|
|
|
@ -32,10 +32,7 @@
|
|
|
|
|
#include <algorithm>
|
|
|
|
|
#include <cmath>
|
|
|
|
|
#include <iostream>
|
|
|
|
|
#include <map>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include <utility>
|
|
|
|
|
#include <armadillo>
|
|
|
|
|
#include <limits>
|
|
|
|
|
#include <gnuradio/io_signature.h>
|
|
|
|
|
#include <gnuradio/block_detail.h>
|
|
|
|
|
#include <gnuradio/buffer.h>
|
|
|
|
@ -47,63 +44,66 @@
|
|
|
|
|
using google::LogMessage;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history)
|
|
|
|
|
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename)
|
|
|
|
|
{
|
|
|
|
|
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels_in, nchannels_out, dump, dump_filename, deep_history));
|
|
|
|
|
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels_in, nchannels_out, dump, dump_filename));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history) :
|
|
|
|
|
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels_in, nchannels_in, sizeof(Gnss_Synchro)),
|
|
|
|
|
gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro)))
|
|
|
|
|
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename) :
|
|
|
|
|
gr::block("hybrid_observables_cc",
|
|
|
|
|
gr::io_signature::make(nchannels_in, nchannels_in, sizeof(Gnss_Synchro)),
|
|
|
|
|
gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro)))
|
|
|
|
|
{
|
|
|
|
|
// initialize internal vars
|
|
|
|
|
set_max_noutput_items(1);
|
|
|
|
|
set_max_output_buffer(1);
|
|
|
|
|
d_dump = dump;
|
|
|
|
|
d_nchannels = nchannels_out;
|
|
|
|
|
d_dump_filename = dump_filename;
|
|
|
|
|
history_deep = deep_history;
|
|
|
|
|
T_rx_s = 0.0;
|
|
|
|
|
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
|
|
|
|
|
T_rx_step_s = 0.001; // 1 ms
|
|
|
|
|
max_extrapol_time_s = 0.1; // 100 ms
|
|
|
|
|
valid_channels.resize(d_nchannels, false);
|
|
|
|
|
d_num_valid_channels = 0;
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
d_gnss_synchro_history.push_back(std::pair<Gnss_Synchro,Gnss_Synchro>());
|
|
|
|
|
d_gnss_synchro_history.at(i).first.Flag_valid_word = false;
|
|
|
|
|
d_gnss_synchro_history.at(i).second.Flag_valid_word = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// ############# ENABLE DATA FILE LOG #################
|
|
|
|
|
if (d_dump == true)
|
|
|
|
|
if (d_dump)
|
|
|
|
|
{
|
|
|
|
|
if (!d_dump_file.is_open())
|
|
|
|
|
{
|
|
|
|
|
if (d_dump_file.is_open() == false)
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
|
|
|
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
|
|
|
|
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
|
|
|
|
}
|
|
|
|
|
catch (const std::ifstream::failure & e)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
|
|
|
|
d_dump = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
|
|
|
|
|
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
|
|
|
|
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
|
|
|
|
|
}
|
|
|
|
|
catch (const std::ifstream::failure & e)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Exception opening observables dump file " << e.what();
|
|
|
|
|
d_dump = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hybrid_observables_cc::~hybrid_observables_cc()
|
|
|
|
|
{
|
|
|
|
|
if (d_dump_file.is_open() == true)
|
|
|
|
|
if (d_dump_file.is_open())
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
d_dump_file.close();
|
|
|
|
|
}
|
|
|
|
|
try { d_dump_file.close(); }
|
|
|
|
|
catch(const std::exception & ex)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if(d_dump == true)
|
|
|
|
|
if(d_dump)
|
|
|
|
|
{
|
|
|
|
|
std::cout << "Writing observables .mat files ...";
|
|
|
|
|
