The TCP/IP server can be enabled by setting ```PVT.flag_rtcm_server=true``` in the configuration file, and will be active during the execution of the software receiver. By default, the server will operate on port 2101 (which is the recommended port for RTCM services according to the Internet Assigned Numbers Authority, [IANA](http://www.iana.org/assignments/service-names-port-numbers "Service Name and Transport Protocol Port Number Registry")), and will identify the Reference Station with ID=1234. This behaviour can be changed in the configuration file:
* **RTCM SC-104** provides standards that define the data structure for differential GNSS correction information for a variety of differential correction applications. Developed by the Radio Technical Commission for Maritime Services ([RTCM](http://www.rtcm.org/differential-global-navigation-satellite--dgnss--standards.html "Radio Technical Commission for Maritime Services")), they have become an industry standard for communication of correction information. GNSS-SDR implements RTCM version 3.2, defined in the document *RTCM 10403.2, Differential GNSS (Global Navigation Satellite Systems) Services - Version 3* (February 1, 2013), which can be [purchased online](https://ssl29.pair.com/dmarkle/puborder.php?show=3 "RTCM Online Publication Order Form"). By default, the generated RTCM binary messages are dumped into a text file in hexadecimal format. However, GNSS-SDR is equipped with a TCP/IP server, acting as an NTRIP source that can feed an NTRIP server. NTRIP (Networked Transport of RTCM via Internet Protocol) is an open standard protocol that can be freely downloaded from [BKG](https://igs.bkg.bund.de/root_ftp/NTRIP/documentation/NtripDocumentation.pdf "Networked Transport of RTCM via Internet Protocol (Ntrip) Version 1.0"), and it is designed for disseminating differential correction data (*e.g.* in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet. The TCP/IP server can be enabled by setting ```PVT.flag_rtcm_server=true``` in the configuration file, and will be active during the execution of the software receiver. By default, the server will operate on port 2101 (which is the recommended port for RTCM services according to the Internet Assigned Numbers Authority, [IANA](https://www.iana.org/assignments/service-names-port-numbers/ "Service Name and Transport Protocol Port Number Registry")), and will identify the Reference Station with ID=1234. This behaviour can be changed in the configuration file:
~~~~~~
PVT.flag_rtcm_server=true
PVT.rtcm_tcp_port=2102
@ -1354,13 +1357,13 @@ PVT.rtcm_station_id=1111
In order to get well-formatted GeoJSON, KML and RINEX files, always terminate ```gnss-sdr``` execution by pressing key ```q``` and then key ```ENTER```. Those files will be automatically deleted if no position fix have been obtained during the execution of the software receiver.
More documentation at the [PVT Blocks page](http://gnss-sdr.org/docs/sp-blocks/pvt/).
More documentation at the [PVT Blocks page](https://gnss-sdr.org/docs/sp-blocks/pvt/).
About the software license
==========================
GNSS-SDR is released under the [General Public License (GPL) v3](http://www.gnu.org/licenses/gpl.html), thus securing practical usability, inspection, and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals. The GPL implies that:
GNSS-SDR is released under the [General Public License (GPL) v3](https://www.gnu.org/licenses/gpl.html), thus securing practical usability, inspection, and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals. The GPL implies that:
1. Copies may be distributed free of charge or for money, but the source code has to be shipped or provided free of charge (or at cost price) on demand. The receiver of the source code has the same rights meaning he can share copies free of charge or resell.
2. The licensed material may be analyzed or modified.
@ -1393,7 +1396,7 @@ For LaTeX users, this is the BibTeX entry for your convenience:
~~~~~~
There is a list of papers related to GNSS-SDR in our [publications page](http://gnss-sdr.org/publications/ "Publications").
There is a list of papers related to GNSS-SDR in our [publications page](https://gnss-sdr.org/publications/ "Publications").
@ -1402,11 +1405,11 @@ Ok, now what?
In order to start using GNSS-SDR, you may want to populate ```gnss-sdr/data``` folder (or anywhere else on your system) with raw data files. By "raw data" we mean the output of a Radio Frequency front-end's Analog-to-Digital converter. GNSS-SDR needs signal samples already in baseband or in passband, at a suitable intermediate frequency (on the order of MHz). Prepare your configuration file, and then you are ready for running ```gnss-sdr --config_file=your_configuration.conf```, and seeing how the file is processed.
Another interesting option is working in real-time with an RF front-end. We provide drivers for UHD-compatible hardware such as the [USRP family](http://www.ettus.com/product), for OsmoSDR and other front-ends (HackRF, bladeRF, LimeSDR), for the GN3S v2 USB dongle and for some DVB-T USB dongles. Start with a low number of channels and then increase it in order to test how many channels your processor can handle in real-time.
Another interesting option is working in real-time with an RF front-end. We provide drivers for UHD-compatible hardware such as the [USRP family](https://www.ettus.com/product), for OsmoSDR and other front-ends (HackRF, bladeRF, LimeSDR), for the GN3S v2 USB dongle and for some DVB-T USB dongles. Start with a low number of channels and then increase it in order to test how many channels your processor can handle in real-time.
You can find more information at the [GNSS-SDR Documentation page](http://gnss-sdr.org/docs/) or directly asking to the [GNSS-SDR Developers mailing list](http://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers).
You can find more information at the [GNSS-SDR Documentation page](https://gnss-sdr.org/docs/) or directly asking to the [GNSS-SDR Developers mailing list](https://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers).
You are also very welcome to contribute to the project, there are many ways to [participate in GNSS-SDR](http://gnss-sdr.org/contribute/). If you need some special feature not yet implemented, the Developer Team would love to be hired for developing it. Please do not hesitate to [contact them](http://gnss-sdr.org/team/).
You are also very welcome to contribute to the project, there are many ways to [participate in GNSS-SDR](https://gnss-sdr.org/contribute/). If you need some special feature not yet implemented, the Developer Team would love to be hired for developing it. Please do not hesitate to [contact them](https://gnss-sdr.org/team/).
**Enjoy GNSS-SDR!**

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
find_library(GFORTRAN NAMES gfortran
PATHS /usr/lib

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# - Try to find GFlags
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# - Try to find the Google Glog library
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# - Find gpstk library
# Find the native gpstk includes and library

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find GNU Radio

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# Tries to find Gperftools.
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find GR-DBFCTTC Module

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find GR-GN3S Module

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# Tries to find gr-osmosdr.
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
INCLUDE(FindPkgConfig)
PKG_CHECK_MODULES(PC_IIO gnuradio-iio)

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# Tries to find libosmosdr.
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# - Find Log4cpp
# Find the native LOG4CPP includes and library

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# FindMATIO
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
FIND_PACKAGE(PkgConfig)
PKG_CHECK_MODULES(PC_ORC "orc-0.4 > 0.4.22")

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
# - Try to find OpenBLAS library (not headers!)
#

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
#
# This file taken from FindOpenCL project @ http://gitorious.com/findopencl

View File

@ -0,0 +1,121 @@
###################################################################
#
# Copyright (c) 2006 Frederic Heem, <frederic.heem@telsey.it>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# * Neither the name of the Telsey nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
###################################################################
# - Find pcap
# Find the PCAP includes and library
# http://www.tcpdump.org/
#
# The environment variable PCAPDIR allows to specficy where to find
# libpcap in non standard location.
#
# PCAP_INCLUDE_DIRS - where to find pcap.h, etc.
# PCAP_LIBRARIES - List of libraries when using pcap.
# PCAP_FOUND - True if pcap found.
IF(EXISTS $ENV{PCAPDIR})
FIND_PATH(PCAP_INCLUDE_DIR
NAMES
pcap/pcap.h
pcap.h
PATHS
$ENV{PCAPDIR}
NO_DEFAULT_PATH
)
FIND_LIBRARY(PCAP_LIBRARY
NAMES
pcap
PATHS
$ENV{PCAPDIR}
NO_DEFAULT_PATH
)
ELSE(EXISTS $ENV{PCAPDIR})
FIND_PATH(PCAP_INCLUDE_DIR
NAMES
pcap/pcap.h
pcap.h
)
FIND_LIBRARY(PCAP_LIBRARY
NAMES
pcap
)
ENDIF(EXISTS $ENV{PCAPDIR})
SET(PCAP_INCLUDE_DIRS ${PCAP_INCLUDE_DIR})
SET(PCAP_LIBRARIES ${PCAP_LIBRARY})
IF(PCAP_INCLUDE_DIRS)
MESSAGE(STATUS "Pcap include dirs set to ${PCAP_INCLUDE_DIRS}")
ELSE(PCAP_INCLUDE_DIRS)
MESSAGE(FATAL " Pcap include dirs cannot be found")
ENDIF(PCAP_INCLUDE_DIRS)
IF(PCAP_LIBRARIES)
MESSAGE(STATUS "Pcap library set to ${PCAP_LIBRARIES}")
ELSE(PCAP_LIBRARIES)
MESSAGE(FATAL "Pcap library cannot be found")
ENDIF(PCAP_LIBRARIES)
#Functions
INCLUDE(CheckFunctionExists)
SET(CMAKE_REQUIRED_INCLUDES ${PCAP_INCLUDE_DIRS})
SET(CMAKE_REQUIRED_LIBRARIES ${PCAP_LIBRARIES})
CHECK_FUNCTION_EXISTS("pcap_breakloop" HAVE_PCAP_BREAKLOOP)
CHECK_FUNCTION_EXISTS("pcap_datalink_name_to_val" HAVE_PCAP_DATALINK_NAME_TO_VAL)
CHECK_FUNCTION_EXISTS("pcap_datalink_val_to_name" HAVE_PCAP_DATALINK_VAL_TO_NAME)
CHECK_FUNCTION_EXISTS("pcap_findalldevs" HAVE_PCAP_FINDALLDEVS)
CHECK_FUNCTION_EXISTS("pcap_freecode" HAVE_PCAP_FREECODE)
CHECK_FUNCTION_EXISTS("pcap_get_selectable_fd" HAVE_PCAP_GET_SELECTABLE_FD)
CHECK_FUNCTION_EXISTS("pcap_lib_version" HAVE_PCAP_LIB_VERSION)
CHECK_FUNCTION_EXISTS("pcap_list_datalinks" HAVE_PCAP_LIST_DATALINKS)
CHECK_FUNCTION_EXISTS("pcap_open_dead" HAVE_PCAP_OPEN_DEAD)
CHECK_FUNCTION_EXISTS("pcap_set_datalink" HAVE_PCAP_SET_DATALINK)
#Is pcap found ?
IF(PCAP_INCLUDE_DIRS AND PCAP_LIBRARIES)
SET( PCAP_FOUND true )
ENDIF(PCAP_INCLUDE_DIRS AND PCAP_LIBRARIES)
MARK_AS_ADVANCED(
PCAP_LIBRARIES
PCAP_INCLUDE_DIRS
)

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
INCLUDE(FindPkgConfig)
PKG_CHECK_MODULES(PC_TELEORBIT teleorbit)

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find the library for the USRP Hardware Driver

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find VOLK (Vector-Optimized Library of Kernels)

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Find VOLK (Vector-Optimized Library of Kernels) GNSS-SDR library

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
INCLUDE(FindPkgConfig)
PKG_CHECK_MODULES(PC_LIBIIO libiio)

View File

@ -13,56 +13,8 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Setup the python interpreter:
# This allows the user to specify a specific interpreter,
# or finds the interpreter via the built-in cmake module.
########################################################################
#this allows the user to override PYTHON_EXECUTABLE
if(PYTHON_EXECUTABLE)
set(PYTHONINTERP_FOUND TRUE)
#otherwise if not set, try to automatically find it
else(PYTHON_EXECUTABLE)
#use the built-in find script
set(Python_ADDITIONAL_VERSIONS 3.4 3.5 3.6)
find_package(PythonInterp 2)
#and if that fails use the find program routine
if(NOT PYTHONINTERP_FOUND)
find_program(PYTHON_EXECUTABLE NAMES python python2 python2.7 python3)
if(PYTHON_EXECUTABLE)
set(PYTHONINTERP_FOUND TRUE)
endif(PYTHON_EXECUTABLE)
endif(NOT PYTHONINTERP_FOUND)
endif(PYTHON_EXECUTABLE)
if (CMAKE_CROSSCOMPILING)
set(QA_PYTHON_EXECUTABLE "/usr/bin/python")
else (CMAKE_CROSSCOMPILING)
set(QA_PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE})
endif(CMAKE_CROSSCOMPILING)
#make the path to the executable appear in the cmake gui
set(PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} CACHE FILEPATH "python interpreter")
set(QA_PYTHON_EXECUTABLE ${QA_PYTHON_EXECUTABLE} CACHE FILEPATH "python interpreter for QA tests")
#make sure we can use -B with python (introduced in 2.6)
if(PYTHON_EXECUTABLE)
execute_process(
COMMAND ${PYTHON_EXECUTABLE} -B -c ""
OUTPUT_QUIET ERROR_QUIET
RESULT_VARIABLE PYTHON_HAS_DASH_B_RESULT
)
if(PYTHON_HAS_DASH_B_RESULT EQUAL 0)
set(PYTHON_DASH_B "-B")
endif()
endif(PYTHON_EXECUTABLE)
########################################################################
# Check for the existence of a python module:
@ -71,25 +23,99 @@ endif(PYTHON_EXECUTABLE)
# - cmd an additional command to run
# - have the result variable to set
########################################################################
macro(GNSSSDR_PYTHON_CHECK_MODULE desc mod cmd have)
message(STATUS "Python checking for ${desc}")
macro(GNSSSDR_PYTHON_CHECK_MODULE_RAW desc python_code have)
execute_process(
COMMAND ${PYTHON_EXECUTABLE} -c "
#########################################
try: import ${mod}
except:
try: ${mod}
except: exit(-1)
try: assert ${cmd}
except: exit(-1)
#########################################"
RESULT_VARIABLE ${have}
COMMAND ${PYTHON_EXECUTABLE} -c "${python_code}"
OUTPUT_QUIET ERROR_QUIET
RESULT_VARIABLE return_code
)
if(${have} EQUAL 0)
if(return_code EQUAL 0)
message(STATUS "Python checking for ${desc} - found")
set(${have} TRUE)
else(${have} EQUAL 0)
else()
message(STATUS "Python checking for ${desc} - not found")
set(${have} FALSE)
endif(${have} EQUAL 0)
endif()
endmacro(GNSSSDR_PYTHON_CHECK_MODULE_RAW)
macro(GNSSSDR_PYTHON_CHECK_MODULE desc mod cmd have)
GNSSSDR_PYTHON_CHECK_MODULE_RAW(
"${desc}" "
#########################################
try:
import ${mod}
assert ${cmd}
except (ImportError, AssertionError): exit(-1)
except: pass
#########################################"
"${have}")
endmacro(GNSSSDR_PYTHON_CHECK_MODULE)
########################################################################
# Setup the python interpreter:
# This allows the user to specify a specific interpreter,
# or finds the interpreter via the built-in cmake module.
########################################################################
if(CMAKE_VERSION VERSION_LESS 3.12)
if(PYTHON_EXECUTABLE)
message(STATUS "User set python executable ${PYTHON_EXECUTABLE}")
string(FIND "${PYTHON_EXECUTABLE}" "python3" IS_PYTHON3)
if(IS_PYTHON3 EQUAL -1)
find_package(PythonInterp ${GNSSSDR_PYTHON_MIN_VERSION} REQUIRED)
else(IS_PYTHON3 EQUAL -1)
find_package(PythonInterp ${GNSSSDR_PYTHON3_MIN_VERSION} REQUIRED)
endif(IS_PYTHON3 EQUAL -1)
GNSSSDR_PYTHON_CHECK_MODULE("python >= ${GNSSSDR_PYTHON_MIN_VERSION}" sys "sys.version.split()[0] >= '${GNSSSDR_PYTHON_MIN_VERSION}'" PYTHON_MIN_VER_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("mako >= ${GNSSSDR_MAKO_MIN_VERSION}" mako "mako.__version__ >= '${GNSSSDR_MAKO_MIN_VERSION}'" MAKO_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("six - python 2 and 3 compatibility library" six "True" SIX_FOUND)
else(PYTHON_EXECUTABLE)
message(STATUS "PYTHON_EXECUTABLE not set - trying by default python2")
message(STATUS "Use -DPYTHON_EXECUTABLE=/path/to/python3 to build for python3.")
find_package(PythonInterp ${GNSSSDR_PYTHON_MIN_VERSION})
if(NOT PYTHONINTERP_FOUND)
message(STATUS "python2 not found - trying with python3")
find_package(PythonInterp ${GNSSSDR_PYTHON3_MIN_VERSION} REQUIRED)
endif(NOT PYTHONINTERP_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("python >= ${GNSSSDR_PYTHON_MIN_VERSION}" sys "sys.version.split()[0] >= '${GNSSSDR_PYTHON_MIN_VERSION}'" PYTHON_MIN_VER_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("mako >= ${GNSSSDR_MAKO_MIN_VERSION}" mako "mako.__version__ >= '${GNSSSDR_MAKO_MIN_VERSION}'" MAKO_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("six - python 2 and 3 compatibility library" six "True" SIX_FOUND)
endif(PYTHON_EXECUTABLE)
find_package(PythonLibs ${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR} EXACT)
else(CMAKE_VERSION VERSION_LESS 3.12)
find_package (Python3 COMPONENTS Interpreter)
if(Python3_FOUND)
set(PYTHON_EXECUTABLE ${Python3_EXECUTABLE})
set(PYTHON_VERSION_MAJOR ${Python3_VERSION_MAJOR})
GNSSSDR_PYTHON_CHECK_MODULE("python >= ${GNSSSDR_PYTHON_MIN_VERSION}" sys "sys.version.split()[0] >= '${GNSSSDR_PYTHON_MIN_VERSION}'" PYTHON_MIN_VER_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("mako >= ${GNSSSDR_MAKO_MIN_VERSION}" mako "mako.__version__ >= '${GNSSSDR_MAKO_MIN_VERSION}'" MAKO_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("six - python 2 and 3 compatibility library" six "True" SIX_FOUND)
endif(Python3_FOUND)
if(NOT Python3_FOUND OR NOT MAKO_FOUND OR NOT SIX_FOUND)
find_package(Python2 COMPONENTS Interpreter)
if(Python2_FOUND)
set(PYTHON_EXECUTABLE ${Python2_EXECUTABLE})
set(PYTHON_VERSION_MAJOR ${Python2_VERSION_MAJOR})
GNSSSDR_PYTHON_CHECK_MODULE("python >= ${GNSSSDR_PYTHON_MIN_VERSION}" sys "sys.version.split()[0] >= '${GNSSSDR_PYTHON_MIN_VERSION}'" PYTHON_MIN_VER_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("mako >= ${GNSSSDR_MAKO_MIN_VERSION}" mako "mako.__version__ >= '${GNSSSDR_MAKO_MIN_VERSION}'" MAKO_FOUND)
GNSSSDR_PYTHON_CHECK_MODULE("six - python 2 and 3 compatibility library" six "True" SIX_FOUND)
endif(Python2_FOUND)
endif(NOT Python3_FOUND OR NOT MAKO_FOUND OR NOT SIX_FOUND)
endif(CMAKE_VERSION VERSION_LESS 3.12)
if(${PYTHON_VERSION_MAJOR} VERSION_EQUAL 3)
set(PYTHON3 TRUE)
endif(${PYTHON_VERSION_MAJOR} VERSION_EQUAL 3)
if(CMAKE_CROSSCOMPILING)
set(QA_PYTHON_EXECUTABLE "/usr/bin/python")
else(CMAKE_CROSSCOMPILING)
set(QA_PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE})
endif(CMAKE_CROSSCOMPILING)
#make the path to the executable appear in the cmake gui
set(PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} CACHE FILEPATH "python interpreter")
set(QA_PYTHON_EXECUTABLE ${QA_PYTHON_EXECUTABLE} CACHE FILEPATH "python interpreter for QA tests")

