1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Modify observables algorithm

This commit is contained in:
Antonio Ramos 2018-02-16 18:10:48 +01:00
parent ab6e62af72
commit 756fd1904e
14 changed files with 522 additions and 334 deletions

View File

@ -38,7 +38,9 @@ gnss_sdr_sample_counter::gnss_sdr_sample_counter(double _fs) : gr::sync_decimato
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
static_cast<unsigned int>(floor(_fs * 0.001)))
{
this->message_port_register_out(pmt::mp("sample_counter"));
message_port_register_out(pmt::mp("sample_counter"));
set_max_noutput_items(1);
set_max_output_buffer(1);
current_T_rx_ms = 0;
report_interval_ms = 1000;//default reporting 1 second
flag_enable_send_msg = false; //enable it for reporting time with asynchronous message
@ -63,7 +65,7 @@ int gnss_sdr_sample_counter::work(int noutput_items __attribute__((unused)),
std::cout << "Current receiver time: " << static_cast<double>(current_T_rx_ms) / 1000.0 << " [s]" << std::endl;
if(flag_enable_send_msg)
{
this->message_port_pub(pmt::mp("receiver_time"), pmt::from_double(static_cast<double>(current_T_rx_ms) / 1000.0));
message_port_pub(pmt::mp("receiver_time"), pmt::from_double(static_cast<double>(current_T_rx_ms) / 1000.0));
}
}
current_T_rx_ms++;

View File

@ -46,17 +46,8 @@ HybridObservables::HybridObservables(ConfigurationInterface* configuration,
DLOG(INFO) << "role " << role;
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_filename);
unsigned int default_depth = 0;
if (GPS_L1_CA_HISTORY_DEEP == GALILEO_E1_HISTORY_DEEP)
{
default_depth = GPS_L1_CA_HISTORY_DEEP;
}
else
{
default_depth = 100;
}
unsigned int history_deep = configuration->property(role + ".history_depth", default_depth);
observables_ = hybrid_make_observables_cc(in_streams_, out_streams_, dump_, dump_filename_, history_deep);
observables_ = hybrid_make_observables_cc(in_streams_, out_streams_, dump_, dump_filename_);
DLOG(INFO) << "Observables block ID (" << observables_->unique_id() << ")";
}

