mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-10-25 04:27:39 +00:00
Apply clang-format
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
||||
* perform a similar estimation.
|
||||
*
|
||||
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
|
||||
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
|
||||
* Transactions on Automatic Control, 54(6):1254–1269,2009.
|
||||
*
|
||||
* \authors <ul>
|
||||
@@ -54,6 +54,7 @@ Cubature_filter::Cubature_filter()
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Cubature_filter::Cubature_filter(int nx)
|
||||
{
|
||||
x_pred_out = arma::zeros(nx, 1);
|
||||
@@ -63,6 +64,7 @@ Cubature_filter::Cubature_filter(int nx)
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||||
{
|
||||
x_pred_out = x_pred_0;
|
||||
@@ -72,8 +74,10 @@ Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Cubature_filter::~Cubature_filter() = default;
|
||||
|
||||
|
||||
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||||
{
|
||||
x_pred_out = x_pred_0;
|
||||
@@ -94,37 +98,38 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma
|
||||
int np = 2 * nx;
|
||||
|
||||
// Generator Matrix
|
||||
arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx));
|
||||
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
|
||||
|
||||
// Initialize predicted mean and covariance
|
||||
arma::vec x_pred = arma::zeros(nx,1);
|
||||
arma::mat P_x_pred = arma::zeros(nx,nx);
|
||||
arma::vec x_pred = arma::zeros(nx, 1);
|
||||
arma::mat P_x_pred = arma::zeros(nx, nx);
|
||||
|
||||
// Factorize posterior covariance
|
||||
arma::mat Sm_post = arma::chol(P_x_post, "lower");
|
||||
|
||||
|
||||
// Propagate and evaluate cubature points
|
||||
arma::vec Xi_post;
|
||||
arma::vec Xi_pred;
|
||||
|
||||
for (uint8_t i = 0; i < np; i++)
|
||||
{
|
||||
Xi_post = Sm_post * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_post;
|
||||
Xi_pred = (*transition_fcn)(Xi_post);
|
||||
|
||||
x_pred = x_pred + Xi_pred;
|
||||
P_x_pred = P_x_pred + Xi_pred*Xi_pred.t();
|
||||
}
|
||||
|
||||
{
|
||||
Xi_post = Sm_post * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_post;
|
||||
Xi_pred = (*transition_fcn)(Xi_post);
|
||||
|
||||
x_pred = x_pred + Xi_pred;
|
||||
P_x_pred = P_x_pred + Xi_pred * Xi_pred.t();
|
||||
}
|
||||
|
||||
// Compute predicted mean and error covariance
|
||||
x_pred = x_pred / ((float) np);
|
||||
P_x_pred = P_x_pred / ((float) np) - x_pred*x_pred.t() + noise_covariance;
|
||||
x_pred = x_pred / static_cast<float>(np);
|
||||
P_x_pred = P_x_pred / static_cast<float>(np) - x_pred * x_pred.t() + noise_covariance;
|
||||
|
||||
// Store predicted mean and error covariance
|
||||
x_pred_out = x_pred;
|
||||
P_x_pred_out = P_x_pred;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform the update step of the cubature Kalman filter
|
||||
*/
|
||||
@@ -136,12 +141,12 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec&
|
||||
int np = 2 * nx;
|
||||
|
||||
// Generator Matrix
|
||||
arma::mat gen_one = arma::join_horiz(arma::eye(nx,nx),-1.0*arma::eye(nx,nx));
|
||||
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
|
||||
|
||||
// Initialize estimated predicted measurement and covariances
|
||||
arma::mat z_pred = arma::zeros(nz,1);
|
||||
arma::mat P_zz_pred = arma::zeros(nz,nz);
|
||||
arma::mat P_xz_pred = arma::zeros(nx,nz);
|
||||
arma::mat z_pred = arma::zeros(nz, 1);
|
||||
arma::mat P_zz_pred = arma::zeros(nz, nz);
|
||||
arma::mat P_xz_pred = arma::zeros(nx, nz);