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
##############################################################################
# check if the compiler defines the architecture as ARM and set the

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
###############################################################################

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
##########################################################
# Toolchain file for Open Embedded

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
##########################################################
# Toolchain file for Zynq-7000 devices

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
if(NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt")
message(FATAL_ERROR "Cannot find install manifest: @CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt")

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Default configuration file
; You can define your own front-end calibration tool configuration and invoke it by doing
; ./front-end-cal --config_file=my_GNSS_SDR_configuration.conf
@ -18,7 +21,7 @@ GNSS-SDR.init_altitude_m=10
; Mozoncillo
;GNSS-SDR.init_latitude_deg=41.14534824586196
;GNSS-SDR.init_longitude_deg=-4.187125019737464
;GNSS-SDR.init_longitude_deg=-4.187125019737464
;GNSS-SDR.init_altitude_m=900
@ -42,28 +45,28 @@ GNSS-SDR.SUPL_CI=40184
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Osmosdr_Signal_Source
;#freq: RF front-end center frequency in [Hz]
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=2000000
;#gain: Front-end Gain in [dB]
SignalSource.gain=40
;#gain: Front-end Gain in [dB]
SignalSource.gain=40
SignalSource.rf_gain=40
SignalSource.if_gain=30
SignalSource.AGC_enabled=false
;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM
;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM
;# temperature compensated oscillator (TCXO), which is well suited for GNSS
;# signal processing, and a 4.5 V powered bias-tee to feed an active antenna.
;# Whether the bias-tee is turned off before reception depends on which version
;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version
;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the
;# bias-tee, and then call gnss-sdr.
;# Whether the bias-tee is turned off before reception depends on which version
;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version
;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the
;# bias-tee, and then call gnss-sdr.
;# See https://github.com/rtlsdrblog/rtl_biast
;# After reception the bias-tee is switched off automatically by the program.
;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be
;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be
;# activated by uncommenting the following line:
;SignalSource.osmosdr_args=rtl,bias=1
@ -79,7 +82,7 @@ SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
@ -105,7 +108,7 @@ DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
@ -148,7 +151,7 @@ InputFilter.ampl2_end=0.0
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
@ -179,8 +182,6 @@ Resampler.implementation=Pass_Through
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=1
;#threshold: Acquisition threshold
@ -193,8 +194,7 @@ Acquisition.doppler_min=-100000
Acquisition.doppler_step=500
;#maximum dwells
Acquisition.max_dwells=15
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition.dump=false
;#filename: Log path and filename
Acquisition.dump_filename=./acq_dump.dat

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
@ -25,149 +28,63 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ishort_To_Complex
;DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Pass_Through ; or Fir_Filter
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of GNU Radio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.44
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=2000000
;#dump: Dump the resampled data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS L1 C/A satellite channels.
Channels_1C.count=6
;#count: Number of available Galileo E1B satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
;Channel0.signal=1C
;#satellite: Satellite PRN ID for this channel. Disable this option for random search
;Channel0.satellite=11
;######### CHANNEL 1 CONFIG ############
@ -176,90 +93,51 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_min=-10000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#maximum dwells
Acquisition_1C.max_dwells=5
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=3.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.AR_GPS=PPP-AR ; options: OFF, Continuous, Instantaneous, Fix-and-Hold, PPP-AR
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms <= display_rate_ms.
PVT.display_rate_ms=500
PVT.positioning_mode=PPP_Static
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea
;#flag_nmea_tty_port: Enables or disables the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#flag_rtcm_server: Enables or disables a TCP/IP server transmitting RTCM 3.2 messages (accepts multiple clients, port 2101 by default)
PVT.flag_rtcm_server=true
;#flag_rtcm_tty_port: Enables or disables the RTCM log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_rtcm_tty_port=false
;#rtcm_dump_devname: serial device descriptor for RTCM logging
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump, ".kml" and ".geojson" to GIS-friendly formats.
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -79,7 +82,6 @@ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.0
Acquisition_1C.pfa=0.00001
Acquisition_1C.if=0
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false;
@ -90,7 +92,6 @@ Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.00001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false;
@ -100,7 +101,6 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.early_late_space_chips=0.5
Tracking_1C.pll_bw_hz=20.0;
Tracking_1C.dll_bw_hz=2.0;
@ -109,7 +109,6 @@ Tracking_1C.dump_filename=/archive/gps_tracking_ch_
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=25.0;
Tracking_1G.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -82,7 +85,6 @@ Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.threshold=0.0
Acquisition_2S.pfa=0.00001
Acquisition_2S.if=0
Acquisition_2S.doppler_max=10000
Acquisition_2S.doppler_step=60
Acquisition_2S.max_dwells=1
@ -91,7 +93,6 @@ Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.00001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false;
@ -100,7 +101,6 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.early_late_space_chips=0.5
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.250;
@ -110,7 +110,6 @@ Tracking_2S.dump_filename=/archive/gps_tracking_ch_
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=25.0;
Tracking_1G.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -36,7 +39,6 @@ Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.0001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=true;
@ -47,7 +49,6 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=25.0;
Tracking_1G.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -36,7 +39,6 @@ Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.0001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false;
@ -47,7 +49,6 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=40.0;
Tracking_1G.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -79,7 +82,6 @@ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.0
Acquisition_1C.pfa=0.00001
Acquisition_1C.if=0
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false;
@ -90,7 +92,6 @@ Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.00001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=false;
@ -100,7 +101,6 @@ Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.early_late_space_chips=0.5
Tracking_1C.pll_bw_hz=20.0;
Tracking_1C.dll_bw_hz=2.0;
@ -109,7 +109,6 @@ Tracking_1C.dump_filename=/archive/gps_tracking_ch_
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=25.0;
Tracking_2G.dll_bw_hz=2.0;
@ -127,6 +126,7 @@ Observables.dump_filename=/archive/gnss_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -82,7 +85,6 @@ Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.threshold=0.0
Acquisition_2S.pfa=0.00001
Acquisition_2S.if=0
Acquisition_2S.doppler_max=10000
Acquisition_2S.doppler_step=60
Acquisition_2S.max_dwells=1
@ -91,7 +93,6 @@ Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.00001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=false;
@ -100,7 +101,6 @@ Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.early_late_space_chips=0.5
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.250;
@ -110,7 +110,6 @@ Tracking_2S.dump_filename=/archive/gps_tracking_ch_
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=25.0;
Tracking_2G.dll_bw_hz=3.0;
@ -128,6 +127,7 @@ Observables.dump_filename=/archive/gnss_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -30,7 +33,6 @@ Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.0001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=true;
@ -41,7 +43,6 @@ Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=20.0;
Tracking_2G.dll_bw_hz=2.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -36,7 +39,6 @@ Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.0001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false;
@ -47,7 +49,6 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=40.0;
Tracking_1G.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;

View File

@ -0,0 +1,103 @@
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [Sps].
GNSS-SDR.internal_fs_sps=13250000 ;//66.25/5
;GNSS-SDR.internal_fs_sps=6625000 ;//66.25/10
;GNSS-SDR.internal_fs_sps=3312500 ;//66.25/20
;GNSS-SDR.internal_fs_sps=2650000 ;//66.25/25
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Custom_UDP_Signal_Source
SignalSource.item_type=gr_complex
SignalSource.origin_address=0.0.0.0
SignalSource.capture_device=eth0
SignalSource.port=1234
SignalSource.payload_bytes=1472
;SignalSource.sample_type=cbyte
SignalSource.sample_type=c4bits
SignalSource.IQ_swap=false
SignalSource.RF_channels=1
SignalSource.channels_in_udp=2
SignalSource.dump=false
SignalSource.dump_filename=./signal_source.dat
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Pass_Through
;SignalConditioner0.implementation=Pass_Through
;SignalConditioner1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
Channels_1C.count=8
Channels.in_acquisition=1
;# CHANNEL CONNECTION
Channel.signal=1C
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=0
Channel3.RF_channel_ID=0
Channel4.RF_channel_ID=0
Channel5.RF_channel_ID=0
Channel6.RF_channel_ID=0
Channel7.RF_channel_ID=0
Channel8.RF_channel_ID=1
Channel9.RF_channel_ID=1
;Channel0.signal=1C
;Channel1.RF_channel_ID=1
;Channel1.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=17
Acquisition_1C.use_CFAR_algorithm=false
Acquisition_1C.blocking=false
Acquisition_1C.doppler_max=5000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.dump=false
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=35.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=false

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -49,7 +52,6 @@ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.01
;Acquisition_1C.pfa=0.00001
Acquisition_1C.if=0
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false;
@ -59,7 +61,6 @@ Acquisition_1C.dump_filename=/archive/gps_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=60000
Tracking_1C.early_late_space_chips=0.5
Tracking_1C.pll_bw_hz=25.0;
Tracking_1C.dll_bw_hz=3.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -35,12 +38,11 @@ Channel.enable_FPGA=true
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fpga
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.item_type=cshort
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fpga
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.select_queue_Fpga=0;
Acquisition_1C.threshold=0.005
;Acquisition_1C.pfa=0.01
@ -50,7 +52,6 @@ Acquisition_1C.doppler_step=500
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga
Tracking_1C.item_type=cshort
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=45.0;
@ -60,7 +61,6 @@ Tracking_1C.order=3;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
Observables.implementation=GPS_L1_CA_Observables
@ -82,4 +82,3 @@ PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=false

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -68,8 +71,7 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.008
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=500
@ -79,7 +81,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=45.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -62,7 +65,6 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.threshold=0.015
Acquisition_1C.doppler_max=10000
@ -75,7 +77,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -11,107 +13,43 @@ GNSS-SDR.internal_fs_sps=4000000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Spir_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/dtalogger/signals/spir/data/20Secs/20Secs_L1.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=int
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=80000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=float
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
InputFilter.implementation=Freq_Xlating_Fir_Filter
;InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=80000000
InputFilter.IF=10164
InputFilter.decimation_factor=20
@ -119,105 +57,58 @@ InputFilter.decimation_factor=20
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=80000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=10
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" Galileo E1B
Channel.signal=1C
;Galileo FM3 -> PRN 19
;Galileo FM4 -> PRN 20
;######### CHANNEL 0 CONFIG ############
;Channel0.signal=1B
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel0.satellite=20
;######### CHANNEL 1 CONFIG ############
;Channel1.signal=1B
;Channel1.satellite=12
;######### CHANNEL 2 CONFIG ############
;Channel2.signal=1B
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel2.satellite=11
;######### CHANNEL 3 CONFIG ############
;Channel3.signal=1B
;Channel3.satellite=19
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_min=-10000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#maximum dwells
Acquisition_1C.max_dwells=5
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
@ -225,9 +116,7 @@ TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -237,20 +126,10 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1 ms) [ms]
PVT.output_rate_ms=500
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Configuration file for using USRP X300 as a RF front-end for GPS L1 signals.
; Set SignalSource.device_address to the IP address of your device
; and run:
@ -26,154 +29,66 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
; # implementation:
SignalSource.implementation=UHD_Signal_Source
; # When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...)
SignalSource.device_address=192.168.40.2 ; <- PUT THE IP ADDRESS OF YOUR USRP HERE
; # item_type: Type and resolution for each of the signal samples.
;SignalSource.item_type=gr_complex
SignalSource.item_type=cshort
; # sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
; # freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
; # gain: Front-end Gain in [dB]
SignalSource.gain=40
; # subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=A:0
; # samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
; # repeat: Repeat the processing file.
SignalSource.repeat=false
; # dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=cshort
;DataTypeAdapter.item_type=cbyte
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
;InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=cshort
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=11
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.48
InputFilter.band2_begin=0.52
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resampled data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
;Channel.system=GPS
Channel.signal=1C
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
;Channel0.signal=1C
;Channel1.signal=1C
@ -188,68 +103,28 @@ Channel.signal=1C
;Channel10.signal=1C
;Channel11.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
;Channel0.system=GPS
;Channel0.signal=1C
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel0.satellite=11
;######### CHANNEL 1 CONFIG ############
;Channel1.system=GPS
;Channel1.signal=1C
;Channel1.satellite=18
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.01
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.00001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=8000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=30.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
@ -259,35 +134,23 @@ TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Configuration file for using USRP 1 as a RF front-end for GPS L1 signals.
; Run:
; gnss-sdr --config_file=/path/to/gnss-sdr_GPS_L1_USRP_realtime.conf
@ -25,145 +28,27 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=UHD_Signal_Source
;#When left empty, the device discovery routines will search all available transports on the system (ethernet, usb...)
;SignalSource.device_address=192.168.40.2 ; <- PUT THE IP ADDRESS OF YOUR USRP HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=2000000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=A:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;SignalConditioner.implementation=Signal_Conditioner
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=2000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=8000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=2000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=6
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
@ -175,86 +60,42 @@ Channels.in_acquisition=1
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
;Channel0.system=GPS
;Channel0.signal=1C
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel0.satellite=11
;######### CHANNEL 1 CONFIG ############
;Channel1.system=GPS
;Channel1.signal=1C
;Channel1.satellite=18
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.01
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=30.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -264,21 +105,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -12,233 +14,87 @@ GNSS-SDR.internal_fs_sps=4000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: Use [Ishort_To_Complex] or [Pass_Through]
DataTypeAdapter.implementation=Ishort_To_Complex
;#dump: Dump the filtered data to a file.
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.85
InputFilter.band2_begin=0.90
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels_1C.count=5
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
;######### CHANNEL 0 CONFIG ############
Channel0.signal=1C
Channel0.satellite=1
Channel0.repeat_satellite=false
;######### CHANNEL 1 CONFIG ############
Channel1.signal=1C
Channel1.satellite=11
Channel1.repeat_satellite=false
;######### CHANNEL 2 CONFIG ############
Channel2.signal=1C
Channel2.satellite=17
Channel2.repeat_satellite=false
;######### CHANNEL 3 CONFIG ############
Channel3.signal=1C
Channel3.satellite=20
Channel3.repeat_satellite=false
;######### CHANNEL 4 CONFIG ############
Channel4.signal=1C
Channel4.satellite=32
Channel4.repeat_satellite=false
;######### ACQUISITION GLOBAL CONFIG ############_1C
Acquisition_1C.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent-integration_time_ms=4
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=true
;#filename: Log path and filename
;Acquisition_1C.dump_filename=./acq_dump.dat
;######### ACQUISITION CHANNELS CONFIG ######
Acquisition_1C.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition
;#threshold: Acquisition threshold
Acquisition_1C.threshold=0.4
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#repeat_satellite: Use only jointly with the satellte PRN ID option.
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=50.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A.
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1 ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea
PVT.flag_nmea_tty_port=true
@ -246,7 +102,5 @@ PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -17,8 +20,7 @@ SignalSource.if_gain=48
SignalSource.AGC_enabled=false
SignalSource.samples=0
SignalSource.repeat=false
;# Next line enables the bladeRF
SignalSource.osmosdr_args=bladerf=0
SignalSource.osmosdr_args=bladerf=0 ; This line enables the bladeRF
SignalSource.enable_throttle_control=false
SignalSource.dump=false
SignalSource.dump_filename=./signal_source.dat
@ -63,11 +65,9 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.015
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_min=-10000
Acquisition_1C.doppler_step=500
Acquisition_1C.max_dwells=15
Acquisition_1C.dump=false
@ -76,7 +76,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
@ -89,7 +88,6 @@ TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
#Observables.implementation=GPS_L1_CA_Observables
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -5,9 +8,6 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [Sps].
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
GNSS-SDR.internal_fs_sps=2000000
@ -73,10 +73,6 @@ InputFilter.sampling_frequency=2000000
InputFilter.IF=0; IF deviation due to front-end LO inaccuracies [Hz]
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
@ -88,12 +84,10 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.015
;Acquisition_1C.pfa=0.0001
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_min=-10000
Acquisition_1C.doppler_step=500
Acquisition_1C.max_dwells=15
Acquisition_1C.dump=false
@ -103,7 +97,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
@ -115,7 +108,6 @@ Tracking_1C.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############

View File

@ -1,19 +1,23 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
GNSS-SDR.internal_fs_sps=2600000
GNSS-SDR.internal_fs_sps=4000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/home/javier/gnss/gnss-simulator/build/signal_out.bin ; <- PUT YOUR FILE HERE
SignalSource.item_type=byte
SignalSource.sampling_frequency=2600000
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.item_type=ishort
SignalSource.sampling_frequency=4000000
SignalSource.freq=1575420000
SignalSource.samples=0
SignalSource.repeat=false
SignalSource.enable_throttle_control=false
@ -22,12 +26,8 @@ SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
DataTypeAdapter.implementation=Ishort_To_Complex
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/DataTypeAdapter.dat
InputFilter.implementation=Pass_Through
@ -47,9 +47,8 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.threshold=0.05
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.008
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
@ -60,9 +59,10 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=25.0;
Tracking_1C.dll_bw_hz=1.0;
Tracking_1C.dump=true
Tracking_1C.dump_filename=epl_tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=4.0;
Tracking_1C.order=3;
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_c