View File

@ -32,10 +32,7 @@
#include <algorithm>
#include <cmath>
#include <iostream>
#include <map>
#include <vector>
#include <utility>
#include <armadillo>
#include <limits>
#include <gnuradio/io_signature.h>
#include <gnuradio/block_detail.h>
#include <gnuradio/buffer.h>
@ -47,32 +44,38 @@
using google::LogMessage;
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history)
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename)
{
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels_in, nchannels_out, dump, dump_filename, deep_history));
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels_in, nchannels_out, dump, dump_filename));
}
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels_in, nchannels_in, sizeof(Gnss_Synchro)),
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename) :
gr::block("hybrid_observables_cc",
gr::io_signature::make(nchannels_in, nchannels_in, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro)))
{
// initialize internal vars
set_max_noutput_items(1);
set_max_output_buffer(1);
d_dump = dump;
d_nchannels = nchannels_out;
d_dump_filename = dump_filename;
history_deep = deep_history;
T_rx_s = 0.0;
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
T_rx_step_s = 0.001; // 1 ms
max_extrapol_time_s = 0.1; // 100 ms
valid_channels.resize(d_nchannels, false);
d_num_valid_channels = 0;
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
d_gnss_synchro_history.push_back(std::pair<Gnss_Synchro,Gnss_Synchro>());
d_gnss_synchro_history.at(i).first.Flag_valid_word = false;
d_gnss_synchro_history.at(i).second.Flag_valid_word = false;
}
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
if (d_dump)
{
if (d_dump_file.is_open() == false)
if (!d_dump_file.is_open())
{
try
{
@ -92,18 +95,15 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in, unsigned
hybrid_observables_cc::~hybrid_observables_cc()
{
if (d_dump_file.is_open() == true)
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
try { d_dump_file.close(); }
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
if(d_dump == true)
if(d_dump)
{
std::cout << "Writing observables .mat files ...";
save_matfile();
@ -120,10 +120,7 @@ int hybrid_observables_cc::save_matfile()
int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels;
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
try { dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); }
catch(const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
@ -137,10 +134,7 @@ int hybrid_observables_cc::save_matfile()
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
else { return 1; }
double ** RX_time = new double * [d_nchannels];
double ** TOW_at_current_symbol_s = new double * [d_nchannels];
double ** Carrier_Doppler_hz = new double * [d_nchannels];
@ -296,323 +290,505 @@ int hybrid_observables_cc::save_matfile()
return 0;
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
double Hybrid_Interpolate_data(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const double& ti, int parameter)
{
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
// x(ti) = m * ti + c
// m = [x(t2) - x(t1)] / [t2 - t1]
// c = x(t1) - m * t1
double m = 0.0;
double c = 0.0;
if(!a.first.Flag_valid_word or !a.second.Flag_valid_word) { return 0.0; }
switch(parameter)
{
case 0:// Doppler
m = (a.first.Carrier_Doppler_hz - a.second.Carrier_Doppler_hz) / (a.first.RX_time - a.second.RX_time);
c = a.second.Carrier_Doppler_hz - m * a.second.RX_time;
break;
case 1:// Carrier phase
m = (a.first.Carrier_phase_rads - a.second.Carrier_phase_rads) / (a.first.RX_time - a.second.RX_time);
c = a.second.Carrier_phase_rads - m * a.second.RX_time;
break;
case 2:// TOW
m = (a.first.TOW_at_current_symbol_s - a.second.TOW_at_current_symbol_s) / (a.first.RX_time - a.second.RX_time);
c = a.second.TOW_at_current_symbol_s - m * a.second.RX_time;
break;
case 3:// Code phase samples
m = (a.first.Code_phase_samples - a.second.Code_phase_samples) / (a.first.RX_time - a.second.RX_time);
c = a.second.Code_phase_samples - m * a.second.RX_time;
break;
}
return(m * ti + c);
}
double Hybrid_Compute_T_rx_s(const Gnss_Synchro& a)
{
if(a.Flag_valid_word)
{
return((static_cast<double>(a.Tracking_sample_counter) + a.Code_phase_samples) / static_cast<double>(a.fs));
}
else { return 0.0; }
}
/*
bool Hybrid_pairCompare_gnss_synchro_T_rx(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
else
{
return(Hybrid_Compute_T_rx_s(a.second) < Hybrid_Compute_T_rx_s(b.second));
}
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
if(a.second.Flag_valid_word and !b.second.Flag_valid_word) { return true; }
else if(!a.second.Flag_valid_word and b.second.Flag_valid_word) { return false; }
else if(!a.second.Flag_valid_word and !b.second.Flag_valid_word) {return false; }
else
{
return(a.second.Tracking_sample_counter < b.second.Tracking_sample_counter);
}
}
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
{
return (a.Tracking_sample_counter) < (b);
return(a.Tracking_sample_counter < b);
}
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
return ((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
return((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
bool Hybrid_pairCompare_gnss_synchro_TOW(const std::pair<Gnss_Synchro, Gnss_Synchro>& a, const std::pair<Gnss_Synchro, Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
if(a.first.Flag_valid_word and !b.first.Flag_valid_word) { return true; }
else if(!a.first.Flag_valid_word and b.first.Flag_valid_word) { return false; }
else if(!a.first.Flag_valid_word and !b.first.Flag_valid_word) {return false; }
else
{
return(a.first.TOW_at_current_symbol_s < b.second.TOW_at_current_symbol_s);