save_matfile();
|
|
|
|
@ -120,14 +120,11 @@ int hybrid_observables_cc::save_matfile()
|
|
|
|
|
int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels;
|
|
|
|
|
std::ifstream dump_file;
|
|
|
|
|
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
|
|
|
|
}
|
|
|
|
|
try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); }
|
|
|
|
|
catch(const std::ifstream::failure &e)
|
|
|
|
|
{
|
|
|
|
|
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
|
|
|
|
return 1;
|
|
|
|
|
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
// count number of epochs and rewind
|
|
|
|
|
long int num_epoch = 0;
|
|
|
|
@ -137,10 +134,7 @@ int hybrid_observables_cc::save_matfile()
|
|
|
|
|
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
|
|
|
|
dump_file.seekg(0, std::ios::beg);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
else { return 1; }
|
|
|
|
|
double ** RX_time = new double * [d_nchannels];
|
|
|
|
|
double ** TOW_at_current_symbol_s = new double * [d_nchannels];
|
|
|
|
|
double ** Carrier_Doppler_hz = new double * [d_nchannels];
|
|
|
|
@ -296,323 +290,505 @@ int hybrid_observables_cc::save_matfile()
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
|
|
|
|
double Hybrid_Interpolate_data(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const double& ti, int parameter)
|
|
|
|
|
{
|
|
|
|
|
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
|
|
|
|
|
// x(ti) = m * ti + c
|
|
|
|
|
// m = [x(t2) - x(t1)] / [t2 - t1]
|
|
|
|
|
// c = x(t1) - m * t1
|
|
|
|
|
|
|
|
|
|
double m = 0.0;
|
|
|
|
|
double c = 0.0;
|
|
|
|
|
|
|
|
|
|
if(!a.first.Flag_valid_word or !a.second.Flag_valid_word) { return 0.0; }
|
|
|
|
|
|
|
|
|
|
switch(parameter)
|
|
|
|
|
{
|
|
|
|
|
case 0:// Doppler
|
|
|
|
|
m = (a.first.Carrier_Doppler_hz - a.second.Carrier_Doppler_hz) / (a.first.RX_time - a.second.RX_time);
|
|
|
|
|
c = a.second.Carrier_Doppler_hz - m * a.second.RX_time;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 1:// Carrier phase
|
|
|
|
|
m = (a.first.Carrier_phase_rads - a.second.Carrier_phase_rads) / (a.first.RX_time - a.second.RX_time);
|
|
|
|
|
c = a.second.Carrier_phase_rads - m * a.second.RX_time;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 2:// TOW
|
|
|
|
|
m = (a.first.TOW_at_current_symbol_s - a.second.TOW_at_current_symbol_s) / (a.first.RX_time - a.second.RX_time);
|
|
|
|
|
c = a.second.TOW_at_current_symbol_s - m * a.second.RX_time;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 3:// Code phase samples
|
|
|
|
|
m = (a.first.Code_phase_samples - a.second.Code_phase_samples) / (a.first.RX_time - a.second.RX_time);
|
|
|
|
|
c = a.second.Code_phase_samples - m * a.second.RX_time;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return(m * ti + c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
double Hybrid_Compute_T_rx_s(const Gnss_Synchro& a)
|
|
|
|
|
{
|
|
|
|
|
if(a.Flag_valid_word)
|
|
|
|
|
{
|
|
|
|
|
return((static_cast<double>(a.Tracking_sample_counter) + a.Code_phase_samples) / static_cast<double>(a.fs));
|
|
|
|
|
}
|
|
|
|
|
else { return 0.0; }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
bool Hybrid_pairCompare_gnss_synchro_T_rx(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
|
|
|
|
|
{
|
|
|
|
|
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
|
|
|
|
|
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
|
|
|
|
|
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
return(Hybrid_Compute_T_rx_s(a.second) < Hybrid_Compute_T_rx_s(b.second));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
|
|
|
|
|
{
|
|
|
|
|
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