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -33,8 +36,7 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=10000
@ -46,7 +48,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking_GPU
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=45.0;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -13,7 +16,7 @@ ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/archive/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ;/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.filename=/archive/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.item_type=ishort
SignalSource.sampling_frequency=4000000
SignalSource.samples=0
@ -26,18 +29,12 @@ SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
;DataTypeAdapter.implementation=Ishort_To_Complex
DataTypeAdapter.implementation=Ishort_To_Cshort
InputFilter.implementation=Pass_Through
;InputFilter.input_item_type=gr_complex
;InputFilter.output_item_type=gr_complex
InputFilter.item_type=cshort
;Resampler.implementation=Pass_Through
;Resampler.item_type=gr_complex
Resampler.implementation=Direct_Resampler
Resampler.sample_freq_in=4000000
Resampler.sample_freq_out=2000000
;Resampler.item_type=gr_complex
Resampler.item_type=cshort
;######### CHANNELS GLOBAL CONFIG ############
@ -49,39 +46,33 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=cshort
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.008
;Acquisition_1C.pfa=0.000001
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.tong_init_val=2
Acquisition_1C.tong_max_val=10
Acquisition_1C.tong_max_dwells=20
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.blocking=false;
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1C.item_type=cshort
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=4.0;
Tracking_1C.order=3;
Tracking_1C.dump=false;
Tracking_1C.dump_filename=./epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump=true
Observables.dump_filename=./observables.dat

View File

@ -1,5 +1,8 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Sample configuration file for IFEN SX-NSR software receiver front-end
; http://www.ifen.com/products/sx-scientific-gnss-solutions/nsr-software-receiver.html
; https://www.ifen.com/products/sx3-gnss-software-receiver/
; This sample configuration is able to process directly .sream binary files
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
@ -80,18 +83,15 @@ Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
Channels_2S.count=8
Channels.in_acquisition=1
#Channel.signal=1C
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.scoherent_integration_time_ms=1
Acquisition_1C.threshold=0.0075
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=10000
@ -101,7 +101,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.coherent_integration_time_ms=20
Acquisition_2S.threshold=0.00045
Acquisition_2S.doppler_max=5000
@ -115,7 +114,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=45.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
@ -125,7 +123,6 @@ Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### GPS L2C GENERIC TRACKING CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.4;
Tracking_2S.order=2;
@ -143,11 +140,8 @@ TelemetryDecoder_2S.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat

View File

@ -1,5 +1,8 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Sample configuration file for IFEN SX-NSR software receiver front-end
; http://www.ifen.com/products/sx-scientific-gnss-solutions/nsr-software-receiver.html
; https://www.ifen.com/products/sx3-gnss-software-receiver/
; This sample configuration is able to process directly .sream binary files
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
@ -94,7 +97,6 @@ Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels.in_acquisition=1
Channel.signal=1C
@ -103,7 +105,6 @@ Channel.signal=1C
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.threshold=0.0075
;Acquisition_1C.pfa=0.01
@ -116,7 +117,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=45.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,51 +27,26 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/home/javier/signals/signal_source_int.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=2000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=dump.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#[Pass_Through] disables this block
InputFilter.implementation=Pulse_Blanking_Filter
InputFilter.Pfa=0.001
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### CHANNELS GLOBAL CONFIG ############
@ -81,12 +58,8 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
;#use_CFAR_algorithm: If enabled, acquisition estimates the input signal power to implement CFAR detection algorithms
;#notice that this affects the Acquisition threshold range!
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=20
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=5000
@ -97,27 +70,15 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;# Extended correlation after telemetry bit synchronization
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
;# Longer integration period require more stable front-end LO
Tracking_1C.extend_correlation_ms=10
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=35;
Tracking_1C.pll_bw_narrow_hz=30;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dll_bw_narrow_hz=1.5;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1C.fll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -29,119 +31,48 @@ GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=RtlTcp_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
SignalSource.sampling_frequency=1200000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#gain: Front-end overall gain Gain in [dB]
SignalSource.gain=40
;#rf_gain: Front-end RF stage gain in [dB]
SignalSource.rf_gain=40
;#rf_gain: Front-end IF stage gain in [dB]
SignalSource.if_gain=30
;#AGC_enabled: Front-end AGC enabled or disabled
SignalSource.AGC_enabled = false
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#Address of the rtl_tcp server (IPv6 allowed)
SignalSource.address=127.0.0.1
;#Port of the rtl_tcp server
SignalSource.port=1234
;# Set to true if I/Q samples come swapped
SignalSource.swap_iq=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
@ -149,22 +80,15 @@ InputFilter.grid_density=16
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter.sampling_frequency=1200000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter.IF=80558
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=4
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
Channel.signal=1C
@ -172,52 +96,30 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.coherent_integration_time_ms =1
Acquisition_1C.threshold=0.015
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_min=-10000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#maximum dwells
Acquisition_1C.max_dwells=15
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
@ -225,9 +127,7 @@ TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -237,21 +137,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=true
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -42,16 +45,16 @@ SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
SignalSource.enable_throttle_control=false
;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM
;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM
;# temperature compensated oscillator (TCXO), which is well suited for GNSS
;# signal processing, and a 4.5 V powered bias-tee to feed an active antenna.
;# Whether the bias-tee is turned off before reception depends on which version
;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version
;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the
;# bias-tee, and then call gnss-sdr.
;# Whether the bias-tee is turned off before reception depends on which version
;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version
;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the
;# bias-tee, and then call gnss-sdr.
;# See https://github.com/rtlsdrblog/rtl_biast
;# After reception the bias-tee is switched off automatically by the program.
;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be
;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be
;# activated by uncommenting the following line:
;SignalSource.osmosdr_args=rtl,bias=1
@ -88,10 +91,6 @@ InputFilter.sampling_frequency=1999898
InputFilter.IF=80558 ; IF deviation due to front-end LO inaccuracies [Hz]
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
@ -103,8 +102,7 @@ Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.015
;Acquisition_1C.pfa=0.0001
Acquisition_1C.doppler_max=10000
@ -118,7 +116,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
@ -139,7 +136,6 @@ Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -84,8 +87,7 @@ Channel.signal=1C
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.007
;Acquisition_1C.pfa=0.0001
Acquisition_1C.doppler_max=10000
@ -99,7 +101,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=1.5;
Tracking_1C.order=3;

View File

@ -1,7 +1,11 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Configuration file for using USRP1 as a RF front-end for GPS L2C signals
; Run:
; gnss-sdr --config_file=/path/to/gnss-sdr_GPS_L2C_USRP1_realtime.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
@ -46,81 +50,29 @@ DataTypeAdapter.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=20000000
InputFilter.IF=-1600000
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=1
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
@ -133,9 +85,7 @@ Resampler.sample_freq_out=2000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_2S.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
Channel.signal=2S
@ -155,14 +105,11 @@ Channel7.signal=2S
;######### ACQUISITION GLOBAL CONFIG ############
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.0013
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=10000
Acquisition_2S.doppler_min=-10000
Acquisition_2S.doppler_step=100
Acquisition_2S.max_dwells=1
Acquisition_2S.dump=false
@ -172,7 +119,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.order=3;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Configuration file for using USRP X300 as a RF front-end for GPS L2C signals
; Set SignalSource.device_address to the IP address of your device
; and run:
@ -87,9 +90,7 @@ Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_2S.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
Channel.signal=2S
@ -112,7 +113,6 @@ Channel7.signal=2S
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.0015
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -125,7 +125,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.25;
Tracking_2S.order=2;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Configuration file for using USRP X300 as a RF front-end for Galileo E1 signals.
; Set SignalSource.device_address to the IP address of your device
; and run:
@ -38,8 +41,7 @@ Channel.signal=1B
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
Acquisition_1B.item_type=gr_complex
Acquisition_1B.if=0
Acquisition_1B.sampled_ms=4
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=1
Acquisition_1B.pfa=0.000008
Acquisition_1B.doppler_max=6000
@ -52,7 +54,6 @@ Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
Tracking_1B.item_type=gr_complex
Tracking_1B.if=0
Tracking_1B.pll_bw_hz=20.0;
Tracking_1B.dll_bw_hz=2.0;
Tracking_1B.order=3;

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -10,259 +13,86 @@ GNSS-SDR.internal_fs_sps=4000000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation:
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
;#Use gr_complex for 32 bits float I/Q or ishort for I/Q interleaved short integer.
;#If ishort is selected you should have to instantiate the Ishort_To_Complex data_type_adapter.
SignalSource.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: Use [Ishort_To_Complex] or [Pass_Through]
DataTypeAdapter.implementation=Ishort_To_Complex
;#dump: Dump the filtered data to a file.
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
#used for gps
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.85
InputFilter.band2_begin=0.90
InputFilter.band2_end=1.0
#used for galileo
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels_1B.count=4
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
Channel.signal=1B
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.coherent_integration_time_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.threshold=0.05
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#sampled_ms: Signal block duration for the acquisition signal detection [ms];
Acquisition_1B.coherent_integration_time_ms=8
Acquisition_1B.cboc=false
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
;#implementation:
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump=false
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A or [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;# KML, GeoJSON, NMEA and RTCM output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump, ".kml" and ".geojson" to GIS-friendly formats.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enables or disables the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#flag_rtcm_server: Enables or disables a TCP/IP server transmitting RTCM 3.2 messages (accepts multiple clients, port 2101 by default)
PVT.flag_rtcm_server=false;
;#flag_rtcm_tty_port: Enables or disables the RTCM log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_rtcm_tty_port=false;
;#rtcm_dump_devname: serial device descriptor for RTCM logging
PVT.rtcm_dump_devname=/dev/pts/1

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -11,190 +14,65 @@ GNSS-SDR.internal_fs_sps=4000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
SignalSource.enable_throttle_control=true
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ishort_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation:
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of GNU Radio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resampled data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available Galileo satellite channels.
Channels_1B.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
Channel.signal=1B
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.pfa=0.00001
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#cboc: Only for [Galileo_E1_PCPS_Ambiguous_Acquisition]. This option allows you to choose between acquiring with CBOC signal [true] or sinboc(1,1) signal [false].
;#Use only if GNSS-SDR.internal_fs_sps is greater than or equal to 6138000
Acquisition_1B.cboc=false
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### ACQUISITION CHANNELS CONFIG ######
;######### ACQUISITION CH 0 CONFIG ############
;#repeat_satellite: Use only jointly with the satellite PRN ID option. The default value is false
;Acquisition_1B0.repeat_satellite = true
;Acquisition_1B1.repeat_satellite = true
;Acquisition_1B2.repeat_satellite = true
;Acquisition_1B3.repeat_satellite = true
Acquisition_1B.blocking=false
;######### TRACKING GLOBAL CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1B.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.dump=true
Tracking_1B.dump_filename=./veml_tracking_ch_
Tracking_1B.pll_bw_hz=20.0;
Tracking_1B.dll_bw_hz=3.0;
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
Tracking_1B.track_pilot=true
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
@ -205,39 +83,25 @@ TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enables or disables the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#flag_rtcm_server: Enables or disables a TCP/IP server transmitting RTCM 3.2 messages (accepts multiple clients, port 2101 by default)
PVT.flag_rtcm_server=true;
PVT.rtcm_tcp_port=2101
PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MSM_rate_ms=1000
;#flag_rtcm_tty_port: Enables or disables the RTCM log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_rtcm_tty_port=false;
;#rtcm_dump_devname: serial device descriptor for RTCM logging
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump, ".kml" and ".geojson" to GIS-friendly formats.
PVT.dump_filename=./PVT
PVT.dump_filename=./PVT

View File

@ -1,3 +1,6 @@
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -21,15 +24,10 @@ SignalSource.samples=0 ; 0 means the entire file
SignalSource.repeat=false
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
@ -78,8 +76,7 @@ Channel.signal=1B
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
Acquisition_1B.item_type=gr_complex
Acquisition_1B.if=0
Acquisition_1B.sampled_ms=4
Acquisition_1B.coherent_integration_time_ms=4
Acquisition_1B.pfa=0.0000008
Acquisition_1B.doppler_max=15000
Acquisition_1B.doppler_step=125
@ -91,7 +88,6 @@ Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
Tracking_1B.item_type=gr_complex
Tracking_1B.if=0
Tracking_1B.pll_bw_hz=20.0;
Tracking_1B.dll_bw_hz=2.0;
Tracking_1B.order=3;

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,159 +27,33 @@ GNSS-SDR.internal_fs_sps=32000000
;GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/ifen/32MS_complex.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=32000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;SignalConditioner.implementation=Signal_Conditioner
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation:
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=32000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=8000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
Channels_5X.count=1
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
;#system: GPS, GLONASS, Galileo, SBAS or Compass
;#if the option is disabled by default is assigned GPS
Channel.signal=5X
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
;Channel0.signal=5X
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
;Channel0.satellite=19
;Channel0.repeat_satellite=true
;######### CHANNEL 1 CONFIG ############
;Channel1.system=Galileo
;Channel1.signal=5Q
;Channel1.satellite=12
;######### CHANNEL 2 CONFIG ############
;Channel2.system=Galileo
;Channel2.signal=5Q
;Channel2.satellite=11
;######### CHANNEL 3 CONFIG ############
@ -188,97 +64,56 @@ Channel.signal=5X
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_5X.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF
;#item_type: Type and resolution for each of the signal samples.
Acquisition_5X.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_5X.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_5X.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_5X.threshold=0.001
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_5X.pfa=0.0003
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_5X.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_5X.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_5X.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_5X.max_dwells=1
;#CAF filter: **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz
Acquisition_5X.CAF_window_hz=0
;#Zero_padding: **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions.
;#If set to 1 it is ON, if set to 0 it is OFF.
Acquisition_5X.Zero_padding=0
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_5X.dump=true
;#filename: Log path and filename
Acquisition_5X.dump=false
Acquisition_5X.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_5X.implementation=Galileo_E5a_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_5X.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_5X.if=0
;#dll_ti_ms: **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms]
;Tracking_5X.ti_ms=3;
Tracking_5X.ti_ms=1;
;#pll_bw_hz: PLL loop filter bandwidth during initialization [Hz]
Tracking_5X.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth during initialization [Hz]
Tracking_5X.dll_bw_hz=20.0;
Tracking_5X.pll_bw_narrow_hz=2.0;
Tracking_5X.dll_bw_narrow_hz=5.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_5X.order=2;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_5X.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_5X.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_5X.dump=false
Tracking_5X.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER CONFIG ############
;#implementation:
TelemetryDecoder_5X.implementation=Galileo_E5a_Telemetry_Decoder
TelemetryDecoder_5X.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -74,7 +76,7 @@ Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
Channels_5X.count=1
Channels_5X.count=8
Channels.in_acquisition=1
Channel.signal=5X
@ -83,7 +85,7 @@ Channel.signal=5X
;######### CHANNEL 0 CONFIG ############
Channel0.signal=5X
Channel0.satellite=19
;Channel0.satellite=19
;Channel0.repeat_satellite=true
;######### CHANNEL 1 CONFIG ############
@ -101,7 +103,6 @@ Channel3.signal=5X
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_5X.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF
Acquisition_5X.item_type=gr_complex
Acquisition_5X.if=0
Acquisition_5X.coherent_integration_time_ms=1
Acquisition_5X.threshold=0.002
Acquisition_5X.doppler_max=10000
@ -117,10 +118,8 @@ Acquisition_5X.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_5X.implementation=Galileo_E5a_DLL_PLL_Tracking
Tracking_5X.item_type=gr_complex
Tracking_5X.if=0
Tracking_5X.pll_bw_hz=20.0;
Tracking_5X.dll_bw_hz=20.0;
Tracking_5X.ti_ms=1; **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms]
Tracking_5X.pll_bw_narrow_hz=20.0;
Tracking_5X.dll_bw_narrow_hz=20.0;
Tracking_5X.order=2;