}
}
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
return (a.TOW_at_current_symbol_s) < (b);
return(a.TOW_at_current_symbol_s < b);
}
*/
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items_required)
{
bool available_items = false;
for(unsigned int i = 0; i < d_nchannels; i++)
{
ninput_items_required[i] = 0;
//std::cout << "IN buffer "<< i << ". Number of items " << detail()->input(i)->items_available() << std::endl;
if(detail()->input(i)->items_available() > 0) { available_items = true; }
}
//std::cout << "SC buffer. Number of items " << detail()->input(d_nchannels)->items_available() << std::endl;
ninput_items_required[d_nchannels] = 1; // set the required available samples in each call
if(available_items) { ninput_items_required[d_nchannels] = 0; }
else { ninput_items_required[d_nchannels] = 1; }
}
int hybrid_observables_cc::general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
int n_outputs = 0;
int n_consume[d_nchannels];
double past_history_s = 100e-3;
const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]);
Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]);
Gnss_Synchro current_gnss_synchro[d_nchannels];
Gnss_Synchro aux = Gnss_Synchro();
for(unsigned int i = 0; i < d_nchannels; i++)
{
current_gnss_synchro[i] = aux;
}
/*
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
n_consume[i] = ninput_items[i]; // full throttle
for(int j = 0; j < n_consume[i]; j++)
{
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
}
}
unsigned int i;
int total_input_items = 0;
for(i = 0; i < d_nchannels; i++) { total_input_items += ninput_items[i]; }
bool compute_output = false;
bool channel_history_ok;
do
//////////////////////////////////////////////////////////////////////////
if((total_input_items == 0) and (ninput_items[d_nchannels] == 0))
{
try
{
channel_history_ok = true;
for(unsigned int i = 0; i < d_nchannels; i++)
{
if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
{
channel_history_ok = false;
return 0;
}
}
if (channel_history_ok == true)
else if((total_input_items == 0) and (ninput_items[d_nchannels] > 0) and (d_num_valid_channels == 0))
{
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
// 1. If the RX time is not set, set the Rx time
if (T_rx_s == 0)
{
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (!d_gnss_synchro_history_queue.at(i).empty())
{
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
d_gnss_synchro_history_queue.at(i).front()));
}
}
if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
}
// 2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (!d_gnss_synchro_history_queue.at(i).empty())
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
d_gnss_synchro_history_queue.at(i).cend(),
T_rx_s,
Hybrid_valueCompare_gnss_synchro_receiver_time);
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
{
if (gnss_synchro_deque_iter->Flag_valid_word == true)
{
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s = T_rx_channel - T_rx_s;
// check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
{
// record the word structure in a map for pseudorange computation
// save the previous observable
int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
if (distance > 0)
{
if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
{
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue.at(i).at(distance - 1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue.at(i).at(distance - 1)));
}
}
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
}
}
}
}
}
if(!realigned_gnss_synchro_map.empty())
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
realigned_gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// compute interpolated TOW value at T_rx_s
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs;
adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
double selected_T_rx_s = T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double channel_T_rx_s;
double channel_fs_hz;
double channel_TOW_s;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
{
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s
int element_key = gnss_synchro_map_iter->second.Channel_ID;
adj_obs = adjacent_gnss_synchro_map.at(element_key);
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
// Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
// compute the pseudorange (no rx time offset correction)
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
d_dump = false;
}
}
for (unsigned int i = 0; i < d_nchannels; i++)
{
out[i][n_outputs] = current_gnss_synchro[i];
}
n_outputs++;
}
// Move RX time
T_rx_s += T_rx_step_s;
// pop old elements from queue
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (!d_gnss_synchro_history_queue.at(i).empty())
{
while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
{
d_gnss_synchro_history_queue.at(i).pop_front();
}
}
}
}
}// End of try{...}
catch(const std::out_of_range& e)
{
LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
return gr::block::WORK_DONE;
}
catch(const std::exception& e)
{
LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
return gr::block::WORK_DONE;
}
}while(channel_history_ok == true && noutput_items > n_outputs);
// Multi-rate consume!
for (unsigned int i = 0; i < d_nchannels; i++)
{
consume(i, n_consume[i]); // which input, how many items
}
//consume monitor channel always
consume(d_nchannels, 1);
return n_outputs;
return 0;
}
else if((total_input_items == 0) and (ninput_items[d_nchannels] > 0) and (d_num_valid_channels > 0))
{
T_rx_s += T_rx_step_s;
compute_output = true;
consume(d_nchannels, 1);
}
else if((total_input_items > 0) and (ninput_items[d_nchannels] == 0))
{}
