mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-11-03 00:33:03 +00:00
Merge branch 'fpga' of https://github.com/gnss-sdr/gnss-sdr into merge-fpga
Applied checks and formatting
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
* \file fpga_acquisition.cc
|
||||
* \brief High optimized FPGA vector correlator class
|
||||
* \authors <ul>
|
||||
* <li> Marc Majoral, 2018. mmajoral(at)cttc.cat
|
||||
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
|
||||
* </ul>
|
||||
*
|
||||
* Class that controls and executes a high optimized acquisition HW
|
||||
@@ -43,6 +43,7 @@
|
||||
#include <utility>
|
||||
|
||||
|
||||
// FPGA register parameters
|
||||
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
|
||||
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
|
||||
#define RESET_ACQUISITION 2 // command to reset the multicorrelator
|
||||
@@ -56,57 +57,48 @@
|
||||
#define SELECT_MSB 0XFF00 // value to select the most significant byte
|
||||
#define SELECT_16_BITS 0xFFFF // value to select 16 bits
|
||||
#define SHL_8_BITS 256 // value used to shift a value 8 bits to the left
|
||||
|
||||
// 12-bits
|
||||
//#define SELECT_LSBits 0x0FFF
|
||||
//#define SELECT_MSBbits 0x00FFF000
|
||||
//#define SELECT_24_BITS 0x00FFFFFF
|
||||
//#define SHL_12_BITS 4096
|
||||
// 16-bits
|
||||
#define SELECT_LSBits 0x0FFFF
|
||||
#define SELECT_MSBbits 0xFFFF0000
|
||||
#define SELECT_32_BITS 0xFFFFFFFF
|
||||
#define SHL_16_BITS 65536
|
||||
#define SELECT_LSBits 0x000003FF // Select the 10 LSbits out of a 20-bit word
|
||||
#define SELECT_MSBbits 0x000FFC00 // Select the 10 MSbits out of a 20-bit word
|
||||
#define SELECT_ALL_CODE_BITS 0x000FFFFF // Select a 20 bit word
|
||||
#define SHL_CODE_BITS 1024 // shift left by 10 bits
|
||||
|
||||
|
||||
bool fpga_acquisition::init()
|
||||
bool Fpga_Acquisition::init()
|
||||
{
|
||||
// configure the acquisition with the main initialization values
|
||||
fpga_acquisition::configure_acquisition();
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool fpga_acquisition::set_local_code(uint32_t PRN)
|
||||
bool Fpga_Acquisition::set_local_code(uint32_t PRN)
|
||||
{
|
||||
// select the code with the chosen PRN
|
||||
fpga_acquisition::fpga_configure_acquisition_local_code(
|
||||
&d_all_fft_codes[d_nsamples_total * (PRN - 1)]);
|
||||
|
||||
//fpga_acquisition::fpga_configure_acquisition_local_code(
|
||||
// &d_all_fft_codes[0]);
|
||||
|
||||
d_PRN = PRN;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
fpga_acquisition::fpga_acquisition(std::string device_name,
|
||||
void Fpga_Acquisition::write_local_code()
|
||||
{
|
||||
Fpga_Acquisition::fpga_configure_acquisition_local_code(
|
||||
&d_all_fft_codes[d_nsamples_total * (d_PRN - 1)]);
|
||||
}
|
||||
|
||||
|
||||
Fpga_Acquisition::Fpga_Acquisition(std::string device_name,
|
||||
uint32_t nsamples,
|
||||
uint32_t doppler_max,
|
||||
uint32_t nsamples_total, int64_t fs_in,
|
||||
uint32_t sampled_ms, uint32_t select_queue,
|
||||
lv_16sc_t *all_fft_codes)
|
||||
lv_16sc_t *all_fft_codes,
|
||||
uint32_t excludelimit)
|
||||
{
|
||||
//printf("AAA- sampled_ms = %d\n ", sampled_ms);
|
||||
uint32_t vector_length = nsamples_total;
|
||||
|
||||
uint32_t vector_length = nsamples_total; // * sampled_ms;
|
||||
|
||||
//printf("AAA- vector_length = %d\n ", vector_length);
|
||||
// initial values
|
||||
d_device_name = std::move(device_name);
|
||||
//d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_excludelimit = excludelimit;
|
||||
d_nsamples = nsamples; // number of samples not including padding
|
||||
d_select_queue = select_queue;
|
||||
d_nsamples_total = nsamples_total;
|
||||