|
|
|
|
|
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
|
|
|
|
|
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
return(a.second.Tracking_sample_counter < b.second.Tracking_sample_counter);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
|
|
|
|
|
{
|
|
|
|
|
return (a.Tracking_sample_counter) < (b);
|
|
|
|
|
return(a.Tracking_sample_counter < b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
|
|
|
|
|
{
|
|
|
|
|
return ((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
|
|
|
|
|
return((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
|
|
|
|
|
bool Hybrid_pairCompare_gnss_synchro_TOW(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
|
|
|
|
|
{
|
|
|
|
|
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
|
|
|
|
|
if(a.first.Flag_valid_word and !b.first.Flag_valid_word) { return true; }
|
|
|
|
|
else if(!a.first.Flag_valid_word and b.first.Flag_valid_word) { return false; }
|
|
|
|
|
else if(!a.first.Flag_valid_word and !b.first.Flag_valid_word) {return false; }
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
return(a.first.TOW_at_current_symbol_s < b.second.TOW_at_current_symbol_s);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
|
|
|
|
|
{
|
|
|
|
|
return (a.TOW_at_current_symbol_s) < (b);
|
|
|
|
|
return(a.TOW_at_current_symbol_s < b);
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
|
|
|
|
|
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)),
|
|
|
|
|
gr_vector_int &ninput_items_required)
|
|
|
|
|
{
|
|
|
|
|
bool available_items = false;
|
|
|
|
|
for(unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
ninput_items_required[i] = 0;
|
|
|
|
|
//std::cout << "IN buffer "<< i << ". Number of items " << detail()->input(i)->items_available() << std::endl;
|
|
|
|
|
if(detail()->input(i)->items_available() > 0) { available_items = true; }
|
|
|
|
|
}
|
|
|
|
|
//std::cout << "SC buffer. Number of items " << detail()->input(d_nchannels)->items_available() << std::endl;
|
|
|
|
|
ninput_items_required[d_nchannels] = 1; // set the required available samples in each call
|
|
|
|
|
if(available_items) { ninput_items_required[d_nchannels] = 0; }
|
|
|
|
|
else { ninput_items_required[d_nchannels] = 1; }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int hybrid_observables_cc::general_work(int noutput_items, gr_vector_int &ninput_items,
|
|
|
|
|
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
|
|
|
|
int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)),
|
|
|
|
|
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
|
|
|
|
gr_vector_void_star &output_items)
|
|
|
|
|
{
|
|
|
|
|
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
|
|
|
|
|
Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
|
|
|
|
|
int n_outputs = 0;
|
|
|
|
|
int n_consume[d_nchannels];
|
|
|
|
|
double past_history_s = 100e-3;
|
|
|
|
|
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]);
|
|
|
|
|
Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]);
|
|
|
|
|
|
|
|
|
|
Gnss_Synchro current_gnss_synchro[d_nchannels];
|
|
|
|
|
Gnss_Synchro aux = Gnss_Synchro();
|
|
|
|
|
for(unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
unsigned int i;
|
|
|
|
|
int total_input_items = 0;
|
|
|
|
|
for(i = 0; i < d_nchannels; i++) { total_input_items += ninput_items[i]; }
|
|
|
|
|
bool compute_output = false;
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
if((total_input_items == 0) and (ninput_items[d_nchannels] == 0))
|
|
|
|
|
{
|
|
|
|
|
current_gnss_synchro[i] = aux;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
* 1. Read the GNSS SYNCHRO objects from available channels.