else if((total_input_items > 0) and (ninput_items[d_nchannels] > 0))
{
T_rx_s += T_rx_step_s;
compute_output = true;
consume(d_nchannels, 1);
}
else
{}
//////////////////////////////////////////////////////////////////////////
std::vector<std::pair<Gnss_Synchro, Gnss_Synchro>>::iterator it;
if (total_input_items > 0)
{
i = 0;
for (it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
{
if (ninput_items[i] > 0 and (Hybrid_Compute_T_rx_s(in[i][0]) < T_rx_s))
{
it->second = it->first; // second is the older Gnss_Synchro
it->first = in[i][0]; // first is the newest Gnss_Synchro
it->first.RX_time = Hybrid_Compute_T_rx_s(it->first);
consume(i, 1);
}
if (it->first.Flag_valid_word and it->second.Flag_valid_word) { valid_channels[i] = true; }
else { valid_channels[i] = false; }
i++;
}
}
d_num_valid_channels = valid_channels.count();
// Check if there is any valid channel after reading the new incoming Gnss_Synchro data
if(d_num_valid_channels == 0) { return 0; }
for(i = 0; i < d_nchannels; i++) //Discard observables with T_rx higher than the extrapolation threshold
{
if(valid_channels[i])
{
double delta_t = T_rx_s - d_gnss_synchro_history.at(i).second.RX_time;
//std::cout << "Sat " << d_gnss_synchro_history.at(i).second.PRN << ". Dt = " << delta_t * 1000.0 <<". Rx 2 "<< d_gnss_synchro_history.at(i).second.RX_time<<". Rx 1 "<< d_gnss_synchro_history.at(i).first.RX_time<<std::endl;
if(std::fabs(T_rx_s - d_gnss_synchro_history.at(i).second.RX_time) > max_extrapol_time_s)
{ valid_channels[i] = false; }
}
}
d_num_valid_channels = valid_channels.count();
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
if((d_num_valid_channels == 0) or !compute_output) { return 0; }
it = d_gnss_synchro_history.begin();
double TOW_ref = std::numeric_limits<double>::max();
for(i = 0; i < d_nchannels; i++)
{
if(!valid_channels[i]) { out[i][0] = Gnss_Synchro(); }
else
{
out[i][0] = it->first;
out[i][0].Flag_valid_pseudorange = true;
out[i][0].Carrier_Doppler_hz = Hybrid_Interpolate_data(*it, T_rx_s, 0);
out[i][0].Carrier_phase_rads = Hybrid_Interpolate_data(*it, T_rx_s, 1);
out[i][0].RX_time = Hybrid_Interpolate_data(*it, T_rx_s, 2);
out[i][0].Code_phase_samples = Hybrid_Interpolate_data(*it, T_rx_s, 3);
//std::cout<<"T2: "<< it->first.RX_time<<". T1: "<< it->second.RX_time <<" T i: " << T_rx_s <<std::endl;
//std::cout<<"Doppler origin: "<< it->first.Carrier_Doppler_hz<<","<< it->second.Carrier_Doppler_hz<<" Doppler interp: " << out[i][0].Carrier_Doppler_hz <<std::endl;
if(out[i][0].RX_time < TOW_ref) { TOW_ref = out[i][0].RX_time; }
}
it++;
}
for(i = 0; i < d_nchannels; i++)
{
if(valid_channels[i])
{
double traveltime_ms = (out[i][0].RX_time - TOW_ref)*1000.0 + GPS_STARTOFFSET_ms;
out[i][0].Pseudorange_m = traveltime_ms * GPS_C_m_ms;
out[i][0].RX_time = TOW_ref + GPS_STARTOFFSET_ms / 1000.0;
//std::cout << "Sat " << out[i][0].PRN << ". Prang = " << out[i][0].Pseudorange_m << ". TOW = " << out[i][0].RX_time << std::endl;
}
}
return 1;
/******************************* OLD ALGORITHM ********************************/
// const Gnss_Synchro** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
// Gnss_Synchro** out = reinterpret_cast<Gnss_Synchro**>(&output_items[0]); // Get the output buffer pointer
// int n_outputs = 0;
// int n_consume[d_nchannels];
// double past_history_s = 100e-3;
//
// Gnss_Synchro current_gnss_synchro[d_nchannels];
// Gnss_Synchro aux = Gnss_Synchro();
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// current_gnss_synchro[i] = aux;
// }
// /*
// * 1. Read the GNSS SYNCHRO objects from available channels.
// * Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
// * Record all synchronization data into queues
// */
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// n_consume[i] = ninput_items[i]; // full throttle
// for(int j = 0; j < n_consume[i]; j++)
// {
// d_gnss_synchro_history_queue[i].push_back(in[i][j]);
// }
// }
//
// bool channel_history_ok;
//
// do
// {
//
// try
// {
//
// channel_history_ok = true;
// for(unsigned int i = 0; i < d_nchannels; i++)
// {
// if (d_gnss_synchro_history_queue.at(i).size() < history_deep && !d_gnss_synchro_history_queue.at(i).empty())
// {
// channel_history_ok = false;
// }
// }
// if (channel_history_ok == true)
// {
// std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
// std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
//
// // 1. If the RX time is not set, set the Rx time
// if (T_rx_s == 0)
// {
// // 0. Read a gnss_synchro snapshot from the queue and store it in a map
// std::map<int,Gnss_Synchro> gnss_synchro_map;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).front().Channel_ID,
// d_gnss_synchro_history_queue.at(i).front()));
// }
// }
// if(gnss_synchro_map.empty()) { break; } // Breaks the do-while loop
//
// gnss_synchro_map_iter = std::min_element(gnss_synchro_map.cbegin(),
// gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_sample_counter);
// T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
// T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
// T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
// }
//
// // 2. Realign RX time in all valid channels
// std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
// std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// // shift channels history to match the reference TOW
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue.at(i).cbegin(),
// d_gnss_synchro_history_queue.at(i).cend(),
// T_rx_s,
// Hybrid_valueCompare_gnss_synchro_receiver_time);
// if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue.at(i).cend())
// {
// if (gnss_synchro_deque_iter->Flag_valid_word == true)
// {