@@ -116,6 +108,18 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
|
||||
d_map_base = nullptr; // driver memory map
|
||||
d_all_fft_codes = all_fft_codes;
|
||||
|
||||
Fpga_Acquisition::reset_acquisition();
|
||||
Fpga_Acquisition::open_device();
|
||||
Fpga_Acquisition::fpga_acquisition_test_register();
|
||||
Fpga_Acquisition::close_device();
|
||||
|
||||
d_PRN = 0;
|
||||
DLOG(INFO) << "Acquisition FPGA class created";
|
||||
}
|
||||
|
||||
|
||||
void Fpga_Acquisition::open_device()
|
||||
{
|
||||
// open communication with HW accelerator
|
||||
if ((d_fd = open(d_device_name.c_str(), O_RDWR | O_SYNC)) == -1)
|
||||
{
|
||||
@@ -130,11 +134,29 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
|
||||
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
|
||||
std::cout << "Acq: cannot map deviceio" << d_device_name << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Fpga_Acquisition::~Fpga_Acquisition() = default;
|
||||
|
||||
|
||||
bool Fpga_Acquisition::free()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void Fpga_Acquisition::fpga_acquisition_test_register()
|
||||
{
|
||||
// sanity check : check test register
|
||||
uint32_t writeval = TEST_REG_SANITY_CHECK;
|
||||
uint32_t readval;
|
||||
readval = fpga_acquisition::fpga_acquisition_test_register(writeval);
|
||||
|
||||
// write value to test register
|
||||
d_map_base[15] = writeval;
|
||||
// read value from test register
|
||||
readval = d_map_base[15];
|
||||
|
||||
if (writeval != readval)
|
||||
{
|
||||
LOG(WARNING) << "Acquisition test register sanity check failed";
|
||||
@@ -142,208 +164,115 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
|
||||
else
|
||||
{
|
||||
LOG(INFO) << "Acquisition test register sanity check success!";
|
||||
//std::cout << "Acquisition test register sanity check success!" << std::endl;
|
||||
}
|
||||
fpga_acquisition::reset_acquisition();
|
||||
DLOG(INFO) << "Acquisition FPGA class created";
|
||||
}
|
||||
|
||||
|
||||
fpga_acquisition::~fpga_acquisition()
|
||||
{
|
||||
close_device();
|
||||
}
|
||||
|
||||
|
||||
bool fpga_acquisition::free()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
uint32_t fpga_acquisition::fpga_acquisition_test_register(uint32_t writeval)
|
||||
{
|
||||
uint32_t readval;
|
||||
// write value to test register
|
||||
d_map_base[15] = writeval;
|
||||
// read value from test register
|
||||
readval = d_map_base[15];
|
||||
// return read value
|
||||
return readval;
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
|
||||
void Fpga_Acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
|
||||
{
|
||||
uint32_t local_code;
|
||||
uint32_t k, tmp, tmp2;
|
||||
uint32_t fft_data;
|
||||
|
||||
// clear memory address counter
|
||||
//d_map_base[6] = LOCAL_CODE_CLEAR_MEM;
|
||||
d_map_base[9] = LOCAL_CODE_CLEAR_MEM;
|
||||
// write local code
|
||||
for (k = 0; k < d_vector_length; k++)
|
||||
{
|
||||
tmp = fft_local_code[k].real();
|
||||
tmp2 = fft_local_code[k].imag();
|
||||
//tmp = k;
|
||||
//tmp2 = k;
|
||||
|
||||
//local_code = (tmp & SELECT_LSB) | ((tmp2 * SHL_8_BITS) & SELECT_MSB); // put together the real part and the imaginary part
|
||||
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_16_BITS);
|
||||
//local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_12_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
|
||||
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_16_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
|
||||
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_24_BITS);
|
||||
fft_data = local_code & SELECT_32_BITS;
|
||||
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
|
||||