|
|
|
|
|
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
|
|
|
|
* Record all synchronization data into queues
|
|
|
|
|
*/
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
else if((total_input_items == 0) and (ninput_items[d_nchannels] > 0) and (d_num_valid_channels == 0))
|
|
|
|
|
{
|
|
|
|
|
n_consume[i] = ninput_items[i]; // full throttle
|
|
|
|
|
for(int j = 0; j < n_consume[i]; j++)
|
|
|
|
|
T_rx_s += T_rx_step_s;
|
|
|
|
|
consume(d_nchannels, 1);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
else if((total_input_items == 0) and (ninput_items[d_nchannels] > 0) and (d_num_valid_channels > 0))
|
|
|
|
|
{
|
|
|
|
|
T_rx_s += T_rx_step_s;
|
|
|
|
|
compute_output = true;
|
|
|
|
|
consume(d_nchannels, 1);
|
|
|
|
|
}
|
|
|
|
|
else if((total_input_items > 0) and (ninput_items[d_nchannels] == 0))
|
|
|
|
|
{}
|
|
|
|
|
else if((total_input_items > 0) and (ninput_items[d_nchannels] > 0))
|
|
|
|
|
{
|
|
|
|
|
T_rx_s += T_rx_step_s;
|
|
|
|
|
compute_output = true;
|
|
|
|
|
consume(d_nchannels, 1);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{}
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<std::pair<Gnss_Synchro, Gnss_Synchro>>::iterator it;
|
|
|
|
|
if (total_input_items > 0)
|
|
|
|
|
{
|
|
|
|
|
i = 0;
|
|
|
|
|
for (it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
|
|
|
|
|
{
|
|
|
|
|
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
|
|
|
|
if (ninput_items[i] > 0 and (Hybrid_Compute_T_rx_s(in[i][0]) < T_rx_s))
|
|
|
|
|
{
|
|
|
|
|
it->second = it->first; // second is the older Gnss_Synchro
|
|
|
|
|
it->first = in[i][0]; // first is the newest Gnss_Synchro
|
|
|
|
|
it->first.RX_time = Hybrid_Compute_T_rx_s(it->first);
|
|
|
|
|
consume(i, 1);
|
|
|
|
|
}
|
|
|
|
|
if (it->first.Flag_valid_word and it->second.Flag_valid_word) { valid_channels[i] = true; }
|
|
|
|
|
else { valid_channels[i] = false; }
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
d_num_valid_channels = valid_channels.count();
|
|
|
|
|
// Check if there is any valid channel after reading the new incoming Gnss_Synchro data
|
|
|
|
|
if(d_num_valid_channels == 0) { return 0; }
|
|
|
|
|
|
|
|
|
|
bool channel_history_ok;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
for(i = 0; i < d_nchannels; i++) //Discard observables with T_rx higher than the extrapolation threshold
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
channel_history_ok = true;
|
|
|
|
|
for(unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
if(valid_channels[i])
|
|
|
|
|
{
|
|
|
|
|
if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
{
|
|
|
|
|
channel_history_ok = false;
|
|
|
|
|
}
|
|
|
|
|
double delta_t = T_rx_s - d_gnss_synchro_history.at(i).second.RX_time;
|
|
|
|
|
//std::cout << "Sat " << d_gnss_synchro_history.at(i).second.PRN << ". Dt = " << delta_t * 1000.0 <<". Rx 2 "<< d_gnss_synchro_history.at(i).second.RX_time<<". Rx 1 "<< d_gnss_synchro_history.at(i).first.RX_time<<std::endl;
|
|
|
|
|
if(std::fabs(T_rx_s - d_gnss_synchro_history.at(i).second.RX_time) > max_extrapol_time_s)
|
|
|
|
|
{ valid_channels[i] = false; }
|
|
|
|
|
}
|
|
|
|
|
if (channel_history_ok == true)
|
|
|
|
|
}
|
|
|
|
|
d_num_valid_channels = valid_channels.count();
|
|
|
|
|
|
|
|
|
|
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
|
|
|
|
|
if((d_num_valid_channels == 0) or !compute_output) { return 0; }
|
|
|
|
|
|
|
|
|
|
it = d_gnss_synchro_history.begin();
|
|
|
|
|
double TOW_ref = std::numeric_limits<double>::max();
|
|
|
|
|
for(i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
if(!valid_channels[i]) { out[i][0] = Gnss_Synchro(); }
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
|
|
|
|
|
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
|
|
|
|
|
|
|
|
|
|
// 1. If the RX time is not set, set the Rx time
|
|
|
|
|
if (T_rx_s == 0)
|
|
|
|
|
{
|
|
|
|
|
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
|
|
|
|
std::map<int,Gnss_Synchro> gnss_synchro_map;
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
{
|
|
|
|
|
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
|
|
|
|
|
d_gnss_synchro_history_queue.at(i).front()));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
|
|
|
|
|
|
|
|
|
|
gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
|
|
|
|
|
gnss_synchro_map.cend(),
|
|
|
|
|
Hybrid_pairCompare_gnss_synchro_sample_counter);