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -12,133 +14,52 @@ GNSS-SDR.internal_fs_sps=20000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/Fraunhofer/L125_III1b_210s_L1.bin ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples..
SignalSource.filename=/media/javier/Extreme 500/fraunhofer/L125_III1b_210s_L1.bin ; <- PUT YOUR FILE HERE
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=20000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples..
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=20000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=20000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=20000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#count: Number of available Galileo satellite channels.
Channels_1B.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels_1C.count=10
Channels_1B.count=10
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1C
Channel2.signal=1C
Channel3.signal=1C
@ -154,100 +75,65 @@ Channel12.signal=1B
Channel13.signal=1B
Channel14.signal=1B
Channel15.signal=1B
Channel16.signal=1B
Channel17.signal=1B
Channel18.signal=1B
Channel19.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.threshold=0.0060
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.threshold=18
Acquisition_1C.use_CFAR_algorithm=false
Acquisition_1C.blocking=true
Acquisition_1C.doppler_max=5000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.threshold=25
Acquisition_1B.use_CFAR_algorithm=false
Acquisition_1B.blocking=true
Acquisition_1B.doppler_max=5000
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.extend_correlation_ms=1
Tracking_1C.pll_bw_hz=40;
Tracking_1C.pll_bw_narrow_hz=30;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dll_bw_narrow_hz=1.5;
Tracking_1C.order=2;
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.dll_bw_hz=3.0;
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
@ -255,26 +141,20 @@ TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.output_rate_ms=10;
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.elevation_mask=15;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump=false
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -7,139 +9,48 @@
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
;GNSS-SDR.internal_fs_sps=2048000
GNSS-SDR.internal_fs_sps=2600000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
;#SignalSource.filename=/home/javier/Descargas/rtlsdr_tcxo_l1/rtlsdr_tcxo_l1.bin ; <- PUT YOUR FILE HERE
SignalSource.filename=/Users/carlesfernandez/git/cttc/build/signal_out.bin ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/DataTypeAdapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=2600000
InputFilter.IF=0
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
Resampler.implementation=Pass_Through
Resampler.item_type = gr_complex;
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=11
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel1.signal=1C
Channel2.signal=1C
Channel3.signal=1C
@ -159,109 +70,63 @@ Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;#use_CFAR_algorithm: If enabled, acquisition estimates the input signal power to implement CFAR detection algorithms
;#notice that this affects the Acquisition threshold range!
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=15
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=6000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=100
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=1.5;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -270,14 +135,10 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -10,135 +12,24 @@
GNSS-SDR.internal_fs_sps=4092000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/sim/GPS_sim1.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4092000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=gr_complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=4092000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=1
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1B
@ -160,134 +51,80 @@ Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=30
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=100
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;# Extended correlation after telemetry bit synchronization
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
;# Longer integration period require more stable front-end LO
Tracking_1C.extend_correlation_ms=10
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40;
Tracking_1C.pll_bw_narrow_hz=25;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dll_bw_narrow_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1C.fll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1B.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -28,133 +30,36 @@ GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ishort_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#item_type: Type and resolution for each of the signal samples.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signalq
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
;#count: Number of available Galileo satellite channels.
Channels_1B.count=5
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -174,120 +79,73 @@ Channel7.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel:
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000008; 0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
Acquisition_1B.cboc=false;
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=50.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=5.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
@ -297,7 +155,5 @@ PVT.rtcm_MT1045_rate_ms=5000 ; Period (in ms) of Galileo ephemeris messages. 0 m
PVT.rtcm_MT1045_rate_ms=5000 ; Period (in ms) of GPS ephemeris messages. 0 mutes this message
PVT.rtcm_MT1097_rate_ms=1000 ; Period (in ms) of Galileo observables. 0 mutes this message
PVT.rtcm_MT1077_rate_ms=1000 ; Period (in ms) of GPS observables. 0 mutes this message
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -7,136 +9,60 @@
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
;GNSS-SDR.internal_fs_sps=6826700
GNSS-SDR.internal_fs_sps=2560000
;GNSS-SDR.internal_fs_sps=4096000
;GNSS-SDR.internal_fs_sps=5120000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/javier/SISTEMA/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.filename=/home/javier/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=20480000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=float
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels_1C.count=10
Channels_1B.count=10
Channels.in_acquisition=1
;#signal:
@ -156,115 +82,74 @@ Channel4.signal=1C
Channel5.signal=1C
Channel6.signal=1C
Channel7.signal=1C
Channel8.signal=1B
Channel9.signal=1B
Channel8.signal=1C
Channel9.signal=1C
Channel10.signal=1B
Channel11.signal=1B
Channel12.signal=1B
Channel13.signal=1B
Channel14.signal=1B
Channel15.signal=1B
Channel16.signal=1B
Channel17signal=1B
Channel18.signal=1B
Channel19.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.threshold=25
Acquisition_1C.use_CFAR_algorithm=false
Acquisition_1C.blocking=true
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;#threshold: Acquisition threshold
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.threshold=25
Acquisition_1B.use_CFAR_algorithm=false
Acquisition_1B.blocking=true
Acquisition_1B.doppler_max=5000
Acquisition_1B.doppler_step=250
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;# Extended correlation after telemetry bit synchronization
;# Valid values are: [1,2,4,5,10,20] (integer divisors of the GPS L1 CA bit period (20 ms) )
;# Longer integration period require more stable front-end LO
Tracking_1C.extend_correlation_ms=1
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40;
Tracking_1C.pll_bw_narrow_hz=20;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_narrow_hz=30;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dll_bw_narrow_hz=1.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dll_bw_narrow_hz=1.5;
Tracking_1C.order=2;
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=20.0;
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
@ -272,9 +157,7 @@ TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -283,14 +166,11 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.elevation_mask=20;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -11,62 +13,34 @@ GNSS-SDR.internal_fs_sps=20000000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/javier/SISTEMA/signals/fraunhofer/L125_III1b_210s_L1.bin ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=20000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
InputFilter.implementation=Pass_Through
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
;#count: Number of available Galileo satellite channels.
Channels_1B.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels_1B.count=8
Channels.in_acquisition=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel1.signal=1B
Channel2.signal=1B
Channel3.signal=1B
@ -86,132 +60,82 @@ Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
Acquisition_1C.scoherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=18
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
Acquisition_1B.coherent_integration_time_ms=4
Acquisition_1B.acquire_pilot=true
Acquisition_1B.use_CFAR_algorithm=false
;#threshold: Acquisition threshold
Acquisition_1B.threshold=21
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
Acquisition_1B.bit_transition_flag=true
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=../data/acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=30.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
Tracking_1B.track_pilot=true
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=4.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=0.5;
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_narrow_hz=2.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_narrow_hz=0.25;
Tracking_1B.extend_correlation_symbols=4;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_narrow_chips=0.06;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_narrow_chips=0.25;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump=false
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -6,11 +8,9 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_sps=5456000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Labsat_Signal_Source
SignalSource.selected_channel=1
;#filename: path to file with the captured GNSS signal samples to be processed
@ -18,121 +18,58 @@ SignalSource.selected_channel=1
;# the adapter adds "_0000.LS3" to this base path and filename. Next file will be "_0001.LS3" and so on
;# in this example, the first file complete path will be ../signals/GPS_025_0000.LS3
SignalSource.filename=../signals/GPS_025 ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=16368000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=gr_complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=16368000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=3
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
;#count: Number of available Galileo satellite channels.
Channels_1B.count=6
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1B
Channel1.signal=1B
Channel2.signal=1B
@ -153,130 +90,80 @@ Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=22
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
Acquisition_1B.coherent_integration_time_ms=4
Acquisition_1B.acquire_pilot=true
Acquisition_1B.use_CFAR_algorithm=false
;#threshold: Acquisition threshold
Acquisition_1B.threshold=22
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
Acquisition_1B.bit_transition_flag=true
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=../data/acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
Tracking_1B.track_pilot=true
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=7.5;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=0.5;
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_narrow_hz=2.5;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_narrow_hz=0.25;
Tracking_1B.extend_correlation_symbols=4;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_narrow_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_narrow_chips=0.30;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump=false
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -24,27 +26,20 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true
SignalSource.signal_file=/datalogger/signals/Fraunhofer/L125_III1b_210s.usb ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -52,88 +47,34 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=0;
;#-205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -142,25 +83,15 @@ DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -169,28 +100,17 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;# CHANNEL CONNECTION
@ -204,77 +124,46 @@ Channel6.RF_channel_ID=0
Channel7.RF_channel_ID=0
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=15
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
Tracking_1C.extend_correlation_ms=10
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.pll_bw_narrow_hz=35;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dll_bw_narrow_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -283,22 +172,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,31 +27,18 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1a.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -57,87 +46,34 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=-205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -146,25 +82,15 @@ DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -173,37 +99,19 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
@ -227,69 +135,39 @@ Channel6.signal=1C
Channel7.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.012
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=3.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -298,21 +176,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,13 +27,9 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
@ -39,11 +37,9 @@ SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -51,87 +47,33 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=-205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -140,25 +82,15 @@ DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -167,36 +99,18 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
@ -222,63 +136,37 @@ Channel7.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.012
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=3.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -287,21 +175,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,25 +27,18 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_II-3b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -51,85 +46,34 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.sampling_frequency=40000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=-205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=16
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -138,25 +82,15 @@ DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -165,28 +99,17 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -208,7 +131,6 @@ Channel6.RF_channel_ID=0
Channel7.RF_channel_ID=0
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1C
Channel2.signal=1C
@ -219,91 +141,54 @@ Channel6.signal=1C
Channel7.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.012
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=3.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,25 +27,18 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_I-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -51,87 +46,34 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=40000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=-205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -140,25 +82,15 @@ DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -167,38 +99,19 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=4
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
@ -210,7 +123,6 @@ Channel3.RF_channel_ID=0
;Channel7.RF_channel_ID=0
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1C
Channel2.signal=1C
@ -219,63 +131,37 @@ Channel3.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.011
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=3.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -284,20 +170,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,21 +27,15 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
@ -47,7 +43,6 @@ SignalSource.usb_packet_buffer=128
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -55,85 +50,31 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter0.IF=-205000
;#InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
@ -141,7 +82,6 @@ Resampler0.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -149,90 +89,35 @@ DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter1.IF=100000
;#InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -241,30 +126,17 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels_2S.count=8
;#count: Number of available Galileo satellite channels.
;Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -351,40 +223,23 @@ Channel15.RF_channel_ID=1
Channel15.signal=2S
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.008
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.order=3;
@ -396,7 +251,6 @@ Tracking_1C.dump_filename=./tracking_ch_
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.0005
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -408,7 +262,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.order=3;
@ -418,22 +271,18 @@ Tracking_2S.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GPS L2 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S.implementation=GPS_L2C_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -442,25 +291,14 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,30 +27,17 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true
SignalSource.signal_file=/datalogger/signals/Fraunhofer/L125_III1b_210s.usb ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
@ -56,7 +45,6 @@ SignalSource.usb_packet_buffer=128
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -64,85 +52,31 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
;#InputFilter0.IF=-205000
InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
@ -150,7 +84,6 @@ Resampler0.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -158,90 +91,35 @@ DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardware configurations can differ. Signals available at http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
;#InputFilter1.IF=100000
InputFilter1.IF=0
;# Decimation factor after the frequency translating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -250,30 +128,19 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
;######### CHANNELS GLOBAL CONFIG ############.
Channels_1C.count=2
Channels_1B.count=4
Channels_2S.count=4
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -304,40 +171,23 @@ Channel14.RF_channel_ID=1
Channel15.RF_channel_ID=1
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples..
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.008
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
@ -348,7 +198,6 @@ Tracking_1C.early_late_space_chips=0.5;
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.0005
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -360,7 +209,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.order=3;
@ -371,70 +219,44 @@ Tracking_2S.dump_filename=../data/epl_tracking_ch_
;# GALILEO E1B
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000005
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=./veml_tracking_ch_
;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GPS L2 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S.implementation=GPS_L2C_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
;######### TELEMETRY DECODER GALILEO E1B CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -443,22 +265,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=100
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -27,235 +29,59 @@ GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=UHD_Signal_Source
;#When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...)
SignalSource.device_address=192.168.40.2 ; <- PUT THE IP ADDRESS OF YOUR USRP HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=gr_complex
;#RF_channels: Number of RF channels present in the frontend device (i.e. USRP with two frontends)
SignalSource.RF_channels=2
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4000000
;#subdevice: UHD subdevice specification (for USRP dual frontend use A:0 or B:0 or A:0 B:0)
SignalSource.subdevice=A:0 B:0
;######### RF Channels specific settings ######
;## RF CHANNEL 0 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq0=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain0=50
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples0=0
;## RF CHANNEL 1 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq1=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain1=50
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples1=0
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter0.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;######### SIGNAL_CONDITIONER 1 CONFIG ############
SignalConditioner1.implementation=Pass_Through
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter1.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=4
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -274,75 +100,45 @@ Channel3.RF_channel_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1C
Channel2.signal=1C
Channel3.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.01
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=8000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_1C.early_late_space_chips=0.5;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -351,21 +147,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,23 +27,17 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true
SignalSource.signal_file=/media/javier/SISTEMA/signals/fraunhofer/L125_III1b_210s.usb ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=1
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
@ -49,7 +45,6 @@ SignalSource.usb_packet_buffer=128
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -57,80 +52,31 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter_ch0.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.sampling_frequency=20000000
InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=4
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
@ -138,7 +84,6 @@ Resampler0.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -146,81 +91,32 @@ DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=4
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
@ -229,7 +125,6 @@ Resampler1.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -237,84 +132,41 @@ DataTypeAdapter2.implementation=Pass_Through
DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
InputFilter2.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter_ch2.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples..
InputFilter2.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter2.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter2.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter2.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter2.band1_begin=0.0
InputFilter2.band1_end=0.45
InputFilter2.band2_begin=0.55
InputFilter2.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter2.ampl1_begin=1.0
InputFilter2.ampl1_end=1.0
InputFilter2.ampl2_begin=0.0
InputFilter2.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter2.band1_error=1.0
InputFilter2.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter2.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter2.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
InputFilter2.sampling_frequency=40000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter2.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter2.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
Channels_1B.count=10
Channels_2S.count=0
Channels_5X.count=0
;#GPS.prns=7,8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -369,13 +221,11 @@ Channel37.RF_channel_ID=2
Channel38.RF_channel_ID=2
Channel39.RF_channel_ID=2
;######### ACQUISITION GENERIC CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION CONFIG ######
;# GPS L1 CA
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
Acquisition_1C.doppler_max=5000
@ -387,30 +237,19 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;# Galileo E1
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.00074
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -424,7 +263,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
;# GALILEO E5a
Acquisition_5X.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF
Acquisition_5X.item_type=gr_complex
Acquisition_5X.if=0
Acquisition_5X.coherent_integration_time_ms=1
Acquisition_5X.threshold=0.009
Acquisition_5X.doppler_max=5000
@ -441,7 +279,6 @@ Acquisition_5X.dump_filename=./acq_dump.dat
;######### GPS L1 C/A GENERIC TRACKING CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.order=3;
@ -452,30 +289,19 @@ Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### GALILEO E1 TRK CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### GPS L2C GENERIC TRACKING CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.25;
Tracking_2S.order=2;
@ -487,7 +313,6 @@ Tracking_2S.dump_filename=./tracking_ch_
;######### GALILEO E5 TRK CONFIG ############
Tracking_5X.implementation=Galileo_E5a_DLL_PLL_Tracking
Tracking_5X.item_type=gr_complex
Tracking_5X.if=0
Tracking_5X.pll_bw_hz_init=20.0; **Only for E5a** PLL loop filter bandwidth during initialization [Hz]
Tracking_5X.dll_bw_hz_init=20.0; **Only for E5a** DLL loop filter bandwidth during initialization [Hz]
Tracking_5X.ti_ms=1; **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms]
@ -515,9 +340,7 @@ TelemetryDecoder_5X.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
@ -526,21 +349,13 @@ PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=100
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,23 +27,17 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true
SignalSource.signal_file=/home/javier/signals/20140923_20-24-17_L125_roof_210s.usb ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
@ -49,7 +45,6 @@ SignalSource.usb_packet_buffer=128
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -57,83 +52,30 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter_ch0.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=4
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
@ -141,7 +83,6 @@ Resampler0.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
@ -149,88 +90,35 @@ DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=4
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -239,32 +127,21 @@ DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=10
Channels_2S.count=4
;#GPS.prns=7,8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
@ -301,7 +178,6 @@ Channel19.RF_channel_ID=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
Acquisition_1C.doppler_max=5000
@ -315,7 +191,6 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.00074
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -330,7 +205,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
;######### GPS L1 C/A GENERIC TRACKING CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.order=3;
@ -342,7 +216,6 @@ Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### GPS L2C GENERIC TRACKING CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.25;
Tracking_2S.order=2;
@ -362,29 +235,22 @@ TelemetryDecoder_2S.dump=false
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=true
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=100
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -25,23 +27,17 @@ GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true
SignalSource.signal_file=/media/javier/SISTEMA/signals/fraunhofer/L125_III1b_210s.usb ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.signal_file=/media/javier/SISTEMA/signals/fraunhofer/L125_III1b_210s.usb ; <- PUT YOUR FILE HERE
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=3
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
@ -49,7 +45,6 @@ SignalSource.usb_packet_buffer=128
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
@ -57,177 +52,69 @@ DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter_ch0.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse reaponse given a set of band edges,
;#the desired reaponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;#InputFilter0.IF=-205000
InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=4
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
;######### RF CHANNEL 1 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;######### INPUT_FILTER 1 CONFIG ############
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=4
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
@ -236,7 +123,6 @@ Resampler1.implementation=Pass_Through
;######################################################
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
@ -244,96 +130,43 @@ DataTypeAdapter2.implementation=Pass_Through
DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
InputFilter2.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter_ch2.dat
;#input_item_type: Type and resolution for input signal samples.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter2.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter2.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter2.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter2.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter2.band1_begin=0.0
InputFilter2.band1_end=0.45
InputFilter2.band2_begin=0.55
InputFilter2.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter2.ampl1_begin=1.0
InputFilter2.ampl1_end=1.0
InputFilter2.ampl2_begin=0.0
InputFilter2.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter2.band1_error=1.0
InputFilter2.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter2.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter2.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter2.sampling_frequency=40000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter2.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter2.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;######### RESAMPLER CONFIG 2 ############
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=10
Channels_1B.count=10
Channels_2S.count=10
Channels_5X.count=10
Channels_5X.count=2
Channels_L5.count=2
;#GPS.prns=7,8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;Channels.in_acquisition=2
;# CHANNEL CONNECTION
@ -377,14 +210,16 @@ Channel36.RF_channel_ID=2
Channel37.RF_channel_ID=2
Channel38.RF_channel_ID=2
Channel39.RF_channel_ID=2
Channel40.RF_channel_ID=2
Channel41.RF_channel_ID=2
Channel42.RF_channel_ID=2
;Channel20.satellite=7
;######### ACQUISITION GENERIC CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;# GPS L1 CA
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.005
Acquisition_1C.doppler_max=5000
@ -397,30 +232,18 @@ Acquisition_1C.dump_filename=./acq_dump.dat
;# Galileo E1
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;# GPS L2C M
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.threshold=0.00074
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
@ -434,7 +257,6 @@ Acquisition_2S.dump_filename=./acq_dump.dat
;# GALILEO E5a
Acquisition_5X.implementation=Galileo_E5a_Noncoherent_IQ_Acquisition_CAF
Acquisition_5X.item_type=gr_complex
Acquisition_5X.if=0
Acquisition_5X.coherent_integration_time_ms=1
Acquisition_5X.threshold=0.009
Acquisition_5X.doppler_max=5000
@ -447,11 +269,23 @@ Acquisition_5X.dump=false
Acquisition_5X.dump_filename=./acq_dump.dat
;# GPS L5
Acquisition_L5.implementation=GPS_L5i_PCPS_Acquisition
Acquisition_L5.item_type=gr_complex
Acquisition_L5.threshold=0.00074
;Acquisition_L5.pfa=0.001
Acquisition_L5.doppler_max=5000
Acquisition_L5.doppler_min=-5000
Acquisition_L5.doppler_step=125
Acquisition_L5.max_dwells=1
Acquisition_L5.dump=false
Acquisition_L5.dump_filename=./acq_dump.dat
;######### TRACKING CONFIG ############
;######### GPS L1 C/A GENERIC TRACKING CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.pll_bw_hz=35.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
@ -461,30 +295,19 @@ Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### GALILEO E1 TRK CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### GPS L2C GENERIC TRACKING CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.25;
Tracking_2S.order=2;
@ -492,21 +315,32 @@ Tracking_2S.early_late_space_chips=0.5;
Tracking_2S.dump=false
Tracking_2S.dump_filename=./tracking_ch_
;######### GALILEO E5 TRK CONFIG ############
Tracking_5X.implementation=Galileo_E5a_DLL_PLL_Tracking
Tracking_5X.item_type=gr_complex
Tracking_5X.if=0
Tracking_5X.pll_bw_hz_init=20.0; **Only for E5a** PLL loop filter bandwidth during initialization [Hz]
Tracking_5X.dll_bw_hz_init=20.0; **Only for E5a** DLL loop filter bandwidth during initialization [Hz]
Tracking_5X.ti_ms=1; **Only for E5a** loop filter integration time after initialization (secondary code delay search)[ms]
Tracking_5X.pll_bw_hz=20.0;
Tracking_5X.dll_bw_hz=20.0;
Tracking_5X.track_pilot=true
Tracking_5X.pll_bw_hz=15.0;
Tracking_5X.dll_bw_hz=2.0;
Tracking_5X.pll_bw_narrow_hz=5.0;
Tracking_5X.dll_bw_narrow_hz=1.0;
Tracking_5X.order=2;
Tracking_5X.early_late_space_chips=0.5;
Tracking_5X.dump=false
Tracking_5X.dump_filename=./tracking_ch_
;######### GALILEO E5 TRK CONFIG ############
Tracking_L5.implementation=GPS_L5_DLL_PLL_Tracking
Tracking_L5.item_type=gr_complex
Tracking_L5.track_pilot=true
Tracking_L5.pll_bw_hz=15.0;
Tracking_L5.dll_bw_hz=2.0;
Tracking_L5.pll_bw_narrow_hz=4.0;
Tracking_L5.dll_bw_narrow_hz=1.0;
Tracking_L5.order=2;
Tracking_L5.early_late_space_chips=0.5;
Tracking_L5.dump=false
Tracking_L5.dump_filename=./tracking_ch_
;######### TELEMETRY DECODER CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
@ -521,37 +355,28 @@ TelemetryDecoder_2S.dump=false
TelemetryDecoder_5X.implementation=Galileo_E5a_Telemetry_Decoder
TelemetryDecoder_5X.dump=false
TelemetryDecoder_L5.implementation=GPS_L5_Telemetry_Decoder
TelemetryDecoder_L5.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=100
;# KML, GeoJSON, NMEA and RTCM output configuration
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -11,260 +13,73 @@ GNSS-SDR.internal_fs_sps=4000000
Receiver.sources_count=2
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;######### SIGNAL_SOURCE 0 CONFIG ############
SignalSource0.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource0.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource0.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource0.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource0.samples=0
;######### SIGNAL_SOURCE 1 CONFIG ############
SignalSource1.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource1.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource1.item_type=ishort
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource1.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource1.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource1.samples=0
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Ishort_To_Complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of GNU Radio's function: gr_remez.
;;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.sampling_frequency=4000000
InputFilter0.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resampled data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter1.implementation=Ishort_To_Complex
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of GNU Radio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.sampling_frequency=4000000
InputFilter1.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neighborhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resampled data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples.
Resampler1.dump_filename=../data/resampler.dat.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=2
;#count: Number of available Galileo satellite channels.
Channels_1B.count=2
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
@ -280,120 +95,73 @@ Channel.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false