|
||||
|
||||
// Factorize predicted covariance
|
||||
arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
|
||||
@@ -150,49 +155,54 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec&
|
||||
arma::vec Xi_pred;
|
||||
arma::vec Zi_pred;
|
||||
for (uint8_t i = 0; i < np; i++)
|
||||
{
|
||||
Xi_pred = Sm_pred * (std::sqrt(((float) np) / 2.0) * gen_one.col(i)) + x_pred;
|
||||
Zi_pred = (*measurement_fcn)(Xi_pred);
|
||||
|
||||
z_pred = z_pred + Zi_pred;
|
||||
P_zz_pred = P_zz_pred + Zi_pred*Zi_pred.t();
|
||||
P_xz_pred = P_xz_pred + Xi_pred*Zi_pred.t();
|
||||
}
|
||||
{
|
||||
Xi_pred = Sm_pred * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_pred;
|
||||
Zi_pred = (*measurement_fcn)(Xi_pred);
|
||||
|
||||
z_pred = z_pred + Zi_pred;
|
||||
P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t();
|
||||
P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t();
|
||||
}
|
||||
|
||||
// Compute measurement mean, covariance and cross covariance
|
||||
z_pred = z_pred / ((float) np);
|
||||
P_zz_pred = P_zz_pred / ((float) np) - z_pred*z_pred.t() + noise_covariance;
|
||||
P_xz_pred = P_xz_pred / ((float) np) - x_pred*z_pred.t();
|
||||
z_pred = z_pred / static_cast<float>(np);
|
||||
P_zz_pred = P_zz_pred / static_cast<float>(np) - z_pred * z_pred.t() + noise_covariance;
|
||||
P_xz_pred = P_xz_pred / static_cast<float>(np) - x_pred * z_pred.t();
|
||||
|
||||
// Compute cubature Kalman gain
|
||||
arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred);
|
||||
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
|
||||
|
||||
// Compute and store the updated mean and error covariance
|
||||
x_est = x_pred + W_k*(z_upd - z_pred);
|
||||
P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t();
|
||||
x_est = x_pred + W_k * (z_upd - z_pred);
|
||||
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
|
||||
}
|
||||
|
||||
|
||||
arma::mat Cubature_filter::get_x_pred() const
|
||||
{
|
||||
return x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Cubature_filter::get_P_x_pred() const
|
||||
{
|
||||
return P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Cubature_filter::get_x_est() const
|
||||
{
|
||||
return x_est;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Cubature_filter::get_P_x_est() const
|
||||
{
|
||||
return P_x_est;
|
||||
}
|
||||
/***************** END CUBATURE KALMAN FILTER *****************/
|
||||
|
||||
|
||||
/***************** UNSCENTED KALMAN FILTER *****************/
|
||||
|
||||
Unscented_filter::Unscented_filter()
|
||||
@@ -205,6 +215,7 @@ Unscented_filter::Unscented_filter()
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Unscented_filter::Unscented_filter(int nx)
|
||||
{
|
||||
x_pred_out = arma::zeros(nx, 1);
|
||||
@@ -214,6 +225,7 @@ Unscented_filter::Unscented_filter(int nx)
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||||
{
|
||||
x_pred_out = x_pred_0;
|
||||
@@ -223,8 +235,10 @@ Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P
|
||||
P_x_est = P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
Unscented_filter::~Unscented_filter() = default;
|
||||
|
||||
|
||||
void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||||
{
|
||||
x_pred_out = x_pred_0;
|
||||
@@ -248,40 +262,40 @@ void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::m
|
||||
float kappa = 0.0;
|
||||
float beta = 2.0;
|
||||
|
||||
float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx);
|
||||
float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