fft_data = local_code & SELECT_ALL_CODE_BITS;
|
||||
d_map_base[6] = fft_data;
|
||||
|
||||
|
||||
//printf("debug local code %d real = %d imag = %d local_code = %d fft_data = %d\n", k, tmp, tmp2, local_code, fft_data);
|
||||
//printf("debug local code %d real = 0x%08X imag = 0x%08X local_code = 0x%08X fft_data = 0x%08X\n", k, tmp, tmp2, local_code, fft_data);
|
||||
}
|
||||
//printf("d_vector_length = %d\n", d_vector_length);
|
||||
//while(1);
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::run_acquisition(void)
|
||||
void Fpga_Acquisition::run_acquisition(void)
|
||||
{
|
||||
// enable interrupts
|
||||
int32_t reenable = 1;
|
||||
int32_t disable_int = 0;
|
||||
write(d_fd, reinterpret_cast<void *>(&reenable), sizeof(int32_t));
|
||||
// launch the acquisition process
|
||||
//printf("launchin acquisition ...\n");
|
||||
d_map_base[8] = LAUNCH_ACQUISITION; // writing a 1 to reg 8 launches the acquisition process
|
||||
|
||||
// launch the acquisition process
|
||||
d_map_base[8] = LAUNCH_ACQUISITION; // writing a 1 to reg 8 launches the acquisition process
|
||||
int32_t irq_count;
|
||||
ssize_t nb;
|
||||
|
||||
// wait for interrupt
|
||||
nb = read(d_fd, &irq_count, sizeof(irq_count));
|
||||
//printf("interrupt received\n");
|
||||
if (nb != sizeof(irq_count))
|
||||
{
|
||||
printf("acquisition module Read failed to retrieve 4 bytes!\n");
|
||||
printf("acquisition module Interrupt number %d\n", irq_count);
|
||||
std::cout << "acquisition module Read failed to retrieve 4 bytes!" << std::endl;
|
||||
std::cout << "acquisition module Interrupt number " << irq_count << std::endl;
|
||||
}
|
||||
|
||||
write(d_fd, reinterpret_cast<void *>(&disable_int), sizeof(int32_t));
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::set_doppler_sweep(uint32_t num_sweeps)
|
||||
void Fpga_Acquisition::set_block_exp(uint32_t total_block_exp)
|
||||
{
|
||||
d_map_base[11] = total_block_exp;
|
||||
}
|
||||
|
||||
|
||||
void Fpga_Acquisition::set_doppler_sweep(uint32_t num_sweeps)
|
||||
{
|
||||
float phase_step_rad_real;
|
||||
float phase_step_rad_int_temp;
|
||||
int32_t phase_step_rad_int;
|
||||
//int32_t doppler = static_cast<int32_t>(-d_doppler_max) + d_doppler_step * doppler_index;
|
||||
auto doppler = static_cast<int32_t>(-d_doppler_max);
|
||||
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
|
||||
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
|
||||
//printf("AAA phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
|
||||
if (phase_step_rad_real >= 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
//printf("AAA phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
|
||||
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
|
||||
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
//printf("AAA writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
|
||||
d_map_base[3] = phase_step_rad_int;
|
||||
|
||||
// repeat the calculation with the doppler step
|
||||
doppler = static_cast<int32_t>(d_doppler_step);
|
||||
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
//printf("AAA phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
|
||||
if (phase_step_rad_real >= 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
//printf("AAA phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
|
||||
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
|
||||
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
//printf("AAA writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
|
||||
d_map_base[4] = phase_step_rad_int;
|
||||
//printf("AAA writing num sweeps to d map base 5 = %d\n", num_sweeps);
|
||||
d_map_base[5] = num_sweeps;
|
||||
}
|
||||
|
||||