|
|
|
|
|
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
|
|
|
|
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 2. Realign RX time in all valid channels
|
|
|
|
|
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
|
|
|
|
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
|
|
|
|
// shift channels history to match the reference TOW
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
{
|
|
|
|
|
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
|
|
|
|
|
d_gnss_synchro_history_queue.at(i).cend(),
|
|
|
|
|
T_rx_s,
|
|
|
|
|
Hybrid_valueCompare_gnss_synchro_receiver_time);
|
|
|
|
|
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
|
|
|
|
|
{
|
|
|
|
|
if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
|
|
|
|
{
|
|
|
|
|
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
|
|
|
double delta_T_rx_s = T_rx_channel - T_rx_s;
|
|
|
|
|
|
|
|
|
|
// check that T_rx difference is less than a threshold (the correlation interval)
|
|
|
|
|
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
|
|
|
|
{
|
|
|
|
|
// record the word structure in a map for pseudorange computation
|
|
|
|
|
// save the previous observable
|
|
|
|
|
int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
|
|
|
|
|
if (distance > 0)
|
|
|
|
|
{
|
|
|
|
|
if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
|
|
|
|
|
{
|
|
|
|
|
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
|
|
|
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
|
|
|
|
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
|
|
|
|
{
|
|
|
|
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
|
|
|
d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
|
|
|
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
|
|
|
d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(!realigned_gnss_synchro_map.empty())
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* 2.1 Use CURRENT set of measurements and find the nearest satellite
|
|
|
|
|
* common RX time algorithm
|
|
|
|
|
*/
|
|
|
|
|
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
|
|
|
|
gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
|
|
|
|
|
realigned_gnss_synchro_map.cend(),
|
|
|
|
|
Hybrid_pairCompare_gnss_synchro_d_TOW);
|
|
|
|
|
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
|
|
|
|
|
// compute interpolated TOW value at T_rx_s
|
|
|
|
|
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
|
|
|
Gnss_Synchro adj_obs;
|
|
|
|
|
adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
|
|
|
|
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
|
|
|
|
|
|
|
|
|
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
|
|
|
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
|
|
|
|
|
|
|
|
|
double selected_T_rx_s = T_rx_s;
|
|
|
|
|
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
|
|
|
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
|
|
|
|
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
|
|
|
|
|
|
|
|
|
// Now compute RX time differences due to the PRN alignment in the correlators
|
|
|
|
|
double traveltime_ms;
|
|
|
|
|
double pseudorange_m;
|
|
|
|
|
double channel_T_rx_s;
|
|
|
|
|
double channel_fs_hz;
|
|
|
|
|
double channel_TOW_s;
|
|
|
|
|
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
|
|
|
|
|
{
|
|
|
|
|
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
|
|
|
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
|
|
|
|
// compute interpolated observation values
|
|
|
|
|
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
|
|
|
// TOW at the selected receiver time T_rx_s
|
|
|
|
|
int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
|
|
|
adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
|
|
|
|
|
|
|
|
|
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
|
|
|
|
|
|
|
|
|
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
|
|
|
|
|
// Doppler and Accumulated carrier phase
|
|
|
|
|
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
|
|
|
|
|
// compute the pseudorange (no rx time offset correction)
|
|
|
|
|
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
|
|
|
|
// convert to meters
|
|
|
|
|
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
|
|
|
|
// update the pseudorange object
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
|
|
|
|
// Save the estimated RX time (no RX clock offset correction yet!)