View File

@ -1,4 +1,6 @@
; Default configuration file
; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
@ -14,250 +16,102 @@ GNSS-SDR.internal_fs_sps=2560000
;GNSS-SDR.internal_fs_sps=4096000
;GNSS-SDR.internal_fs_sps=5120000
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;######### SIGNAL_SOURCE 0 CONFIG ############
;#implementation
SignalSource0.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource0.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource0.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource0.sampling_frequency=20480000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource0.samples=0
;######### SIGNAL_SOURCE 1 CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource1.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource1.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource1.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource1.sampling_frequency=20480000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource1.samples=0
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=float
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter0.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter0.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=float
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter1.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter1.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
;#count: Number of available Galileo satellite channels.
Channels_1B.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1G" GLONASS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "5X" GALILEO E5a I+Q
;# "L5" GPS L5
;# SOURCE CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
@ -299,117 +153,77 @@ Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition_1C.scoherent_integration_time_ms=1
Acquisition_1C.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
Acquisition_1B.coherent_integration_time_ms=4
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.positioning_mode=Single ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=true;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.dump_filename=./PVT

View File

@ -1,12 +1,12 @@
:+1::tada: Hello, and thanks for contributing to [GNSS-SDR](http://gnss-sdr.org)! :tada::+1:
:+1::tada: Hello, and thanks for contributing to [GNSS-SDR](https://gnss-sdr.org)! :tada::+1:
Before submitting your pull request, please make sure the following is done:
1. You undertake the [Contributor Covenant Code of Conduct](https://github.com/gnss-sdr/gnss-sdr/blob/master/CODE_OF_CONDUCT.md).
2. If you are a first-time contributor, after your pull request you will be asked to sign an Individual Contributor License Agreement ([CLA](https://en.wikipedia.org/wiki/Contributor_License_Agreement)) before your code gets accepted into `master`. This license is for your protection as a Contributor as well as for the protection of [CTTC](http://www.cttc.es/); it does not change your rights to use your own contributions for any other purpose. Except for the license granted therein to CTTC and recipients of software distributed by CTTC, you reserve all right, title, and interest in and to your contributions. The information you provide in that CLA will be maintained in accordance with [CTTC's privacy policy](http://www.cttc.es/privacy/).
3. You have read the [Contributing Guidelines](https://github.com/gnss-sdr/gnss-sdr/blob/master/CONTRIBUTING.md).
4. You have read the [coding style guide](http://gnss-sdr.org/coding-style/).
5. Specifically, you have read [about clang-format](http://gnss-sdr.org/coding-style/#use-tools-for-automated-code-formatting) and you have applied it.
4. You have read the [coding style guide](https://gnss-sdr.org/coding-style/).
5. Specifically, you have read [about clang-format](https://gnss-sdr.org/coding-style/#use-tools-for-automated-code-formatting) and you have applied it.
6. You have forked the [gnss-sdr upstream repository](https://github.com/gnss-sdr/gnss-sdr) and have created your branch from `next` (or any other currently living branch in the upstream repository).
7. Please include a description of your changes here.
**Please feel free to delete this line and the above text once you have read it and in case you want to go on with your pull request.**
**Please feel free to delete this line and the above text once you have read it and in case you want to go on with your pull request, and explain your intend below.**

View File

@ -1,3 +1,143 @@
## [Unreleased](https://github.com/gnss-sdr/gnss-sdr/tree/next)
Next release will have several improvements in different dimensions, addition of new features and bug fixes:
### Improvements in Accuracy:
- Part of the RTKLIB core library has been integrated into GNSS-SDR. There is now a single PVT block implementation which makes use of RTKLIB to deliver PVT solutions, including Single and PPP navigation modes.
- Fixed CN0 estimation for other correlation times than 1 ms.
- Improved computation of tracking parameters and GNSS observables.
- Other minor bug fixes.
### Improvements in Availability:
- Internal Finite State Machines rewritten for improved continuity in delivering position fixes. This fixes a bug that was stalling the receiver after about six hours of continuous operation.
- Redesign of the time counter for enhanced continuity.
- Improved flow graph in multisystem configurations: the receiver does not get stalled anymore if no signal is found from the first system.
- Improved acquisition and tracking sensitivity.
- Other minor bug fixes.
### Improvements in Efficiency:
- Added the possibility of non-blocking acquisition, which works well when using real-time data from an RF front-end.
- Improved flow graph in multiband configurations: satellites acquired in one band are immediately searched in others.
- Complex local codes have been replaced by real codes, alleviating the computational burden.
- New volk_gnsssdr kernels: volk_gnsssdr_16i_xn_resampler_16i_xn.h, volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn.h, volk_gnsssdr_32f_xn_resampler_32f_xn.h, volk_gnsssdr_32fc_32f_rotator_dot_prod_32fc_xn.h
- Some AVX2 implementations added to the volk_gnsssdr library.
- Improvement in C++ usage: Use of const container calls when result is immediately converted to a const iterator. Using these members removes an implicit conversion from iterator to const_iterator.
- A number of code optimizations here and there.
### Improvements in Flexibility:
- A number of new parameters have been exposed to the configuration system.
- Possibility to choose Pilot or Data component for tracking of GPS L5 and Galileo E5a signals.
- Enabled extended coherent integration times.
- Some configuration parameters can now be overridden by commandline flags for easier use in scripts.
### Improvements in Interoperability:
- Added the GPS L5 receiver chain.
- Added the GLONASS L1 SP receiver chain.
- Added the GLONASS L2 SP receiver chain.
- Improvements in the Galileo E5a and GPS L2C receiver chains.
- Updated list of available GNSS satellites.
- Added five more signal sources: "Fmcomms2_Signal_Source" (requires gr-iio), "Plutosdr_Signal Source" (requires gr-iio), "Spir_GSS6450_File_Signal_Source", "Labsat_Signal_Source" and "Custom_UDP_Signal_Source" (requires libpcap). Documented in https://gnss-sdr.org/docs/sp-blocks/signal-source/
- Improved support for BladeRF, HackRF and RTL-SDR front-ends.
- Added tools for the interaction with front-ends based on the AD9361 chipset.
- Intermediate results are now saved in .mat binary format, readable from Matlab/Octave and from Python via h5py.
- Added the GPX output format.
- Fixed a bug in the format of NMEA sentences when latitude or longitude minutes were >10.
- Improvements in the RTCM server stability.
- Improvements in the correctness of generated RINEX files.
### Improvements in Maintainability:
- Setup of a Continuous Integration system that checks building and runs QA code in a wide range of GNU/Linux distributions (ArchLinux, CentOS, Debian, Fedora, OpenSUSE, Ubuntu) and releases. See https://gitlab.com/gnss-sdr/gnss-sdr
- Creation of multi-system processing blocks, drastically reducing code duplication and maintainability time.
- Automated code formatting with clang-format. This tool is widely available and easy to integrate into many code editors, and it also can be used from the command line. It cuts time spent on adhering to the project's code formatting style.
- Improvement in C++ usage: C-style casts have been replaced by C++ casts. C-style casts are difficult to search for. C++ casts provide compile time checking ability and express programmers' intent better, so they are safer and clearer.
- Improvement in C++ usage: The override special identifier is now used when overriding a virtual function. This helps the compiler to check for type changes in the base class, making the detection of errors easier.
- Improvement in C++ usage: A number of unused includes have been removed. Order of includes set to: local (in-source) headers, then library headers, then system headers. This helps to detect missing includes.
- Improvement in C++ usage: Enhanced const correctness. Misuses of those variables are detected by the compiler.
### Improvements in Portability:
- Several CMake scripts improvements, more verbose outputs in case of errors. Building configuration has been documented in https://gnss-sdr.org/docs/tutorials/configuration-options-building-time/
- Improved SDK for cross-compilation in embedded devices. Documented in https://gnss-sdr.org/docs/tutorials/cross-compiling/
- Improved control over minimum required versions for core dependencies.
- The software builds with C++11, C++14 and C++17 standards.
- The software can now be built using GCC >= 4.7.2 or LLVM/Clang >= 3.4.0 compilers on GNU/Linux, and with Clang/AppleClang on MacOS.
- The Ninja build system can be used in replacement of make.
- The volk_gnsssdr library can be built using Python 2.7 or Python 3.6.
- The volk_gnsssdr library is now ready for AArch64 NEON instructions.
- Ready for GNU Radio 3.8 C++ API (as per current next branch of GNU Radio upstream repository).
- Improved detection of required and optional dependencies in many GNU/Linux distributions and processor architectures.
- Improvement in C++ usage: The <ctime> library has been replaced by the more modern and portable <chrono>.
- Improvement in C++ usage: The <stdio.h> library has been replaced by the more modern and portable <fstream> for file handling.
- Improvement in C++ usage: C++ libraries preferred over C libraries (e.g., <cctype> instead of <ctype.h>, <cmath> instead of <math.h>).
- Fixes required by Debian packaging.
- Fixes required by Macports packaging.
- A downside in portability: BLAS and LAPACK libraries are now required even in ARM devices.
- A downside in portability: the matio library >= 1.5.3 is a new required dependency. If not found, it is downloaded and built automatically at building time, but this requires libtool, automake and hdf5 already installed in the system.
### Improvements in Reliability:
- Introduced 3 new Input Filter implementations for pulsed and narrowband interference mitigation: `Pulse_Blanking_Filter`, `Notch_Filter` and `Notch_Filter_Lite`. Documented in https://gnss-sdr.org/docs/sp-blocks/input-filter/
- Improved flow graph stabiliy.
- Introduction of high-integrity C++ practices into the source code and included in the coding style guide. See https://gnss-sdr.org/coding-style/
- Fixed a number of defects detected by Coverity Scan.
- Improvement in C++ usage: rand() function replaced by <random> library.
- Improvement in C++ usage: strlen and strncpy have been replaced by safer C++ counterparts.
- Improvement in C++ usage: Some destructors have been fixed, avoiding segmentation faults when exiting the program.
- Website switched from http to https. Links in the source tree switched when available.
### Improvements in Reproducibility:
- Setup of a Continuous Reproducibility system at GitLab for the automatic reproduction of experiments. The concept was introduced in https://ieeexplore.ieee.org/document/8331069/ Example added in the src/utils/reproducibility/ieee-access18/ folder.
- Fixes of Lintian warnings related to build reproducibility.
### Improvements in Scalability:
- Improvements in multi-system, multi-band receiver configurations. The receiver now accepts any number of channels and systems in the three available bands.
- All possible combinations of signals and integration times are now accepted by the Observables block.
### Improvements in Testability:
- Several Unit Tests added. Documentation of testing concepts and available tests at https://gnss-sdr.org/docs/tutorials/testing-software-receiver/
- Receiver channels can now be fixed to a given satellite.
- Improved CTest support in volk_gnsssdr.
### Improvements in Usability:
- All Observables block implementations have been merged into a single implementation for all kinds of GNSS signals, making it easier to configure.
- All PVT block implementations have been merged into a single implementation for all kinds of GNSS signals, making it easier to configure.
- Misleading parameter name GNSS-SDR.internal_fs_hz has been replaced by GNSS-SDR.internal_fs_sps. The old parameter name is still read. If found, a warning is provided to the user.
- Updated and improved documentation of processing blocks at https://gnss-sdr.org/docs/sp-blocks/
- Improved documentation of required dependency packages in several GNU/Linux distributions.
- Parameter names with the same role have been harmonized within different block implementations.
- Added a changelog, a code of conduct, a contributing guide and a pull-request template in the source tree.
- Added colors to the commandline user interface.
- Updated manfiles.
See the definitions of concepts and metrics at https://gnss-sdr.org/design-forces/
## [0.0.9](https://github.com/gnss-sdr/gnss-sdr/releases/tag/v0.0.9)
DOI: https://doi.org/10.5281/zenodo.291371
@ -59,7 +199,7 @@ This release has several improvements, addition of new features and bug fixes in
- Now GNSS-SDR can be run in virtual environments through snap packages (see https://github.com/carlesfernandez/snapcraft-sandbox) and docker images (see https://github.com/carlesfernandez/docker-gnsssdr).
- Now GNSS-SDR is adapted to cross-compiling environments for embedded devices (see https://github.com/carlesfernandez/oe-gnss-sdr-manifest).
- BLAS and LAPACK libraries are not longer mandatory on ARM devices.
- BLAS and LAPACK libraries are no longer mandatory on ARM devices.
### Improvements in Scalability:
@ -74,17 +214,18 @@ This release has several improvements, addition of new features and bug fixes in
- Unit tests added: GpsL1CADllPllTracking and GpsL1CATelemetryDecoderTest.
- System test added: ttff_gps_l1 performs a set of cold / assisted runs of the software receiver and computes statistics about the obtained Time To First Fix.
- System test added: obs_gps_l1_system_test uses an external software-defined signal generator to produce raw digital GNSS signal from a RINEX navigation file and a position (static or dynamic), processes it with GNSS-SDR, and then compares the RINEX observation file produced by the software receiver to that produced by the signal generator.
- Software Development Kit provided for embedded devices (see http://gnss-sdr.org/docs/tutorials/cross-compiling/).
- Software Development Kit provided for embedded devices (see https://gnss-sdr.org/docs/tutorials/cross-compiling/).
### Improvements in Usability:
- Now the block factory automatically detects Channel input data type, so it is no longer required to specify Channel.input_type in the configuration. An error raises if Acquisition and Tracking Blocks are not configured with the same input data type.
- Block names changed from L2_M to L2C.
- Documentation available at http://gnss-sdr.org/docs/
- Documentation available at https://gnss-sdr.org/docs/
- Improved tools for compilation, execution and testing in embedded devices.
See the definitions of concepts and metrics at http://gnss-sdr.org/design-forces/
See the definitions of concepts and metrics at https://gnss-sdr.org/design-forces/
@ -122,12 +263,12 @@ This release has several improvements, addition of new features and bug fixes:
- Improvements in receiver design: Internal block communication has been redesigned to accommodate the addition of new signals, and now upstream and downstream communication within blocks is implemented through the GNU Radio blocks asynchronous message passing system, leading to a more scalable, more robust and cleaner design.
- Improvements in receiver design: Correlators have been rewritten to take full advantage of VOLK and VOLK_GNSSSDR, and they are of general use for any tracking block. Their API now admit an arbitrary number of correlators, spaced in an arbitrary manner, in 16ic and 32fc versions.
- Improvements in receiver design: Block adapters are now all managed by smart pointers, ensuring better memory management.
- Improvements in receiver design: Block adapters are now all managed by smart pointers, ensuring better memory management.
- Improvements in processing speed: The VOLK_GNSSSDR library has been rewritten, following current VOLK standards and adding a number of new kernels. This approach addresses both efficiency and portability. Now the library provides the key kernels for GNSS signal processing in 16ic and 32fc versions, including SSE2, SSE3, SSE4.1, AVX, AV2 and NEON implementations. Please execute volk_gnsssdr_profile and volk_profile to use the fastest implementation for your host machine.
- New source block: Two_Bit_Packed_File_Signal_Source. This block takes 2 bit samples that have been packed into bytes or shorts as input and generates a byte for each sample.
- Fixes in SUPL assistance (supl.nokia.com removed).
- Improvements in acquisition: Added a non CFAR PCPS acquisition algorithm based on the estimation of the post correlation noise floor. If enabled as an option in the acquisition configuration, it allows setting more stable thresholds in the presence of non-gaussian front-end noise (which is the usual behavior of front-ends.)
- Fixes in acquisition: Fixed mismatch between the config files and the acquisition code in the specification of the IF. Fixed a bug in the length of the FFT of local codes.
- Fixes in acquisition: Fixed mismatch between the config files and the acquisition code in the specification of the IF. Fixed a bug in the length of the FFT of local codes.
- Improvements in tracking sensitivity: Added configuration option to customize the extension of the GPS L1 CA correlation length after bit synchronization (options are: [1,2,4,5,10,20] ms). Only available in the GPS_L1_CA_DLL_PLL_C_Aid_Tracking implementation.
- New tracking block introduced: GPS_L1_CA_DLL_PLL_C_Aid_Tracking is a GPS L1 C/A carrier PLL and code DLL with optional carrier-aid feedback. It is available in both 32 bits gr_complex input samples and in 16 bits short int complex samples. The gr_complex version has also the capability to extend the coherent correlation period from 1ms to 20ms using telemetry symbol synchronization.
- Increased resolution in CN0 estimator internal variables.
@ -136,18 +277,18 @@ This release has several improvements, addition of new features and bug fixes:
- New tracking block introduced: GPS_L1_CA_DLL_PLL_Tracking_GPU is a GPS L1 C/A carrier PLL and code DLL that uses the CUDA-compatible GPU to compute carrier wipe off and correlation operations, alleviating the CPU load.
- Obsolete/buggy blocks removed: GPS_L1_CA_DLL_FLL_PLL_Tracking, GPS_L1_CA_DLL_PLL_Optim_Tracking.
- Added a RTCM printer and TCP server in PVT blocks (still experimental). The receiver is now able to stream data in real time, serving RTCM 3.2 messages to multiple clients. For instance, it can act as a Ntrip Source feeding a Ntrip Server, or to be used as data input in RTKLIB, obtaining Precise Point Positioning fixes in real-time. The TCP port, Station ID, and rate of MT1019/MT1045 and MSM can be configured. GPS_L1_CA_PVT serves MT1019 (GPS Ephemeris) and MSM7 (MT1077, full GPS pseudoranges, phase ranges, phase range rates and CNR - high resolution) messages, while GALILEO_E1_PVT serves MT1045 (Galileo ephemeris) and MSM7 (MT1097, full Galileo pseudoranges, phase ranges, phase range rates and CNR - high resolution).
- Added a GeoJSON printer. Basic (least-squares) position fixes can be now also stored in this format, in addition to KML.
- Added a GeoJSON printer. Basic (least-squares) position fixes can be now also stored in this format, in addition to KML.
- Obsolete block removed: output filter.
- QA code migrated to the new asynchronous message passing system.
- Improvements in documentation: update of README.md file, addition of documentation for the VOLK_GNSSSDR library, updated links to new ICDs.
- Improvements in documentation: Satellite identification updated to current constellation status.
- Improvements in documentation: Satellite identification updated to current constellation status.
- Updated and cleaner console output. Now Galileo satellites have the E identifier in their PRN number.
- Several improvements in CMake scripts allow to build GNSS-SDR in Linux Debian (Jessie, Stretch and Sid), Ubuntu (from 12.04 to 16.04), including amd64, i386, armhf and arm64 architectures, and possibly in other GNU/Linux distributions, as well as in Mac OS X 10.9 to 10.11. It also works well with CMake 3.5 (some problems solved with VOLK_GNSSSDR as a sub-project).
- The software can link either against OpenSSL or against GnuTLS with openssl extensions, whatever it is available. This allows buildings in distributions such as Fedora or ArchLinux, while being compatible with binary distribution through Debian packages.
- Fixed a number of defects detected by Coverity Scan.
- Some fixes required by Debian licensing and packaging system.
- Added a CGRAN (http://www.cgran.org/) manifest
- Lots of code cleaning and fixes of typos and small bugs.
- Lots of code cleaning and fixes of typos and small bugs.
@ -198,7 +339,7 @@ This release has several improvements and bug fixes:
- Added volk_gnsssdr library, a volk-like library implementing some specific kernels and ensuring portable executables. It comes with a volk_gnsssdr_profile executable, in the fashion of volk_profile. Volk and volk_gnsssdr are compatible and can be mixed together. This is expected to enable faster execution of the software receiver in upcoming versions.
- The former rtlsdr_signal_source has been replaced by a more general osmosdr_signal_source compatible with all those front-ends accessible by the OsmoSDR driver (bladeRF, hackRF, etc.) in addition to RTL-based dongles.
- Added manpages when binaries gnss-sdr, volk_gnsssdr_profile and front-end-cal are installed.
- Now GNSS-SDR can be build on i386, amd64, armhf, armel and arm64 architectures.
- Now GNSS-SDR can be built on i386, amd64, armhf, armel and arm64 architectures.
- Now GNSS-SDR builds on Ubuntu 14.04 and 14.10, Debian jessie/sid and Mac OS X 10.9 and 10.10.
- Improved detection of dependencies, specially when installed as .deb packages.
- Added a check' target with some minimal tests.
@ -214,14 +355,14 @@ This release has several improvements and bug fixes:
- Added hybrid processing GPS L1 C/A and Galileo E1B, providing position fixes make use of observables for both constellations.
- Added implementations of the QuickSync algorithm for GPS L1 C/A and Galileo E1 acquisition.
- Added processing blocks for Galileo E5a: Acquisition, Tracking, Telemetry_Decoder (experimental)
- Added processing blocks for Galileo E5a: Acquisition, Tracking, Telemetry_Decoder (experimental)
- New configuration files allow to configure GPS and Galileo channels in the same receiver.
- Added tropospheric corrections to GPS and Galileo PVT solution.
- Improved precision obtained by changing some variables from float to double.
- New building options: ENABLE_GN3S, ENABLE_RTLSDR and ENABLE_ARRAY and ENABLE_OPENCL.
- Improved documentation on how to enable optional drivers.
- Fixed bug in memory alignment that caused problems with high data rates.
- Added ENABLE_GENERIC_ARCH, an option to build the binary without detecting the SIMD instruction set present in the compiling machine, so it can be executed in other machines without those specific sets.
- Added ENABLE_GENERIC_ARCH, an option to build the binary without detecting the SIMD instruction set present in the compiling machine, so it can be executed in other machines without those specific sets.
- Added ENABLE_GPERFTOOLS, which links the executable to tcmalloc and profiler if Gperftools is available on the system.
- Added carrier phase, Doppler shift and signal strength observables to the RINEX files. Static PPP solutions are available for GPS with RTKLIB via RINEX files.
- The executable now produces RINEX files version 3.02 of Galileo Observables, Navigation data, and mixed (GPS/Galileo) observables and nav data. RINEX 3.02 is the default version of RINEX files.

