mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-15 04:30:33 +00:00
Merge branch 'new_volk_module' of git+ssh://github.com/gnss-sdr/gnss-sdr
into new_volk_module # Please enter a commit message to explain why this merge is necessary, # especially if it merges an updated upstream into a topic branch. # # Lines starting with '#' will be ignored, and an empty message aborts # the commit.
This commit is contained in:
commit
7e11a6ef72
@ -50,6 +50,7 @@ include_directories(
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||
${GNURADIO_BLOCKS_INCLUDE_DIRS}
|
||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
file(GLOB ACQ_ADAPTER_HEADERS "*.h")
|
||||
|
@ -84,36 +84,36 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
|
||||
// if (item_type_.compare("gr_complex") == 0 )
|
||||
// {
|
||||
if (item_type_.compare("cshort") == 0 )
|
||||
{
|
||||
item_size_ = sizeof(lv_16sc_t);
|
||||
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
|
||||
|
||||
}else{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
|
||||
}
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
||||
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
|
||||
//now is supported natively by the acquisition (_sc variant)
|
||||
// if (item_type_.compare("cshort") == 0)
|
||||
// {
|
||||
// cshort_to_float_x2_ = make_cshort_to_float_x2();
|
||||
// float_to_complex_ = gr::blocks::float_to_complex::make();
|
||||
// }
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
cshort_to_float_x2_ = make_cshort_to_float_x2();
|
||||
float_to_complex_ = gr::blocks::float_to_complex::make();
|
||||
}
|
||||
|
||||
if (item_type_.compare("cbyte") == 0)
|
||||
{
|
||||
cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
|
||||
float_to_complex_ = gr::blocks::float_to_complex::make();
|
||||
}
|
||||
//}
|
||||
//else
|
||||
// {
|
||||
// LOG(WARNING) << item_type_
|
||||
// << " unknown acquisition item type";
|
||||
// }
|
||||
channel_ = 0;
|
||||
threshold_ = 0.0;
|
||||
doppler_max_ = 0;
|
||||
@ -132,10 +132,13 @@ GpsL1CaPcpsAcquisition::~GpsL1CaPcpsAcquisition()
|
||||
void GpsL1CaPcpsAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
//if (item_type_.compare("gr_complex") == 0)
|
||||
//{
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_channel(channel_);
|
||||
}else{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
//}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -155,30 +158,39 @@ void GpsL1CaPcpsAcquisition::set_threshold(float threshold)
|
||||
|
||||
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
|
||||
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_threshold(threshold_);
|
||||
}else{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_doppler_max(doppler_max_);
|
||||
}else{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_doppler_step(doppler_step_);
|
||||
}else{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
// }
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -187,39 +199,49 @@ void GpsL1CaPcpsAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_channel_queue(channel_internal_queue_);
|
||||
}else{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
|
||||
}else{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsAcquisition::mag()
|
||||
{
|
||||
// // if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
return acquisition_sc_->mag();
|
||||
}else{
|
||||
return acquisition_cc_->mag();
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// return 0;
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::init()
|
||||
{
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->init();
|
||||
}else{
|
||||
acquisition_cc_->init();
|
||||
}
|
||||
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
@ -238,7 +260,13 @@ void GpsL1CaPcpsAcquisition::set_local_code()
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_local_code(code_);
|
||||
}else{
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
}
|
||||
|
||||
delete[] code;
|
||||
// }
|
||||
@ -247,18 +275,23 @@ void GpsL1CaPcpsAcquisition::set_local_code()
|
||||
|
||||
void GpsL1CaPcpsAcquisition::reset()
|
||||
{
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_active(true);
|
||||
}else{
|
||||
acquisition_cc_->set_active(true);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsAcquisition::set_state(int state)
|
||||
{
|
||||
// if (item_type_.compare("gr_complex") == 0)
|
||||
// {
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
acquisition_sc_->set_state(state);
|
||||
}else{
|
||||
acquisition_cc_->set_state(state);
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -291,10 +324,12 @@ void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
|
||||
}
|
||||
else if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