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
|
|
|
|
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
|
|
|
|
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(d_dump == true)
|
|
|
|
|
{
|
|
|
|
|
// MULTIPLEXED FILE RECORDING - Record results to file
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
double tmp_double;
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
tmp_double = current_gnss_synchro[i].RX_time;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = current_gnss_synchro[i].PRN;
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
|
|
|
|
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (const std::ifstream::failure& e)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
|
|
|
|
d_dump = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
out[i][n_outputs] = current_gnss_synchro[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
n_outputs++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Move RX time
|
|
|
|
|
T_rx_s += T_rx_step_s;
|
|
|
|
|
// pop old elements from queue
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
{
|
|
|
|
|
while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
|
|
|
|
|
{
|
|
|
|
|
d_gnss_synchro_history_queue.at(i).pop_front();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
out[i][0] = it->first;
|
|
|
|
|
out[i][0].Flag_valid_pseudorange = true;
|
|
|
|
|
out[i][0].Carrier_Doppler_hz = Hybrid_Interpolate_data(*it, T_rx_s, 0);
|
|
|
|
|
out[i][0].Carrier_phase_rads = Hybrid_Interpolate_data(*it, T_rx_s, 1);
|
|
|
|
|
out[i][0].RX_time = Hybrid_Interpolate_data(*it, T_rx_s, 2);
|
|
|
|
|
out[i][0].Code_phase_samples = Hybrid_Interpolate_data(*it, T_rx_s, 3);
|
|
|
|
|
//std::cout<<"T2: "<< it->first.RX_time<<". T1: "<< it->second.RX_time <<" T i: " << T_rx_s <<std::endl;
|
|
|
|
|
//std::cout<<"Doppler origin: "<< it->first.Carrier_Doppler_hz<<","<< it->second.Carrier_Doppler_hz<<" Doppler interp: " << out[i][0].Carrier_Doppler_hz <<std::endl;
|
|
|
|
|
if(out[i][0].RX_time < TOW_ref) { TOW_ref = out[i][0].RX_time; }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}// End of try{...}
|
|
|
|
|
catch(const std::out_of_range& e)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
|
|
|
std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
|
|
|
return gr::block::WORK_DONE;
|
|
|
|
|
it++;
|
|
|
|
|
}
|
|
|
|
|
catch(const std::exception& e)
|
|
|
|
|
for(i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
|
|
|
std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
|
|
|
return gr::block::WORK_DONE;
|
|
|
|
|
if(valid_channels[i])
|
|
|
|
|
{
|
|
|
|
|
double traveltime_ms = (out[i][0].RX_time - TOW_ref)*1000.0 + GPS_STARTOFFSET_ms;
|
|
|
|
|
out[i][0].Pseudorange_m = traveltime_ms * GPS_C_m_ms;
|
|
|
|
|
out[i][0].RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
|
|
|
|
|
//std::cout << "Sat " << out[i][0].PRN << ". Prang = " << out[i][0].Pseudorange_m << ". TOW = " << out[i][0].RX_time << std::endl;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
}while(channel_history_ok == true && noutput_items > n_outputs);
|
|
|
|
|
/******************************* OLD ALGORITHM ********************************/
|
|
|
|
|
|
|
|
|
|
// Multi-rate consume!
|
|
|
|
|
for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
{
|
|
|
|
|
consume(i, n_consume[i]); // which input, how many items
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//consume monitor channel always
|
|
|
|
|
consume(d_nchannels, 1);
|
|
|
|
|
return n_outputs;
|
|
|
|
|
// const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
|
|
|
|
|
// Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
|
|
|
|
|
// int n_outputs = 0;
|
|
|
|
|
// int n_consume[d_nchannels];
|
|
|
|
|
// double past_history_s = 100e-3;
|
|
|
|
|
//
|
|
|
|
|
// Gnss_Synchro current_gnss_synchro[d_nchannels];
|
|
|
|
|
// Gnss_Synchro aux = Gnss_Synchro();
|
|
|
|
|
// for(unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// current_gnss_synchro[i] = aux;
|
|
|
|
|
// }
|
|
|
|
|
// /*
|
|
|
|
|
// * 1. Read the GNSS SYNCHRO objects from available channels.