View File

@ -21,7 +21,7 @@
# that follow. The default is UTF-8 which is also the encoding used for all
# text before the first occurrence of this tag. Doxygen uses libiconv (or the
# iconv built into libc) for the transcoding. See
# http://www.gnu.org/software/libiconv for the list of possible encodings.
# https://www.gnu.org/software/libiconv for the list of possible encodings.
DOXYFILE_ENCODING = UTF-8
@ -551,7 +551,7 @@ LAYOUT_FILE =
# The CITE_BIB_FILES tag can be used to specify one or more bib files containing
# the reference definitions. This must be a list of .bib files. The .bib
# extension is automatically appended if omitted. This requires the bibtex tool
# to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info.
# to be installed. See also https://en.wikipedia.org/wiki/BibTeX for more info.
# For LaTeX the style of the bibliography can be controlled using
# LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the
# search path. See also \cite for info how to create references.
@ -623,7 +623,7 @@ INPUT = @top_srcdir@/src @top_srcdir@/docs/doxygen/other
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is
# also the default input encoding. Doxygen uses libiconv (or the iconv built
# into libc) for the transcoding. See http://www.gnu.org/software/libiconv for
# into libc) for the transcoding. See https://www.gnu.org/software/libiconv for
# the list of possible encodings.
INPUT_ENCODING = UTF-8
@ -796,7 +796,7 @@ SOURCE_TOOLTIPS = YES
# If the USE_HTAGS tag is set to YES then the references to source code
# will point to the HTML generated by the htags(1) tool instead of doxygen
# built-in source browser. The htags tool is part of GNU's global source
# tagging system (see http://www.gnu.org/software/global/global.html). You
# tagging system (see https://www.gnu.org/software/global/global.html). You
# will need version 4.8.6 or higher.
USE_HTAGS = NO
@ -875,7 +875,7 @@ HTML_STYLESHEET =
# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output.
# Doxygen will adjust the colors in the stylesheet and background images
# according to this color. Hue is specified as an angle on a colorwheel,
# see http://en.wikipedia.org/wiki/Hue for more information.
# see https://en.wikipedia.org/wiki/Hue for more information.
# For instance the value 0 represents red, 60 is yellow, 120 is green,
# 180 is cyan, 240 is blue, 300 purple, and 360 is red again.
# The allowed range is 0 to 359.
@ -925,8 +925,6 @@ HTML_DYNAMIC_SECTIONS = NO
# directory and running "make install" will install the docset in
# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find
# it at startup.
# See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html
# for more information.
GENERATE_DOCSET = NO
@ -1123,7 +1121,7 @@ FORMULA_FONTSIZE = 10
FORMULA_TRANSPARENT = YES
# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax
# (see http://www.mathjax.org) which uses client side Javascript for the
# (see https://www.mathjax.org) which uses client side Javascript for the
# rendering instead of using prerendered bitmaps. Use this if you do not
# have LaTeX installed or if you want to formulas look prettier in the HTML
# output. When enabled you also need to install MathJax separately and
@ -1133,7 +1131,7 @@ USE_MATHJAX = @GNSSSDR_USE_MATHJAX@
# When MathJax is enabled you can set the default output format to be used for
# the MathJax output. See the MathJax site (see:
# http://docs.mathjax.org/en/latest/output.html) for more details.
# https://docs.mathjax.org/en/latest/output.html) for more details.
# Possible values are: HTML-CSS (which is slower, but has the best
# compatibility), NativeMML (i.e. MathML) and SVG.
# The default value is: HTML-CSS.
@ -1149,7 +1147,7 @@ MATHJAX_FORMAT = HTML-CSS
# MathJax, but it is strongly recommended to install a local copy of MathJax
# before deployment.
MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
MATHJAX_RELPATH = https://cdnjs.com/libraries/mathjax/
# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
# extension names that should be enabled during MathJax rendering. For example
@ -1160,7 +1158,7 @@ MATHJAX_EXTENSIONS =
# The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces
# of code that will be used on startup of the MathJax code. See the MathJax site
# (see: http://docs.mathjax.org/en/latest/output.html) for more details. For an
# (see: https://docs.mathjax.org/en/latest/output.html) for more details. For an
# example see the documentation.
# This tag requires that the tag USE_MATHJAX is set to YES.
@ -1194,7 +1192,7 @@ SERVER_BASED_SEARCH = NO
#
# Doxygen ships with an example indexer (doxyindexer) and search engine
# (doxysearch.cgi) which are based on the open source search engine library
# Xapian (see: http://xapian.org/).
# Xapian (see: https://xapian.org/).
#
# See the section "External Indexing and Searching" for details.
# The default value is: NO.
@ -1207,7 +1205,7 @@ EXTERNAL_SEARCH = NO
#
# Doxygen ships with an example indexer (doxyindexer) and search engine
# (doxysearch.cgi) which are based on the open source search engine library
# Xapian (see: http://xapian.org/). See the section "External Indexing and
# Xapian (see: https://xapian.org/). See the section "External Indexing and
# Searching" for details.
# This tag requires that the tag SEARCHENGINE is set to YES.
@ -1358,7 +1356,7 @@ LATEX_SOURCE_CODE = NO
# The LATEX_BIB_STYLE tag can be used to specify the style to use for the
# bibliography, e.g. plainnat, or ieeetr. See
# http://en.wikipedia.org/wiki/BibTeX and \cite for more info.
# https://en.wikipedia.org/wiki/BibTeX and \cite for more info.
# The default value is: plain.
# This tag requires that the tag GENERATE_LATEX is set to YES.