void fpga_acquisition::set_doppler_sweep_debug(uint32_t num_sweeps, uint32_t doppler_index)
|
||||
{
|
||||
float phase_step_rad_real;
|
||||
float phase_step_rad_int_temp;
|
||||
int32_t phase_step_rad_int;
|
||||
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
//int32_t doppler = static_cast<int32_t>(-d_doppler_max);
|
||||
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
|
||||
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
|
||||
//printf("AAAh phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
|
||||
if (phase_step_rad_real >= 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
//printf("AAAh phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
|
||||
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
|
||||
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
//printf("AAAh writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
|
||||
d_map_base[3] = phase_step_rad_int;
|
||||
|
||||
// repeat the calculation with the doppler step
|
||||
doppler = static_cast<int32_t>(d_doppler_step);
|
||||
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
//printf("AAAh phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
|
||||
if (phase_step_rad_real >= 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
//printf("AAAh phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
|
||||
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
|
||||
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
//printf("AAAh writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
|
||||
d_map_base[4] = phase_step_rad_int;
|
||||
//printf("AAAh writing num sweeps to d map base 5 = %d\n", num_sweeps);
|
||||
d_map_base[5] = num_sweeps;
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::configure_acquisition()
|
||||
void Fpga_Acquisition::configure_acquisition()
|
||||
{
|
||||
//printf("AAA d_select_queue = %d\n", d_select_queue);
|
||||
Fpga_Acquisition::open_device();
|
||||
|
||||
d_map_base[0] = d_select_queue;
|
||||
//printf("AAA writing d_vector_length = %d to d map base 1\n ", d_vector_length);
|
||||
d_map_base[1] = d_vector_length;
|
||||
//printf("AAA writing d_nsamples = %d to d map base 2\n ", d_nsamples);
|
||||
d_map_base[2] = d_nsamples;
|
||||
//printf("AAA writing LOG2 d_vector_length = %d to d map base 7\n ", (int)log2((float)d_vector_length));
|
||||
d_map_base[7] = static_cast<int32_t>(log2(static_cast<float>(d_vector_length))); // log2 FFTlength
|
||||
//printf("acquisition debug vector length = %d\n", d_vector_length);
|
||||
//printf("acquisition debug vector length = %d\n", (int)log2((float)d_vector_length));
|
||||
d_map_base[12] = d_excludelimit;
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::set_phase_step(uint32_t doppler_index)
|
||||
void Fpga_Acquisition::set_phase_step(uint32_t doppler_index)
|
||||
{
|
||||
float phase_step_rad_real;
|
||||
float phase_step_rad_int_temp;
|
||||
int32_t phase_step_rad_int;
|
||||
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
@@ -352,73 +281,101 @@ void fpga_acquisition::set_phase_step(uint32_t doppler_index)
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
//printf("AAA+ phase_step_rad_real = %f\n", phase_step_rad_real);
|
||||
if (phase_step_rad_real >= 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
//printf("AAA+ phase_step_rad_real after checking = %f\n", phase_step_rad_real);
|
||||
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
|
||||
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
//printf("writing phase_step_rad_int = %d to d_map_base 3\n", phase_step_rad_int);
|
||||
d_map_base[3] = phase_step_rad_int;
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
|
||||