top_block->connect(cshort_to_float_x2_, 0, float_to_complex_, 0);
|
||||
top_block->connect(cshort_to_float_x2_, 1, float_to_complex_, 1);
|
||||
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
//top_block->connect(cshort_to_float_x2_, 0, float_to_complex_, 0);
|
||||
//top_block->connect(cshort_to_float_x2_, 1, float_to_complex_, 1);
|
||||
//top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
|
||||
//top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
|
||||
|
||||
}
|
||||
else if (item_type_.compare("cbyte") == 0)
|
||||
{
|
||||
@ -320,10 +355,11 @@ void GpsL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
// Since a short-based acq implementation is not available,
|
||||
// we just convert cshorts to gr_complex
|
||||
top_block->disconnect(cshort_to_float_x2_, 0, float_to_complex_, 0);
|
||||
top_block->disconnect(cshort_to_float_x2_, 1, float_to_complex_, 1);
|
||||
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
//top_block->disconnect(cshort_to_float_x2_, 0, float_to_complex_, 0);
|
||||
//top_block->disconnect(cshort_to_float_x2_, 1, float_to_complex_, 1);
|
||||
//top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
|
||||
//top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
|
||||
}
|
||||
else if (item_type_.compare("cbyte") == 0)
|
||||
{
|
||||
@ -349,7 +385,8 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
|
||||
}
|
||||
else if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
return cshort_to_float_x2_;
|
||||
//return cshort_to_float_x2_;
|
||||
return stream_to_vector_;
|
||||
}
|
||||
else if (item_type_.compare("cbyte") == 0)
|
||||
{
|
||||
@ -365,6 +402,11 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_right_block()
|
||||
{
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
return acquisition_sc_;
|
||||
}else{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -43,8 +43,10 @@
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_acquisition_cc.h"
|
||||
#include "pcps_acquisition_sc.h"
|
||||
#include "cshort_to_float_x2.h"
|
||||
#include "complex_byte_to_float_x2.h"
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
|
||||
|
||||
@ -145,6 +147,7 @@ public:
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_acquisition_cc_sptr acquisition_cc_;
|
||||
pcps_acquisition_sc_sptr acquisition_sc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
gr::blocks::float_to_complex::sptr float_to_complex_;
|
||||
cshort_to_float_x2_sptr cshort_to_float_x2_;
|
||||
|
@ -19,6 +19,7 @@
|
||||
|
||||
set(ACQ_GR_BLOCKS_SOURCES
|
||||
pcps_acquisition_cc.cc
|
||||
pcps_acquisition_sc.cc
|
||||
pcps_multithread_acquisition_cc.cc
|
||||
pcps_assisted_acquisition_cc.cc
|
||||
pcps_acquisition_fine_doppler_cc.cc
|
||||
@ -42,6 +43,7 @@ include_directories(
|
||||
${GLOG_INCLUDE_DIRS}
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
|
||||
@ -57,5 +59,5 @@ endif(OPENCL_FOUND)
|
||||
file(GLOB ACQ_GR_BLOCKS_HEADERS "*.h")
|
||||
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES} ${ACQ_GR_BLOCKS_HEADERS})
|
||||
source_group(Headers FILES ${ACQ_GR_BLOCKS_HEADERS})
|
||||
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${OPT_LIBRARIES})
|
||||
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES})
|
||||
|
||||
|
@ -0,0 +1,472 @@
|
||||
/*!
|
||||
* \file pcps_acquisition_sc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "pcps_acquisition_sc.h"
|
||||
#include <sstream>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_acquisition_sc_sptr pcps_make_acquisition_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return pcps_acquisition_sc_sptr(
|
||||
new pcps_acquisition_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
pcps_acquisition_sc::pcps_acquisition_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("pcps_acquisition_sc",
|
||||
gr::io_signature::make(1, 1, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
|
||||
gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 250;
|
||||
d_code_phase = 0;
|
||||
d_test_statistics = 0.0;
|
||||
d_channel = 0;
|
||||
d_doppler_freq = 0.0;
|
||||
|
||||
//set_relative_rate( 1.0/d_fft_size );
|
||||
|
||||
// COD:
|
||||
// Experimenting with the overlap/save technique for handling bit trannsitions
|
||||
// The problem: Circular correlation is asynchronous with the received code.
|
||||
// In effect the first code phase used in the correlation is the current
|
||||
// estimate of the code phase at the start of the input buffer. If this is 1/2
|
||||
// of the code period a bit transition would move all the signal energy into
|
||||
// adjacent frequency bands at +/- 1/T where T is the integration time.
|
||||
//
|
||||
// We can avoid this by doing linear correlation, effectively doubling the
|
||||
// size of the input buffer and padding the code with zeros.