View File

@ -13,7 +13,7 @@
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
# along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
#
/*! \mainpage
@ -23,12 +23,12 @@
Welcome to GNSS-SDR!
GNSS-SDR is an open-source <a href="http://en.wikipedia.org/wiki/Software_GNSS_receiver" target="_blank">GNSS software receiver</a> freely available to the research community. This project provides a common framework for GNSS signal processing which can operate in a variety of computer platforms. This tool is intended to foster collaboration, increase awareness, and reduce development costs in the field of GNSS receiver design and customized use of GNSS signals.
GNSS-SDR is an open-source <a href="https://en.wikipedia.org/wiki/Software_GNSS_receiver" target="_blank">GNSS software receiver</a> freely available to the research community. This project provides a common framework for GNSS signal processing which can operate in a variety of computer platforms. This tool is intended to foster collaboration, increase awareness, and reduce development costs in the field of GNSS receiver design and customized use of GNSS signals.
For details about GNSS-SDR and using it, please see the <a
href="http://gnss-sdr.org" target="_blank"><b>main project page</b></a> or browse the code at the <a
href="http://sourceforge.net/p/gnss-sdr/cttc/ci/master/tree/" target="_blank"><b>Sourceforge project page</b></a>. You could be also interested in
<a href="http://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>subscribing to the mailing list</b></a>.
href="https://gnss-sdr.org" target="_blank"><b>main project page</b></a> or browse the code at the <a
href="https://sourceforge.net/p/gnss-sdr/cttc/ci/master/tree/" target="_blank"><b>Sourceforge project page</b></a>. You could be also interested in
<a href="https://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>subscribing to the mailing list</b></a>.
\section toc Contents
\li \ref overview
@ -56,25 +56,25 @@ More details on GNSS-SDR signal processing blocks:
\section overview Overview
GNSS-SDR provides an interface to different suitable RF front-ends and implements all the receiver chain up to the navigation solution.
Its design allows any kind of customization, including interchangeability of signal sources, signal processing algorithms,
interoperability with other systems, output formats, and offers interfaces to all the intermediate signals, parameters and variables.
The goal is to write efficient and truly reusable code, easy to read and maintain, with fewer bugs, and producing highly optimized executables
in a variety of hardware platforms and operating systems. In that sense, the challenge consists of defining a gentle balance within level
of abstraction and performance. GNSS-SDR runs in a personal computer and provides interfaces through USB and Ethernet
GNSS-SDR provides an interface to different suitable RF front-ends and implements all the receiver chain up to the navigation solution.
Its design allows any kind of customization, including interchangeability of signal sources, signal processing algorithms,
interoperability with other systems, output formats, and offers interfaces to all the intermediate signals, parameters and variables.
The goal is to write efficient and truly reusable code, easy to read and maintain, with fewer bugs, and producing highly optimized executables
in a variety of hardware platforms and operating systems. In that sense, the challenge consists of defining a gentle balance within level
of abstraction and performance. GNSS-SDR runs in a personal computer and provides interfaces through USB and Ethernet
buses to a variety of either commercially available or custom-made RF front-ends, adapting the processing algorithms to different sampling frequencies, intermediate
frequencies and sample resolutions. This makes possible rapid prototyping of specific receivers intended, for instance, to geodetic applications,
observation of the ionospheric impact on navigation signals, GNSS reflectometry, signal quality monitoring, or carrier-phase based navigation techniques.
frequencies and sample resolutions. This makes possible rapid prototyping of specific receivers intended, for instance, to geodetic applications,
observation of the ionospheric impact on navigation signals, GNSS reflectometry, signal quality monitoring, or carrier-phase based navigation techniques.
\image html overview.png
\image latex overview.png "Overview" width=12cm
As signal inputs, it accepts:
\li Raw data file captured with a data grabber (digitized at some intermediate frequency or directly at baseband).
\li Any suitable RF configuration that can be driven by the Universal Software Radio Peripheral Hardware Driver (<a href="http://files.ettus.com/uhd_docs/manual/html/" target="_blank">UHD</a>).
This includes all current and future <a href="http://www.ettus.com/">Ettus Research</a> products. The USRP1 + DBSRX 2.2 daughterboard is an example of working configuration for GPS L1 C/A and Galileo E1B and E1C signals.
\li The <a href="http://gnss-sdr.org/docs/tutorials/sige-gn3s-sampler-v2-usb-front-end/" target="blank">GN3S v2 USB dongle</a> (GN3S v3 might work with small modifications).
\li Experimentally, with some <a href="http://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/" target="_blank">USB DVB-T dongles based on the Realtek RTL2832U chipset</a>.
\li Any suitable RF configuration that can be driven by the Universal Software Radio Peripheral Hardware Driver (<a href="https://files.ettus.com/uhd_docs/manual/html/" target="_blank">UHD</a>).
This includes all current and future <a href="https://www.ettus.com/">Ettus Research</a> products. The USRP1 + DBSRX 2.2 daughterboard is an example of working configuration for GPS L1 C/A and Galileo E1B and E1C signals.
\li The <a href="https://gnss-sdr.org/docs/tutorials/sige-gn3s-sampler-v2-usb-front-end/" target="blank">GN3S v2 USB dongle</a> (GN3S v3 might work with small modifications).
\li Experimentally, with some <a href="https://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/" target="_blank">USB DVB-T dongles based on the Realtek RTL2832U chipset</a>.
\li For mathematical representations of the targeted signals, check out the \ref the_signal_model page.
As outputs, it provides:
@ -85,22 +85,22 @@ As outputs, it provides:
\li Position, Velocity and Time solution in KML format and NMEA
\section build Building GNSS-SDR
\section build Building GNSS-SDR
In principle, GNSS-SDR can be built in any Unix-like system. In practice, it depends on being able to install all the required dependencies. See the <a href="http://gnss-sdr.org/build-and-install/" target="_blank">building guide</a> page for details about the project's
dependencies and build process. Mainly, it consists on installing <a href="http://gnuradio.org/" target="_blank">GNU Radio</a> plus some few more libraries:
In principle, GNSS-SDR can be built in any Unix-like system. In practice, it depends on being able to install all the required dependencies. See the <a href="https://gnss-sdr.org/build-and-install/" target="_blank">building guide</a> page for details about the project's
dependencies and build process. Mainly, it consists on installing <a href="https://gnuradio.org/" target="_blank">GNU Radio</a> plus some few more libraries:
\li <a href="http://code.google.com/p/gflags/" target="_blank">Gflags</a>, a library that implements commandline flags processing,
\li <a href="http://code.google.com/p/google-glog/" target="_blank">Glog</a>, a library that implements application-level logging,
\li <a href="https://github.com/gflags/gflags" target="_blank">Gflags</a>, a library that implements commandline flags processing,
\li <a href="https://github.com/google/glog" target="_blank">Glog</a>, a library that implements application-level logging,
\li <a href="http://arma.sourceforge.net/" target="_blank">Armadillo</a>, a C++ linear algebra library,
\li <a href="http://code.google.com/p/googletest/" target="_blank">Googletest</a>, Google's framework for writing C++ tests (requires definition of the GTEST_DIR variable),
\li <a href="https://github.com/google/googletest" target="_blank">Googletest</a>, Google's framework for writing C++ tests (requires definition of the GTEST_DIR variable),
and, optionally,
\li <a href="http://code.google.com/p/gperftools/" target="_blank">Gperftools</a>, which provides fast, multi-threaded malloc() and performance analysis tools.
\li <a href="https://github.com/gperftools/gperftools" target="_blank">Gperftools</a>, which provides fast, multi-threaded malloc() and performance analysis tools.
After all dependencies are installed, clone the GNSS-SDR repository:
\verbatim
$ git clone git://git.code.sf.net/p/gnss-sdr/cttc gnss-sdr
$ git clone https://github.com/gnss-sdr/gnss-sdr
\endverbatim
This will create a folder named gnss-sdr with the following structure:
@ -111,7 +111,7 @@ This will create a folder named gnss-sdr with the following structure:
|---conf <- Configuration files. Each file represents one receiver.
|---data <- Populate this folder with your captured data.
|---docs <- Contains documentation-related files
|---install <- Executables
|---install <- Executables
|---src <- Source code folder
|-----algorithms
|-------PVT
@ -136,7 +136,7 @@ This will create a folder named gnss-sdr with the following structure:
|-----utils <- some utilities (e.g. Matlab scripts)
\endverbatim
You are now ready to build GNSS-SDR by using <a href="http://www.cmake.org/" target="_blank">CMake</a> as building tool:
You are now ready to build GNSS-SDR by using <a href="https://cmake.org/" target="_blank">CMake</a> as building tool:
\verbatim
$ cd gnss-sdr/build
$ cmake ../
@ -149,8 +149,8 @@ You can run them from that folder, but if you prefer to install gnss-sdr on your
$ sudo make install
\endverbatim
This will make a copy of the conf/ folder into /usr/local/share/gnss-sdr/conf for your reference.
We suggest to create a working directory at your preferred location and store your own configuration and data files there.
This will make a copy of the conf/ folder into /usr/local/share/gnss-sdr/conf for your reference.
We suggest to create a working directory at your preferred location and store your own configuration and data files there.
You can create the documentation by doing:
@ -158,7 +158,7 @@ You can create the documentation by doing:
$ make doc
\endverbatim
from the <tt>gnss-sdr/build</tt> folder. In both cases, <a href="http://www.stack.nl/~dimitri/doxygen/" target="_blank">Doxygen</a> will generate HTML documentation that can be
from the <tt>gnss-sdr/build</tt> folder. In both cases, <a href="http://www.stack.nl/~dimitri/doxygen/" target="_blank">Doxygen</a> will generate HTML documentation that can be
retrieved pointing your browser of preference to <tt>gnss-sdr/docs/html/index.html</tt>.
There are two more extra targets available. From the <tt>gnss-sdr/build</tt> folder:
@ -201,20 +201,20 @@ $ sudo make uninstall
$ rm -rf *
\endverbatim
You can also check <a href="http://git-scm.com/book" target="_blank">The Git Book</a> for more information about Git usage.
You can also check <a href="https://git-scm.com/book" target="_blank">The Git Book</a> for more information about Git usage.
\section using_gnss-sdr Using GNSS-SDR
With GNSS-SDR, you can define you own receiver, work with captured raw data or from a RF front-end, dump into files intermediate signals, or tune every single algorithm used in the \ref signal_processing. All the configuration
is done in a single file. Those configuration files reside at the <tt>gnss-sdr/conf</tt> folder. By default, the executable <tt>gnss-sdr</tt> will read the configuration
available at <tt>gnss-sdr/conf/gnss-sdr.conf</tt>. You can edit that file to fit your needs, or even better, define a new <tt>my_receiver.conf</tt> file with your own configuration.
available at <tt>gnss-sdr/conf/gnss-sdr.conf</tt>. You can edit that file to fit your needs, or even better, define a new <tt>my_receiver.conf</tt> file with your own configuration.
This new receiver can be done by invoking gnss-sdr with the <tt>--config_file</tt> flag pointing to your configuration file:
\verbatim
$ gnss-sdr --config_file=../conf/my_receiver.conf
\endverbatim
You can see a guide of available implementations at <tt>gnss-sdr/conf/master.conf</tt>. That folder contains other working examples as well. If you have a working
configuration and want to share it will others, please email it to the <a href="http://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>GNSS-SDR developers mailing list</b></a>
configuration and want to share it will others, please email it to the <a href="https://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>GNSS-SDR developers mailing list</b></a>
and we will be happy to upload it to the server.
You can use a single configuration file for processing
@ -224,41 +224,41 @@ $ gnss-sdr --config_file=../conf/my_receiver.conf --signal_source=../data/my_cap
\endverbatim
This will override the <tt>SignalSource.filename</tt> specified in the configuration file.
You can get a complete list of available commandline flags by doing:
You can get a complete list of available commandline flags by doing:
\verbatim
$ gnss-sdr --help
\endverbatim
For general usage of commandline flags, see <a href="http://google-gflags.googlecode.com/svn/trunk/doc/gflags.html" target="_blank">how to use Google Commandline Flags</a>.
\section control_plane Control plane
GNSS-SDR's main method initializes the logging library, processes the command line flags, if any, provided by the user and instantiates a ControlThread object.
Its constructor reads the configuration file, creates a control queue and creates a flowgraph according to the configuration. Then, the program's main method
calls the run() method of the instantiated object, an action that connects the flowgraph and starts running it. After that, and until a stop message is received,
it reads control messages sent by the receiver's modules through a safe-thread queue and processes them. Finally, when a stop message is received, the main
GNSS-SDR's main method initializes the logging library, processes the command line flags, if any, provided by the user and instantiates a ControlThread object.
Its constructor reads the configuration file, creates a control queue and creates a flowgraph according to the configuration. Then, the program's main method
calls the run() method of the instantiated object, an action that connects the flowgraph and starts running it. After that, and until a stop message is received,
it reads control messages sent by the receiver's modules through a safe-thread queue and processes them. Finally, when a stop message is received, the main
method executes the destructor of the ControlThread object, which deallocates memory, does other cleanup and exits the program.
The GNSSFlowgraph class is responsible for preparing the graph of blocks according to the configuration, running it, modifying it during run-time and stopping it.
Blocks are identified by its role. This class knows which roles it has to instantiate and how to connect them.
It relies on the configuration to get the correct instances of the roles it needs and then it applies the connections between GNU Radio blocks to make the
graph ready to be started. The complexity related to managing the blocks and the data stream is handled by GNU Radio's <tt>gr::top_block</tt> class. GNSSFlowgraph wraps
the <tt>gr::top_block</tt> instance so we can take advantage of the \ref gnss_block_factory, the configuration system and the processing blocks. This class is also responsible
for applying changes to the configuration of the flowgraph during run-time, dynamically reconfiguring channels: it selects the strategy for selecting satellites.
This can range from a sequential search over all the satellites' ID to smarter approaches that determine what are the satellites most likely in-view based on rough
The GNSSFlowgraph class is responsible for preparing the graph of blocks according to the configuration, running it, modifying it during run-time and stopping it.
Blocks are identified by its role. This class knows which roles it has to instantiate and how to connect them.
It relies on the configuration to get the correct instances of the roles it needs and then it applies the connections between GNU Radio blocks to make the
graph ready to be started. The complexity related to managing the blocks and the data stream is handled by GNU Radio's <tt>gr::top_block</tt> class. GNSSFlowgraph wraps
the <tt>gr::top_block</tt> instance so we can take advantage of the \ref gnss_block_factory, the configuration system and the processing blocks. This class is also responsible
for applying changes to the configuration of the flowgraph during run-time, dynamically reconfiguring channels: it selects the strategy for selecting satellites.
This can range from a sequential search over all the satellites' ID to smarter approaches that determine what are the satellites most likely in-view based on rough
estimations of the receiver position in order to avoid searching satellites in the other side of the Earth.
The Control Plane is in charge of creating a flowgraph according to the configuration and then managing the modules. Configuration allows users to define in an easy way their own
custom receiver by specifying the flowgraph (type of signal source, number of channels, algorithms to be used for each channel and each module, strategies for
satellite selection, type of output format, etc.). Since it is difficult to foresee what future module implementations will be needed in terms of configuration,
we used a very simple approach that can be extended without a major impact in the code. This can be achieved by simply mapping the names of the variables in the
custom receiver by specifying the flowgraph (type of signal source, number of channels, algorithms to be used for each channel and each module, strategies for
satellite selection, type of output format, etc.). Since it is difficult to foresee what future module implementations will be needed in terms of configuration,
we used a very simple approach that can be extended without a major impact in the code. This can be achieved by simply mapping the names of the variables in the
modules with the names of the parameters in the configuration.
\subsection configuration Configuration
Properties are passed around within the program using the ConfigurationInterface class. There are two implementations of this interface: FileConfiguration and
InMemoryConfiguration. FileConfiguration reads the properties (pairs of property name and value) from a file and stores them internally. InMemoryConfiguration does
not read from a file; it remains empty after instantiation and property values and names are set using the set property method. FileConfiguration is intended to be
used in the actual GNSS-SDR application whereas InMemoryConfiguration is intended to be used in tests to avoid file-dependency in the file system. Classes that
need to read configuration parameters will receive instances of ConfigurationInterface from where they will fetch the values. For instance, parameters related
Properties are passed around within the program using the ConfigurationInterface class. There are two implementations of this interface: FileConfiguration and
InMemoryConfiguration. FileConfiguration reads the properties (pairs of property name and value) from a file and stores them internally. InMemoryConfiguration does
not read from a file; it remains empty after instantiation and property values and names are set using the set property method. FileConfiguration is intended to be
used in the actual GNSS-SDR application whereas InMemoryConfiguration is intended to be used in tests to avoid file-dependency in the file system. Classes that
need to read configuration parameters will receive instances of ConfigurationInterface from where they will fetch the values. For instance, parameters related
to SignalSource should look like this:
\verbatim
@ -266,80 +266,80 @@ SignalSource.parameter1=value1
SignalSource.parameter2=value2
\endverbatim
The name of these parameters can be anything but one reserved word: implementation. This parameter indicates in its value the name of the class that has to be instantiated
by the factory for that role. For instance, if our signal source is providing data already at baseband and thus we want to use the implementation Pass_Through for module SignalConditioner, the corresponding line in the
The name of these parameters can be anything but one reserved word: implementation. This parameter indicates in its value the name of the class that has to be instantiated
by the factory for that role. For instance, if our signal source is providing data already at baseband and thus we want to use the implementation Pass_Through for module SignalConditioner, the corresponding line in the
configuration file would be
\verbatim
SignalConditioner.implementation=Pass_Through
\endverbatim
Since the configuration is just a set of property names and values without any meaning or syntax, the system is very versatile and easily extendable. Adding new
properties to the system only implies modifications in the classes that will make use of these properties. In addition, the configuration files are not checked
against any strict syntax so it is always in a correct status (as long as it contains pairs of property names and values in <a href="http://en.wikipedia.org/wiki/INI_file" target="_blank">INI format</a>).
Since the configuration is just a set of property names and values without any meaning or syntax, the system is very versatile and easily extendable. Adding new
properties to the system only implies modifications in the classes that will make use of these properties. In addition, the configuration files are not checked
against any strict syntax so it is always in a correct status (as long as it contains pairs of property names and values in <a href="https://en.wikipedia.org/wiki/INI_file" target="_blank">INI format</a>).
\subsection gnss_block_factory GNSS block factory
Hence, the application defines a simple accessor class to fetch the configuration pairs of values and passes them to a factory class called GNSSBlockFactory.
This factory decides, according to the configuration, which class needs to be instantiated and which parameters should be passed to the constructor. Hence, the factory
encapsulates the complexity of blocks' instantiation. With that approach, adding a new block that requires new parameters will be as simple as adding the block
class and modifying the factory to be able to instantiate it. This loose coupling between the blocks' implementations and the syntax of the configuration
enables extending the application capacities in a high degree. It also allows to produce fully customized receivers, for instance a testbed for acquisition
Hence, the application defines a simple accessor class to fetch the configuration pairs of values and passes them to a factory class called GNSSBlockFactory.
This factory decides, according to the configuration, which class needs to be instantiated and which parameters should be passed to the constructor. Hence, the factory
encapsulates the complexity of blocks' instantiation. With that approach, adding a new block that requires new parameters will be as simple as adding the block
class and modifying the factory to be able to instantiate it. This loose coupling between the blocks' implementations and the syntax of the configuration
enables extending the application capacities in a high degree. It also allows to produce fully customized receivers, for instance a testbed for acquisition
algorithms, and to place observers at any point of the receiver chain.
\section signal_processing Signal Processing plane
GNU Radio's class <tt>gr::basic_block</tt> is the abstract base class for all signal processing blocks, a bare abstraction of an entity that has a name and a set of
inputs and outputs. It is never instantiated directly; rather, this is the abstract parent class of both <tt>gr::hier_block2</tt>, which is a recursive container that
adds or removes processing or hierarchical blocks to the internal graph, and <tt>gr::block</tt>, which is the abstract base class for all the processing blocks.
GNU Radio's class <tt>gr::basic_block</tt> is the abstract base class for all signal processing blocks, a bare abstraction of an entity that has a name and a set of
inputs and outputs. It is never instantiated directly; rather, this is the abstract parent class of both <tt>gr::hier_block2</tt>, which is a recursive container that
adds or removes processing or hierarchical blocks to the internal graph, and <tt>gr::block</tt>, which is the abstract base class for all the processing blocks.
\image html ClassHierarchy.png
\image latex ClassHierarchy.png "Class hierarchy of signal processing blocks" width=12cm
A signal processing flow is constructed by creating a tree of hierarchical blocks, which at any level may also contain terminal nodes that actually implement signal
A signal processing flow is constructed by creating a tree of hierarchical blocks, which at any level may also contain terminal nodes that actually implement signal
processing functions.
Class <tt>gr::top_block</tt> is the top-level hierarchical block representing a flowgraph. It defines GNU Radio runtime functions used during the execution of the
program: run(), start(), stop(), wait(), etc. A a subclass called GNSSBlockInterface is the common interface for all the GNSS-SDR modules. It defines pure virtual
Class <tt>gr::top_block</tt> is the top-level hierarchical block representing a flowgraph. It defines GNU Radio runtime functions used during the execution of the
program: run(), start(), stop(), wait(), etc. A a subclass called GNSSBlockInterface is the common interface for all the GNSS-SDR modules. It defines pure virtual
methods, that are required to be implemented by a derived class.