|
|
|
|
|
// * Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
|
|
|
|
|
// * Record all synchronization data into queues
|
|
|
|
|
// */
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// n_consume[i] = ninput_items[i]; // full throttle
|
|
|
|
|
// for(int j = 0; j < n_consume[i]; j++)
|
|
|
|
|
// {
|
|
|
|
|
// d_gnss_synchro_history_queue[i].push_back(in[i][j]);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// bool channel_history_ok;
|
|
|
|
|
//
|
|
|
|
|
// do
|
|
|
|
|
// {
|
|
|
|
|
//
|
|
|
|
|
// try
|
|
|
|
|
// {
|
|
|
|
|
//
|
|
|
|
|
// channel_history_ok = true;
|
|
|
|
|
// for(unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
// {
|
|
|
|
|
// channel_history_ok = false;
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// if (channel_history_ok == true)
|
|
|
|
|
// {
|
|
|
|
|
// std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
|
|
|
|
|
// std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
|
|
|
|
|
//
|
|
|
|
|
// // 1. If the RX time is not set, set the Rx time
|
|
|
|
|
// if (T_rx_s == 0)
|
|
|
|
|
// {
|
|
|
|
|
// // 0. Read a gnss_synchro snapshot from the queue and store it in a map
|
|
|
|
|
// std::map<int,Gnss_Synchro> gnss_synchro_map;
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
// {
|
|
|
|
|
// gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
|
|
|
|
|
// d_gnss_synchro_history_queue.at(i).front()));
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
|
|
|
|
|
//
|
|
|
|
|
// gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
|
|
|
|
|
// gnss_synchro_map.cend(),
|
|
|
|
|
// Hybrid_pairCompare_gnss_synchro_sample_counter);
|
|
|
|
|
// T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
// T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
|
|
|
|
|
// T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// // 2. Realign RX time in all valid channels
|
|
|
|
|
// std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
|
|
|
|
|
// std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
|
|
|
|
|
// // shift channels history to match the reference TOW
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
// {
|
|
|
|
|
// gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
|
|
|
|
|
// d_gnss_synchro_history_queue.at(i).cend(),
|
|
|
|
|
// T_rx_s,
|
|
|
|
|
// Hybrid_valueCompare_gnss_synchro_receiver_time);
|
|
|
|
|
// if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
|
|
|
|
|
// {
|
|
|
|
|
// if (gnss_synchro_deque_iter->Flag_valid_word == true)
|
|
|
|
|
// {
|
|
|
|
|
// double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
|
|
|
// double delta_T_rx_s = T_rx_channel - T_rx_s;
|
|
|
|
|
//
|
|
|
|
|
// // check that T_rx difference is less than a threshold (the correlation interval)
|
|
|
|
|
// if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
|
|
|
|
|
// {
|
|
|
|
|
// // record the word structure in a map for pseudorange computation
|
|
|
|
|
// // save the previous observable
|
|
|
|
|
// int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
|
|
|
|
|
// if (distance > 0)
|
|
|
|
|
// {
|
|
|
|
|
// if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
|
|
|
|
|
// {
|
|
|
|
|
// double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
|
|
|
|
|
// double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
|
|
|
|
|
// if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
|
|
|
|
|
// {
|
|
|
|
|
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
|
|
|
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
|
|
|
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
// }
|
|
|
|
|
// else
|
|
|
|
|
// {
|
|
|
|
|
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
|
|
|
|
|
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// }
|
|
|
|
|
// else
|
|
|
|
|
// {
|
|
|
|
|
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// if(!realigned_gnss_synchro_map.empty())
|
|
|
|
|
// {
|
|
|
|
|
// /*
|
|
|
|
|
// * 2.1 Use CURRENT set of measurements and find the nearest satellite
|
|
|
|
|
// * common RX time algorithm
|
|
|
|
|
// */
|
|
|
|
|
// // what is the most recent symbol TOW in the current set? -> this will be the reference symbol
|
|
|
|
|
// gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
|
|
|
|
|
// realigned_gnss_synchro_map.cend(),
|
|
|
|
|
// Hybrid_pairCompare_gnss_synchro_d_TOW);
|
|
|
|
|
// double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
//
|
|
|
|
|
// // compute interpolated TOW value at T_rx_s
|
|
|
|
|
// int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
|
|
|
// Gnss_Synchro adj_obs;
|
|
|
|
|
// adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
|
|
|
|
|