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1;
|
||||
}
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
|
||||
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
|
||||
//temporary storage for the input conversion from 16sc to float 32fc
|
||||
d_in_32fc = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_gnss_synchro = 0;
|
||||
d_channel_internal_queue = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
}
|
||||
|
||||
pcps_acquisition_sc::~pcps_acquisition_sc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
volk_free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
volk_free(d_fft_codes);
|
||||
volk_free(d_magnitude);
|
||||
volk_free(d_in_32fc);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// COD
|
||||
// Here we want to create a buffer that looks like this:
|
||||
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
int offset = 0;
|
||||
if( d_bit_transition_flag )
|
||||
{
|
||||
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) );
|
||||
offset = d_samples_per_code;
|
||||
}
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
|
||||
}
|
||||
|
||||
void pcps_acquisition_sc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
d_num_doppler_bins = ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
complex_exp_gen(d_grid_doppler_wipeoffs[doppler_index], -d_freq - doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_sc::set_state(int state)
|
||||
{
|
||||
d_state = state;
|
||||
if (d_state == 1)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
}
|
||||
|
||||
int pcps_acquisition_sc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
/*
|
||||
* By J.Arribas, L.Esteve and M.Molina
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold):
|
||||
* 1. Compute the input signal power estimation
|
||||
* 2. Doppler serial search loop
|
||||
* 3. Perform the FFT-based circular convolution (parallel time search)
|
||||
* 4. Record the maximum peak and the associated synchronization parameters
|
||||
* 5. Compute the test statistics and compare to the threshold
|
||||
* 6. Declare positive or negative acquisition using a message queue
|
||||
*/
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
//DLOG(INFO) << "Consumed " << ninput_items[0] << " items";
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
const lv_16sc_t *in = (const lv_16sc_t *)input_items[0]; //Get the input samples pointer
|
||||
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
|
||||
//TODO: optimize the signal processing chain to not use gr_complex. This is a temporary solution
|
||||
volk_gnsssdr_16ic_convert_32fc(d_in_32fc,in,effective_fft_size);
|
||||
|
||||
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_32f_index_max_16u(&indext, d_magnitude, effective_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_"
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
DLOG(INFO) << "Done. Consumed 1 item.";
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// 6.1- Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// 6.2- Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
output_items.clear(); // removes a warning
|
||||
return noutput_items;
|
||||
}
|
||||
|
||||
|
||||
//void pcps_acquisition_sc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
|
||||
//{
|
||||
//// COD:
|
||||
//// For zero-padded case we need one extra code period
|
||||
//if( d_bit_transition_flag )
|
||||
//{
|
||||
//ninput_items_required[0] = noutput_items*(d_samples_per_code * d_max_dwells + d_samples_per_code);
|
||||
//}
|
||||
//else
|
||||
//{
|
||||
//ninput_items_required[0] = noutput_items*d_fft_size*d_max_dwells;
|
||||
//}
|
||||
//}
|
244
src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.h
Normal file
244
src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_sc.h
Normal file
@ -0,0 +1,244 @@
|
||||
/*!
|
||||
* \file pcps_acquisition_sc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation
|
||||
* <li> Doppler serial search loop
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search)
|
||||
* <li> Record the maximum peak and the associated synchronization parameters
|
||||
* <li> Compute the test statistics and compare to the threshold
|
||||
* <li> Declare positive or negative acquisition using a message queue
|
||||
* </ol>
|
||||
*
|
||||
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach", Birkha user, 2007. pp 81-84
|
||||
*
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_ACQUISITION_SC_H_
|
||||
#define GNSS_SDR_PCPS_ACQUISITION_SC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
|
||||
class pcps_acquisition_sc;
|
||||
|
||||
typedef boost::shared_ptr<pcps_acquisition_sc> pcps_acquisition_sc_sptr;
|
||||
|
||||
pcps_acquisition_sc_sptr
|
||||
pcps_make_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
*
|
||||
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
|
||||
* Algorithm 1, for a pseudocode description of this implementation.
|
||||
*/
|
||||
class pcps_acquisition_sc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_acquisition_sc_sptr
|
||||
pcps_make_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
pcps_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
//unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
gr_complex* d_in_32fc;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~pcps_acquisition_sc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief If set to 1, ensures that acquisition starts at the
|
||||
* first available sample.
|
||||
* \param state - int=1 forces start of acquisition
|
||||
*/
|
||||
void set_state(int state);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/
|
Loading…
Reference in New Issue
Block a user