Subclassing GNSSBlockInterface, we defined interfaces for the GNSS receiver blocks depicted in the figure above. This hierarchy provides the definition of different
algorithms and different implementations, which will be instantiated according to the configuration. This strategy allows
multiple implementations sharing a common interface, achieving the objective of decoupling interfaces from implementations: it defines a family of algorithms, encapsulates each one,
Subclassing GNSSBlockInterface, we defined interfaces for the GNSS receiver blocks depicted in the figure above. This hierarchy provides the definition of different
algorithms and different implementations, which will be instantiated according to the configuration. This strategy allows
multiple implementations sharing a common interface, achieving the objective of decoupling interfaces from implementations: it defines a family of algorithms, encapsulates each one,
and makes them interchangeable. Hence, we let the algorithm vary independently from the program that uses it.
\subsection signal_source Signal Source
The input of a software receiver are the raw bits that come out from the front-end's analog-to-digital converter (ADC).
Those bits can be read from a file stored in the hard disk or directly in real-time from a hardware device through USB or Ethernet buses.
The input of a software receiver are the raw bits that come out from the front-end's analog-to-digital converter (ADC).
Those bits can be read from a file stored in the hard disk or directly in real-time from a hardware device through USB or Ethernet buses.
The Signal Source module is in charge of implementing the hardware driver, that is, the portion of the code that communicates with the RF front-end and receives
the samples coming from the ADC. This communication is usually performed through USB or Ethernet buses. Since real-time processing requires a highly optimized
implementation of the whole receiver, this module also allows to read samples from a file stored in a hard disk, and thus processing without time constraints.
Relevant parameters of those samples are the intermediate frequency (or baseband I&Q components), the sampling rate and number of bits per sample, that must be
The Signal Source module is in charge of implementing the hardware driver, that is, the portion of the code that communicates with the RF front-end and receives
the samples coming from the ADC. This communication is usually performed through USB or Ethernet buses. Since real-time processing requires a highly optimized
implementation of the whole receiver, this module also allows to read samples from a file stored in a hard disk, and thus processing without time constraints.
Relevant parameters of those samples are the intermediate frequency (or baseband I&Q components), the sampling rate and number of bits per sample, that must be
specified by the user in the configuration file.
This module also performs bit-depth adaptation, since most of the existing RF front-ends provide samples quantized with 2 or 3 bits, while operations inside
the processor are performed on 32- or 64-bit words, depending on its architecture. Although there are implementations of the most intensive computational
processes (mainly correlation) that take advantage of specific data types and architectures for the sake of
efficiency, the approach is processor-specific and hardly portable. We suggest to keep signal samples in standard data types and letting the compiler
the processor are performed on 32- or 64-bit words, depending on its architecture. Although there are implementations of the most intensive computational
processes (mainly correlation) that take advantage of specific data types and architectures for the sake of
efficiency, the approach is processor-specific and hardly portable. We suggest to keep signal samples in standard data types and letting the compiler
select the best library version (implemented using SIMD or any other processor-specific technology) of the required routines for a given processor.
Example: FileSignalSource
The user can configure the receiver for reading from a file, setting in the configuration file the data file location, sample format,
The user can configure the receiver for reading from a file, setting in the configuration file the data file location, sample format,
and the sampling frequency and intermediate frequency at what the signal was originally captured.
\verbatim
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/home/user/gnss-sdr/data/my_capture.dat
SignalSource.item_type=gr_complex
SignalSource.sampling_frequency=4000000 ; Sampling frequency in [Hz]
SignalSource.freq=1575420000 ; RF front-end center frequency in [Hz]
\endverbatim
SignalSource.freq=1575420000 ; RF front-end center frequency in [Hz]
\endverbatim
Example: UhdSignalSource
@ -349,7 +349,7 @@ The user may prefer to use a UHD-compatible RF front-end and try real-time proce
SignalSource.implementation=UHD_Signal_Source
SignalSource.item_type=gr_complex
SignalSource.sampling_frequency=4000000 ; Sampling frequency in [Hz]
SignalSource.freq=1575420000 ; RF front-end center frequency in [Hz]
SignalSource.freq=1575420000 ; RF front-end center frequency in [Hz]
SignalSource.gain=60 ; Front-end gain in dB
SignalSource.subdevice=B:0 ; UHD subdevice specification (for USRP1 use A:0 or B:0)
\endverbatim
@ -358,8 +358,8 @@ Other examples are available at <tt>gnss-sdr/conf</tt>.
\subsection signal_conditioner Signal Conditioner
The signal conditioner is in charge of resampling the signal and delivering a reference sample rate to the downstream processing blocks, acting as
a facade between the signal source and the synchronization channels, providing a simplified interface to the input signal.
In case of multiband front-ends, this module would be in charge of providing a separated data stream for each band.
a facade between the signal source and the synchronization channels, providing a simplified interface to the input signal.
In case of multiband front-ends, this module would be in charge of providing a separated data stream for each band.
\subsection channel Channel
@ -368,31 +368,28 @@ A channel encapsulates all signal processing devoted to a single satellite. Thus
channels is selectable by the user in the configuration file, this approach helps improving the scalability and maintainability of the receiver.
This module is also in charge of managing the interplay between acquisition and tracking. Acquisition can be initialized in several ways, depending on
the prior information available (called cold start when the receiver has no information about its position nor the satellites almanac; warm start when
a rough location and the approximate time of day are available, and the receiver has a recently recorded almanac broadcast; or hot start when the receiver
the prior information available (called cold start when the receiver has no information about its position nor the satellites almanac; warm start when
a rough location and the approximate time of day are available, and the receiver has a recently recorded almanac broadcast; or hot start when the receiver
was tracking a satellite and the signal line of sight broke for a short period of time, but the ephemeris and almanac data is still valid, or this information
is provided by other means), and an acquisition process can finish deciding that the satellite is not present, that longer integration is needed in order to
is provided by other means), and an acquisition process can finish deciding that the satellite is not present, that longer integration is needed in order to
confirm the presence of the satellite, or declaring the satellite present. In the latter case, acquisition process should stop and trigger the tracking module
with coarse estimations of the synchronization parameters. The mathematical abstraction used to design this logic is known as finite state machine (FSM), that is
a behavior model composed of a finite number of states, transitions between those states, and actions. For the implementation, we used the
<a href="http://www.boost.org/libs/statechart/doc/tutorial.html" target="_blank">Boost.Statechart library</a>,
which provides desirable features such as support for asynchronous state machines, multi-threading, type-safety, error handling and compile-time validation.
with coarse estimations of the synchronization parameters.
The abstract class ChannelInterface represents an interface to a channel GNSS block. Check Channel for an actual implementation.
\subsubsection acquisition Acquisition
The first task of a GNSS receiver is to detect the presence or absence of in-view satellites. This is done by the acquisition system process, which also provides a coarse estimation of two signal parameters: the frequency shift
The first task of a GNSS receiver is to detect the presence or absence of in-view satellites. This is done by the acquisition system process, which also provides a coarse estimation of two signal parameters: the frequency shift
with respect to the nominal IF frequency, and a delay term which allows the receiver to create a local code aligned with the incoming code.
AcquisitionInterface is the common interface for all the acquisition algorithms and their corresponding implementations. Algorithms' interface, that may vary
depending on the use of information external to the receiver, such as in Assisted GNSS, is defined in classes referred to as <i>adapters</i>.
These adapters wrap the GNU Radio blocks interface into a compatible interface expected by AcquisitionInterface. This allows the use of existing GNU Radio blocks
derived from <tt>gr::block</tt>, and ensures that newly developed implementations will also be reusable in other GNU Radio-based applications.
AcquisitionInterface is the common interface for all the acquisition algorithms and their corresponding implementations. Algorithms' interface, that may vary
depending on the use of information external to the receiver, such as in Assisted GNSS, is defined in classes referred to as <i>adapters</i>.
These adapters wrap the GNU Radio blocks interface into a compatible interface expected by AcquisitionInterface. This allows the use of existing GNU Radio blocks
derived from <tt>gr::block</tt>, and ensures that newly developed implementations will also be reusable in other GNU Radio-based applications.
Moreover, it adds still another layer of abstraction, since each given acquisition algorithm can have different implementations (for instance using
different numerical libraries). In such a way, implementations can be continuously improved without having any impact neither on the algorithm interface nor the general acquisition interface.
Check GpsL1CaPcpsAcquisition and GalileoE1PcpsAmbiguousAcquisition for examples of adapters from a Parallel Code Phase Search (PCPS) acquisition block, and
pcps_acquisition_cc for an example of a block implementation. The source code of all the available acquisition algorithms is located at:
\verbatim
|-gnss-sdr
|---src
@ -406,13 +403,13 @@ The user can select a given implementation for the algorithm to be used in each
\verbatim
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition.dump=false
;#filename: Log path and filename
Acquisition.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
;#if: Signal intermediate frequency in [Hz]
Acquisition.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=1
@ -420,8 +417,8 @@ Acquisition.sampled_ms=1
Acquisition.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition.threshold=0.005
;#pfa: Acquisition false alarm probability. This option overrides the threshold option.
;Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;#pfa: Acquisition false alarm probability. This option overrides the threshold option.
;Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_max=10000
@ -429,7 +426,7 @@ Acquisition.doppler_max=10000
Acquisition.doppler_step=500
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION CH 0 CONFIG ############
@ -455,12 +452,12 @@ Acquisition.doppler_step=500
\subsubsection tracking Tracking
When a satellite is declared present, the parameters estimated by the acquisition module are then fed to the receiver tracking module, which represents the
second stage of the signal processing unit, aiming to perform a local search for accurate estimates of code delay and carrier phase, and following their eventual
variations.
variations.
Again, a class hierarchy consisting of a TrackingInterface class and subclasses implementing algorithms provides a way of testing different approaches,
with full access to their parameters. Check GpsL1CaDllPllTracking or GalileoE1DllPllVemlTracking for examples of adapters, and Gps_L1_Ca_Dll_Pll_Tracking_cc for an example
Again, a class hierarchy consisting of a TrackingInterface class and subclasses implementing algorithms provides a way of testing different approaches,
with full access to their parameters. Check GpsL1CaDllPllTracking or GalileoE1DllPllVemlTracking for examples of adapters, and Gps_L1_Ca_Dll_Pll_Tracking_cc for an example
of a signal processing block implementation. There are also available some useful classes and functions for signal tracking; take a look at Correlator, lock_detectors.h, tracking_discriminators.h or
tracking_2nd_DLL_filter.h.
tracking_2nd_DLL_filter.h.
The source code of all the available tracking algorithms is located at:
\verbatim
@ -482,10 +479,10 @@ Tracking.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
@ -508,12 +505,12 @@ Tracking.early_late_space_chips=0.5;
\endverbatim
\subsubsection decoding Decoding of the navigation message
Most of GNSS signal links are modulated by a navigation message containing the time the message was transmitted, orbital parameters of satellites
(also known as ephemeris) and an almanac (information about the general system health, rough orbits of all satellites in the network as well as data related to
error correction). Navigation data bits are structured in words, pages, subframes, frames and superframes. Sometimes, bits corresponding to a single parameter are
spread over different words, and values extracted from different frames are required for proper decoding. Some words are for synchronization purposes, others for
error control an others contain actual information. There are also error control mechanisms, from parity checks to forward error correction (FEC) encoding and
interleaving, depending on the system. All this decoding complexity is managed by a finite state machine implemented with the <a href="http://www.boost.org/libs/statechart/doc/tutorial.html" target="_blank">Boost.Statechart library</a>.
Most of GNSS signal links are modulated by a navigation message containing the time the message was transmitted, orbital parameters of satellites
(also known as ephemeris) and an almanac (information about the general system health, rough orbits of all satellites in the network as well as data related to
error correction). Navigation data bits are structured in words, pages, subframes, frames and superframes. Sometimes, bits corresponding to a single parameter are
spread over different words, and values extracted from different frames are required for proper decoding. Some words are for synchronization purposes, others for
error control an others contain actual information. There are also error control mechanisms, from parity checks to forward error correction (FEC) encoding and
interleaving, depending on the system.
The common interface is TelemetryDecoderInterface. Check GpsL1CaTelemetryDecoder for an example of the GPS L1 NAV message decoding adapter, and gps_l1_ca_telemetry_decoder_cc
for an actual implementation of a signal processing block. Configuration example:
@ -527,13 +524,13 @@ TelemetryDecoder.dump=false
See the \ref reference_docs for more information about the signal format.
\subsection observables Observables
GNSS systems provide different kinds of observations. The most commonly used are the code observations, also called pseudoranges. The <i>pseudo</i> comes from
GNSS systems provide different kinds of observations. The most commonly used are the code observations, also called pseudoranges. The <i>pseudo</i> comes from
the fact that on the receiver side the clock error is unknown and thus the measurement is not a pure range observation. High accuracy applications also use the
carrier phase observations, which are based on measuring the difference between the carrier phase transmitted by the GNSS satellites and the phase of the carrier
generated in the receiver. Both observables are computed from the outputs of the tracking module and the decoding of the navigation message.
This module collects all the data provided by every tracked channel, aligns all received data into a coherent set, and computes the observables.
The common interface is ObservablesInterface.
The common interface is ObservablesInterface.
Configuration example:
\verbatim
@ -541,7 +538,7 @@ Configuration example:
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
@ -567,24 +564,24 @@ PVT.flag_nmea_tty_port=true;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
\endverbatim
This implementation allows tuning of the following parameters:
\verbatim
PVT.averaging_depth=10 ; Number of PVT observations in the moving average algorithm
PVT.flag_averaging=true ; Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true ; Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.output_rate_ms=100 ; Period in [ms] between two PVT outputs
PVT.display_rate_ms=500 ; Position console print (std::out) interval [ms].
PVT.dump=false ; Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false ; Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump_filename=./PVT ; Log path and filename without extension.
\endverbatim
\section license About the software license
GNSS-SDR is released under the <a href="http://www.gnu.org/licenses/gpl.html" target="_blank">General Public License (GPL) v3</a>, thus securing practical usability, inspection,
and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals.
GNSS-SDR is released under the <a href="https://www.gnu.org/licenses/gpl.html" target="_blank">General Public License (GPL) v3</a>, thus securing practical usability, inspection,
and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals.
The GPL implies that:
\li Copies may be distributed free of charge or for money, but the source code has to be shipped or provided free of charge (or at cost price) on demand. The receiver of the source code has the same rights meaning he can share copies free of charge or resell.
@ -600,8 +597,8 @@ If you use GNSS-SDR to produce a research paper or Thesis, we would appreciate i
\li \anchor Navitec2012 C. Fern&aacute;ndez-Prades, J. Arribas, L. Esteve, D. Pubill, P. Closas, <a href="http://www.cttc.es/publication/an-open-source-galileo-e1-software-receiver/" target="_blank"><i>An Open Source Galileo E1 Software Receiver</i></a>, in Proc. of the 6th ESA Workshop on Satellite Navigation Technologies (NAVITEC 2012), ESTEC, Noordwijk, The Netherlands, Dec. 2012.
\li J. Arribas, <a href="http://theses.eurasip.org/theses/449/gnss-array-based-acquisition-theory-and/" target="_blank"><i>GNSS Array-based Acquisition: Theory and Implementation</i></a>, PhD Thesis, Universitat Polit&egrave;cnica de Catalunya, Barcelona, Spain, June 2012.
\li C. Fern&aacute;ndez-Prades, J. Arribas, P. Closas, C. Avil&eacute;s, and L. Esteve, <a href="http://www.cttc.es/publication/gnss-sdr-an-open-source-tool-for-researchers-and-developers/" target="_blank"><i>GNSS-SDR: an open source tool for researchers and developers</i></a>, in Proc. of the ION GNSS 2011 Conference, Portland, Oregon, Sept. 19-23, 2011.
\li C. Fern&aacute;ndez-Prades, C. Avil&eacute;s, L. Esteve, J. Arribas, and P. Closas, <a href="http://www.cttc.es/publication/design-patterns-for-gnss-software-receivers/" target="_blank"><i>Design patterns for GNSS software receivers</i></a>, in Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2010), ESTEC, Noordwijk, The Netherlands, Dec. 2010. DOI:10.1109/NAVITEC.2010.5707981
\li C. Fern&aacute;ndez-Prades, J. Arribas, P. Closas, C. Avil&eacute;s, and L. Esteve, <a href="http://www.cttc.es/publication/gnss-sdr-an-open-source-tool-for-researchers-and-developers/" target="_blank"><i>GNSS-SDR: an open source tool for researchers and developers</i></a>, in Proc. of the ION GNSS 2011 Conference, Portland, Oregon, Sept. 19-23, 2011.
\li C. Fern&aacute;ndez-Prades, C. Avil&eacute;s, L. Esteve, J. Arribas, and P. Closas, <a href="http://www.cttc.es/publication/design-patterns-for-gnss-software-receivers/" target="_blank"><i>Design patterns for GNSS software receivers</i></a>, in Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2010), ESTEC, Noordwijk, The Netherlands, Dec. 2010. DOI:10.1109/NAVITEC.2010.5707981
For LaTeX users, these are the BibTeX cites for your convenience:
@ -609,12 +606,12 @@ For LaTeX users, these are the BibTeX cites for your convenience:
@INPROCEEDINGS{GNSS-SDR12
author = {C.~{Fern\'{a}ndez--Prades} and J.~Arribas and L.~Esteve and D.~Pubill and P.~Closas},
title = {An Open Source {G}alileo {E1} Software Receiver},
booktitle = {Proc. of the 6th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2012)},
year = {2012},
address = {ESTEC, Noordwijk, The Netherlands},
booktitle = {Proc. of the 6th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2012)},
year = {2012},
address = {ESTEC, Noordwijk, The Netherlands},
month = {Dec.} }
\endverbatim
\verbatim
@PHDTHESIS{Arribas12,
author = {J.~Arribas},
@ -624,48 +621,45 @@ For LaTeX users, these are the BibTeX cites for your convenience:
address = {Barcelona, Spain},
month = {June} }
\endverbatim
\verbatim
@INPROCEEDINGS{GNSS-SDR11,
AUTHOR = {C.~{Fern\'{a}ndez--Prades} and J.~Arribas and P.~Closas and C.~Avil\'{e}s and L.~Esteve},
TITLE = {{GNSS-SDR}: An Open Source Tool For Researchers and Developers},
BOOKTITLE = {Proc. of the ION GNSS 2011 Conference},
YEAR = {2011},
address = {Portland, Oregon},
month = {Sept.} }
@INPROCEEDINGS{GNSS-SDR11,
AUTHOR = {C.~{Fern\'{a}ndez--Prades} and J.~Arribas and P.~Closas and C.~Avil\'{e}s and L.~Esteve},
TITLE = {{GNSS-SDR}: An Open Source Tool For Researchers and Developers},
BOOKTITLE = {Proc. of the ION GNSS 2011 Conference},
YEAR = {2011},
address = {Portland, Oregon},
month = {Sept.} }
\endverbatim
\verbatim
@INPROCEEDINGS{GNSS-SDR10,
AUTHOR = {C.~{Fern\'{a}ndez--Prades} and C.~Avil\'{e}s and L.~Esteve and J.~Arribas and P.~Closas},
TITLE = {Design patterns for {GNSS} software receivers},
BOOKTITLE = {Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2010)},
YEAR = {2010},
address = {ESTEC, Noordwijk, The Netherlands},
month = {Dec.},
note = {DOI:10.1109/NAVITEC.2010.5707981} }
@INPROCEEDINGS{GNSS-SDR10,
AUTHOR = {C.~{Fern\'{a}ndez--Prades} and C.~Avil\'{e}s and L.~Esteve and J.~Arribas and P.~Closas},
TITLE = {Design patterns for {GNSS} software receivers},
BOOKTITLE = {Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC'2010)},
YEAR = {2010},
address = {ESTEC, Noordwijk, The Netherlands},
month = {Dec.},
note = {DOI:10.1109/NAVITEC.2010.5707981} }
\endverbatim
\section now_what Ok, now what?
In order to start using GNSS-SDR, you may want to populate <tt>gnss-sdr/data</tt> folder (or anywhere else on your system) with raw data files. By "raw data" we mean the output
of a Radio Frequency front-end's Analog-to_Digital converter. GNSS-SDR needs signal samples already in baseband or in passband, at a suitable intemediate frequency (on the order of MHz).
In order to start using GNSS-SDR, you may want to populate <tt>gnss-sdr/data</tt> folder (or anywhere else on your system) with raw data files. By "raw data" we mean the output
of a Radio Frequency front-end's Analog-to_Digital converter. GNSS-SDR needs signal samples already in baseband or in passband, at a suitable intemediate frequency (on the order of MHz).
Prepare your configuration file, and then you are ready for going to the <tt> gnss-sdr/install</tt> folder, running <tt>./gnss-sdr</tt>, and see how the file is processed.
Please ask the Developer Team for a signal sample if you need one, and they will do their best ;-)
Another interesting option is working in real-time with a RF front-end. We provide drivers for UHD-compatible hardware (see \ref signal_source), for the GN3S v2 USB dongle
and for some DVB-T USB dongles. Start with a low number of channels and then increase it in order to test how many channels your processor can handle in real-time.
You can find more information at the <a href="http://gnss-sdr.org/docs/" target="_blank"><b>GNSS-SDR Documentation page</b></a> or directly asking to the
<a href="http://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>GNSS-SDR Developers mailing list</b></a>.
You are also very welcome to contribute to the project, there are many ways to <a href="http://gnss-sdr.org/contribute/" target="_blank"><b>participate in GNSS-SDR</b></a>.
If you need some special feature not yet implemented, the Developer Team would love to be hired for developing it.
Please do not hesitate to <a href="http://gnss-sdr.org/team/" target="_blank"><b>contact them</b></a>.
You can find more information at the <a href="https://gnss-sdr.org/docs/" target="_blank"><b>GNSS-SDR Documentation page</b></a> or directly asking to the
<a href="https://lists.sourceforge.net/lists/listinfo/gnss-sdr-developers" target="_blank"><b>GNSS-SDR Developers mailing list</b></a>.
Enjoy GNSS-SDR!
You are also very welcome to contribute to the project, there are many ways to <a href="https://gnss-sdr.org/contribute/" target="_blank"><b>participate in GNSS-SDR</b></a>.
If you need some special feature not yet implemented, the Developer Team would love to be hired for developing it.
Please do not hesitate to <a href="https://gnss-sdr.org/team/" target="_blank"><b>contact them</b></a>.
Enjoy GNSS-SDR!
The Developer Team.
*/

Some files were not shown because too many files have changed in this diff Show More