|
||||
|
||||
// Compute UT Weights
|
||||
float W0_m = lambda / (((float) nx) + lambda);
|
||||
float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta);
|
||||
float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda));
|
||||
float W0_m = lambda / (static_cast<float>(nx) + lambda);
|
||||
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1 - std::pow(alpha, 2.0) + beta);
|
||||
float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
|
||||
|
||||
// Propagate and evaluate sigma points
|
||||
arma::mat Xi_fact = arma::zeros(nx,nx);
|
||||
arma::mat Xi_post = arma::zeros(nx,np);
|
||||
arma::mat Xi_pred = arma::zeros(nx,np);
|
||||
arma::mat Xi_fact = arma::zeros(nx, nx);
|
||||
arma::mat Xi_post = arma::zeros(nx, np);
|
||||
arma::mat Xi_pred = arma::zeros(nx, np);
|
||||
|
||||
|
||||
Xi_post.col(0) = x_post;
|
||||
Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0));
|
||||
for (uint8_t i = 1; i <= nx; i++)
|
||||
{
|
||||
Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_post);
|
||||
Xi_post.col(i) = x_post + Xi_fact.col(i-1);
|
||||
Xi_post.col(i+nx) = x_post - Xi_fact.col(i-1);
|
||||
{
|
||||
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_post);
|
||||
Xi_post.col(i) = x_post + Xi_fact.col(i - 1);
|
||||
Xi_post.col(i + nx) = x_post - Xi_fact.col(i - 1);
|
||||
|
||||
Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));
|
||||
Xi_pred.col(i+nx) = (*transition_fcn)(Xi_post.col(i+nx));
|
||||
}
|
||||
Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));
|
||||
Xi_pred.col(i + nx) = (*transition_fcn)(Xi_post.col(i + nx));
|
||||
}
|
||||
|
||||
// Compute predicted mean
|
||||
arma::vec x_pred = W0_m*Xi_pred.col(0) + Wi_m*arma::sum(Xi_pred.cols(1,np-1),1);
|
||||
arma::vec x_pred = W0_m * Xi_pred.col(0) + Wi_m * arma::sum(Xi_pred.cols(1, np - 1), 1);
|
||||
|
||||
// Compute predicted error covariance
|
||||
arma::mat P_x_pred = W0_c*((Xi_pred.col(0)-x_pred) * (Xi_pred.col(0).t()-x_pred.t()));
|
||||
arma::mat P_x_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Xi_pred.col(0).t() - x_pred.t()));
|
||||
for (uint8_t i = 1; i < np; i++)
|
||||
{
|
||||
P_x_pred = P_x_pred + Wi_m*((Xi_pred.col(i)-x_pred) * (Xi_pred.col(i).t()-x_pred.t()));
|
||||
}
|
||||
{
|
||||
P_x_pred = P_x_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Xi_pred.col(i).t() - x_pred.t()));
|
||||
}
|
||||
P_x_pred = P_x_pred + noise_covariance;
|
||||
|
||||
// Store predicted mean and error covariance
|
||||
@@ -289,6 +303,7 @@ void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::m
|
||||
P_x_pred_out = P_x_pred;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Perform the update step of the Unscented Kalman filter
|
||||
*/
|
||||
@@ -303,68 +318,73 @@ void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec
|
||||
float kappa = 0.0;
|
||||
float beta = 2.0;
|
||||
|
||||
float lambda = std::pow(alpha,2.0)*(((float) nx) + kappa) - ((float) nx);
|
||||
float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
|
||||
|
||||
// Compute UT Weights
|
||||
float W0_m = lambda / (((float) nx) + lambda);
|
||||
float W0_c = lambda / (((float) nx) + lambda) + (1 - std::pow(alpha,2.0) + beta);
|
||||
float Wi_m = 1.0 / (2.0 * (((float) nx) + lambda));
|
||||
float W0_m = lambda / (static_cast<float>(nx) + lambda);
|
||||
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1.0 - std::pow(alpha, 2.0) + beta);
|
||||
float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
|
||||
|
||||