// double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
|
|
|
|
|
//
|
|
|
|
|
// double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
|
|
|
// double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
|
|
|
|
|
//
|
|
|
|
|
// double selected_T_rx_s = T_rx_s;
|
|
|
|
|
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
|
|
|
// double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
|
|
|
|
|
// (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
|
|
|
|
|
//
|
|
|
|
|
// // Now compute RX time differences due to the PRN alignment in the correlators
|
|
|
|
|
// double traveltime_ms;
|
|
|
|
|
// double pseudorange_m;
|
|
|
|
|
// double channel_T_rx_s;
|
|
|
|
|
// double channel_fs_hz;
|
|
|
|
|
// double channel_TOW_s;
|
|
|
|
|
// for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
|
|
|
|
|
// {
|
|
|
|
|
// channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
|
|
|
|
|
// channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
|
|
|
|
|
// channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
|
|
|
|
|
// // compute interpolated observation values
|
|
|
|
|
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
|
|
|
|
|
// // TOW at the selected receiver time T_rx_s
|
|
|
|
|
// int element_key = gnss_synchro_map_iter->second.Channel_ID;
|
|
|
|
|
// adj_obs = adjacent_gnss_synchro_map.at(element_key);
|
|
|
|
|
//
|
|
|
|
|
// double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
|
|
|
|
|
//
|
|
|
|
|
// double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
//
|
|
|
|
|
// // Doppler and Accumulated carrier phase
|
|
|
|
|
// double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
// double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
|
|
|
|
|
//
|
|
|
|
|
// // compute the pseudorange (no rx time offset correction)
|
|
|
|
|
// traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
|
|
|
|
|
// // convert to meters
|
|
|
|
|
// pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
|
|
|
|
|
// // update the pseudorange object
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
|
|
|
|
|
// // Save the estimated RX time (no RX clock offset correction yet!)
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
|
|
|
|
|
//
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
|
|
|
|
|
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// if(d_dump == true)
|
|
|
|
|
// {
|
|
|
|
|
// // MULTIPLEXED FILE RECORDING - Record results to file
|
|
|
|
|
// try
|
|
|
|
|
// {
|
|
|
|
|
// double tmp_double;
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].RX_time;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = current_gnss_synchro[i].PRN;
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
|
|
|
|
|
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// catch (const std::ifstream::failure& e)
|
|
|
|
|
// {
|
|
|
|
|
// LOG(WARNING) << "Exception writing observables dump file " << e.what();
|
|
|
|
|
// d_dump = false;
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// out[i][n_outputs] = current_gnss_synchro[i];
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// n_outputs++;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// // Move RX time
|
|
|
|
|
// T_rx_s += T_rx_step_s;
|
|
|
|
|
// // pop old elements from queue
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// if (!d_gnss_synchro_history_queue.at(i).empty())
|
|
|
|
|
// {
|
|
|
|
|
// while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
|
|
|
|
|
// {
|
|
|
|
|
// d_gnss_synchro_history_queue.at(i).pop_front();
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// }// End of try{...}
|
|
|
|
|
// catch(const std::out_of_range& e)
|
|
|
|
|
// {
|
|
|
|
|
// LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
|
|
|
// std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
|
|
|
// return gr::block::WORK_DONE;
|
|
|
|
|
// }
|
|
|
|
|
// catch(const std::exception& e)
|
|
|
|
|
// {
|
|
|
|
|
// LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
|
|
|
|
|
// std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
|
|
|
|
|
// return gr::block::WORK_DONE;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// }while(channel_history_ok == true && noutput_items > n_outputs);
|
|
|
|
|
//
|
|
|
|
|
// // Multi-rate consume!
|
|
|
|
|
// for (unsigned int i = 0; i < d_nchannels; i++)
|
|
|
|
|
// {
|
|
|
|
|
// consume(i, n_consume[i]); // which input, how many items
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// //consume monitor channel always
|
|
|
|
|
// consume(d_nchannels, 1);
|
|
|
|
|
// return n_outputs;
|
|
|
|
|
//
|
|
|
|
|
//
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|