float *max_magnitude, uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index)
|
||||
void Fpga_Acquisition::read_acquisition_results(uint32_t *max_index,
|
||||
float *firstpeak, float *secondpeak, uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index, uint32_t *total_blk_exp)
|
||||
{
|
||||
uint64_t initial_sample_tmp = 0;
|
||||
|
||||
uint32_t readval = 0;
|
||||
uint64_t readval_long = 0;
|
||||
uint64_t readval_long_shifted = 0;
|
||||
|
||||
readval = d_map_base[1];
|
||||
initial_sample_tmp = readval;
|
||||
|
||||
readval_long = d_map_base[2];
|
||||
readval_long_shifted = readval_long << 32; // 2^32
|
||||
readval_long_shifted = readval_long << 32; // 2^32
|
||||
|
||||
initial_sample_tmp = initial_sample_tmp + readval_long_shifted; // 2^32
|
||||
//printf("----------------------------------------------------------------> acq initial sample TOTAL = %llu\n", initial_sample_tmp);
|
||||
*initial_sample = initial_sample_tmp;
|
||||
readval = d_map_base[6];
|
||||
*max_magnitude = static_cast<float>(readval);
|
||||
//printf("read max_magnitude dmap 2 = %d\n", readval);
|
||||
readval = d_map_base[4];
|
||||
*power_sum = static_cast<float>(readval);
|
||||
//printf("read power sum dmap 4 = %d\n", readval);
|
||||
readval = d_map_base[5]; // read doppler index
|
||||
*doppler_index = readval;
|
||||
//printf("read doppler_index dmap 5 = %d\n", readval);
|
||||
|
||||
readval = d_map_base[3];
|
||||
*firstpeak = static_cast<float>(readval);
|
||||
|
||||
readval = d_map_base[4];
|
||||
*secondpeak = static_cast<float>(readval);
|
||||
|
||||
readval = d_map_base[5];
|
||||
*max_index = readval;
|
||||
//printf("read max index dmap 3 = %d\n", readval);
|
||||
|
||||
*power_sum = 0;
|
||||
|
||||
readval = d_map_base[8];
|
||||
*total_blk_exp = readval;
|
||||
|
||||
readval = d_map_base[7]; // read doppler index -- this read releases the interrupt line
|
||||
*doppler_index = readval;
|
||||
|
||||
readval = d_map_base[15]; // read dummy
|
||||
|
||||
Fpga_Acquisition::close_device();
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::block_samples()
|
||||
void Fpga_Acquisition::block_samples()
|
||||
{
|
||||
d_map_base[14] = 1; // block the samples
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::unblock_samples()
|
||||
void Fpga_Acquisition::unblock_samples()
|
||||
{
|
||||
d_map_base[14] = 0; // unblock the samples
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::close_device()
|
||||
void Fpga_Acquisition::close_device()
|
||||
{
|
||||
auto *aux = const_cast<uint32_t *>(d_map_base);
|
||||
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
|
||||
{
|
||||
printf("Failed to unmap memory uio\n");
|
||||
std::cout << "Failed to unmap memory uio" << std::endl;
|
||||
}
|
||||
close(d_fd);
|
||||
}
|
||||
|
||||
|
||||
void fpga_acquisition::reset_acquisition(void)
|
||||
void Fpga_Acquisition::reset_acquisition(void)
|
||||
{
|
||||
Fpga_Acquisition::open_device();
|
||||
d_map_base[8] = RESET_ACQUISITION; // writing a 2 to d_map_base[8] resets the multicorrelator
|
||||
Fpga_Acquisition::close_device();
|
||||
}
|
||||
|
||||
|
||||
// this function is only used for the unit tests
|
||||
void Fpga_Acquisition::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
|
||||
{
|
||||
uint32_t readval = 0;
|
||||
readval = d_map_base[8];
|
||||
*total_scale_factor = readval;
|
||||
|
||||
//readval = d_map_base[8];
|
||||
*fw_scale_factor = 0;
|
||||
}
|
||||
|
||||
void Fpga_Acquisition::read_result_valid(uint32_t *result_valid)
|
||||
{
|
||||
uint32_t readval = 0;
|
||||
readval = d_map_base[0];
|
||||
*result_valid = readval;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user