// Propagate and evaluate sigma points
|
||||
arma::mat Xi_fact = arma::zeros(nx,nx);
|
||||
arma::mat Xi_pred = arma::zeros(nx,np);
|
||||
arma::mat Zi_pred = arma::zeros(nz,np);
|
||||
arma::mat Xi_fact = arma::zeros(nx, nx);
|
||||
arma::mat Xi_pred = arma::zeros(nx, np);
|
||||
arma::mat Zi_pred = arma::zeros(nz, np);
|
||||
|
||||
Xi_pred.col(0) = x_pred;
|
||||
Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0));
|
||||
for (uint8_t i = 1; i <= nx; i++)
|
||||
{
|
||||
Xi_fact = std::sqrt(((float) nx) + lambda) * arma::sqrtmat_sympd(P_x_pred);
|
||||
Xi_pred.col(i) = x_pred + Xi_fact.col(i-1);
|
||||
Xi_pred.col(i+nx) = x_pred - Xi_fact.col(i-1);
|
||||
{
|
||||
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_pred);
|
||||
Xi_pred.col(i) = x_pred + Xi_fact.col(i - 1);
|
||||
Xi_pred.col(i + nx) = x_pred - Xi_fact.col(i - 1);
|
||||
|
||||
Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));
|
||||
Zi_pred.col(i+nx) = (*measurement_fcn)(Xi_pred.col(i+nx));
|
||||
}
|
||||
Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));
|
||||
Zi_pred.col(i + nx) = (*measurement_fcn)(Xi_pred.col(i + nx));
|
||||
}
|
||||
|
||||
// Compute measurement mean
|
||||
arma::mat z_pred = W0_m*Zi_pred.col(0) + Wi_m*arma::sum(Zi_pred.cols(1,np-1),1);
|
||||
arma::mat z_pred = W0_m * Zi_pred.col(0) + Wi_m * arma::sum(Zi_pred.cols(1, np - 1), 1);
|
||||
|
||||
// Compute measurement covariance and cross covariance
|
||||
arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t()));
|
||||
arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t()));
|
||||
for (uint8_t i = 0; i < np; i++)
|
||||
{
|
||||
P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||||
P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||||
}
|
||||
{
|
||||
P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||||
P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||||
}
|
||||
P_zz_pred = P_zz_pred + noise_covariance;
|
||||
|
||||
// Estimate cubature Kalman gain
|
||||
arma::mat W_k = P_xz_pred*arma::inv(P_zz_pred);
|
||||
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
|
||||
|
||||
// Estimate and store the updated mean and error covariance
|
||||
x_est = x_pred + W_k*(z_upd - z_pred);
|
||||
P_x_est = P_x_pred - W_k*P_zz_pred*W_k.t();
|
||||
x_est = x_pred + W_k * (z_upd - z_pred);
|
||||
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
|
||||
}
|
||||
|
||||
|
||||
arma::mat Unscented_filter::get_x_pred() const
|
||||
{
|
||||
return x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Unscented_filter::get_P_x_pred() const
|
||||
{
|
||||
return P_x_pred_out;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Unscented_filter::get_x_est() const
|
||||
{
|
||||
return x_est;
|
||||
}
|
||||
|
||||
|
||||
arma::mat Unscented_filter::get_P_x_est() const
|
||||
{
|
||||
return P_x_est;
|
||||
}
|
||||
|
||||
/***************** END UNSCENTED KALMAN FILTER *****************/
|
||||
|
||||
@@ -47,11 +47,12 @@
|
||||
#include <gnuradio/gr_complex.h>
|
||||
|
||||
// Abstract model function
|
||||
class Model_Function{
|
||||
public:
|
||||
Model_Function() {};
|
||||
virtual arma::vec operator() (arma::vec input) = 0;
|
||||
virtual ~Model_Function() = default;
|
||||
class Model_Function
|
||||
{
|
||||
public:
|
||||
Model_Function(){};
|
||||
virtual arma::vec operator()(arma::vec input) = 0;
|
||||
virtual ~Model_Function() = default;
|
||||
};
|
||||
|
||||
class Cubature_filter
|
||||
|
||||
Reference in New Issue
Block a user