// double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s = T_rx_channel - T_rx_s;
//
// // check that T_rx difference is less than a threshold (the correlation interval)
// if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
// {
// // record the word structure in a map for pseudorange computation
// // save the previous observable
// int distance = std::distance(d_gnss_synchro_history_queue.at(i).cbegin(), gnss_synchro_deque_iter);
// if (distance > 0)
// {
// if (d_gnss_synchro_history_queue.at(i).at(distance - 1).Flag_valid_word)
// {
// double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
// double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
// if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue.at(i).at(distance - 1).Channel_ID,
// d_gnss_synchro_history_queue.at(i).at(distance - 1)));
// }
// }
//
// }
// else
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
// }
//
// }
// }
// }
// }
// }
//
// if(!realigned_gnss_synchro_map.empty())
// {
// /*
// * 2.1 Use CURRENT set of measurements and find the nearest satellite
// * common RX time algorithm
// */
// // what is the most recent symbol TOW in the current set? -> this will be the reference symbol
// gnss_synchro_map_iter = std::max_element(realigned_gnss_synchro_map.cbegin(),
// realigned_gnss_synchro_map.cend(),
// Hybrid_pairCompare_gnss_synchro_d_TOW);
// double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
//
// // compute interpolated TOW value at T_rx_s
// int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
// Gnss_Synchro adj_obs;
// adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
// double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
//
// double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
//
// double selected_T_rx_s = T_rx_s;
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
// (selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
//
// // Now compute RX time differences due to the PRN alignment in the correlators
// double traveltime_ms;
// double pseudorange_m;
// double channel_T_rx_s;
// double channel_fs_hz;
// double channel_TOW_s;
// for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
// {
// channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
// channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// // compute interpolated observation values
// // two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// // TOW at the selected receiver time T_rx_s
// int element_key = gnss_synchro_map_iter->second.Channel_ID;
// adj_obs = adjacent_gnss_synchro_map.at(element_key);
//
// double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
//
// double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
//
// // Doppler and Accumulated carrier phase
// double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
// double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
//
// // compute the pseudorange (no rx time offset correction)
// traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// // convert to meters
// pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// // update the pseudorange object
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// // Save the estimated RX time (no RX clock offset correction yet!)
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
//
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
// current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
// }
//
// if(d_dump == true)
// {
// // MULTIPLEXED FILE RECORDING - Record results to file
// try
// {
// double tmp_double;
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// tmp_double = current_gnss_synchro[i].RX_time;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].Pseudorange_m;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = current_gnss_synchro[i].PRN;
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
// d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// }
// }
// catch (const std::ifstream::failure& e)
// {
// LOG(WARNING) << "Exception writing observables dump file " << e.what();
// d_dump = false;
// }
// }
//
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// out[i][n_outputs] = current_gnss_synchro[i];
// }
//
// n_outputs++;
// }
//
// // Move RX time
// T_rx_s += T_rx_step_s;
// // pop old elements from queue
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// if (!d_gnss_synchro_history_queue.at(i).empty())
// {
// while (static_cast<double>(d_gnss_synchro_history_queue.at(i).front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue.at(i).front().fs) < (T_rx_s - past_history_s))
// {
// d_gnss_synchro_history_queue.at(i).pop_front();
// }
// }
// }
// }
//
// }// End of try{...}
// catch(const std::out_of_range& e)
// {
// LOG(WARNING) << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Out of range exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
// catch(const std::exception& e)
// {
// LOG(WARNING) << "Exception thrown by Hybrid Observables block. Exception message: " << e.what();
// std::cout << "Exception thrown by Hybrid Observables block. Exception message: " << e.what() << std::endl;
// return gr::block::WORK_DONE;
// }
//
// }while(channel_history_ok == true && noutput_items > n_outputs);
//
// // Multi-rate consume!
// for (unsigned int i = 0; i < d_nchannels; i++)
// {
// consume(i, n_consume[i]); // which input, how many items
// }
//
// //consume monitor channel always
// consume(d_nchannels, 1);
// return n_outputs;
//
//
}

View File

@ -35,6 +35,9 @@
#include <fstream>
#include <string>
#include <utility> //std::pair
#include <vector> //std::vector
#include <boost/dynamic_bitset.hpp>
#include <gnuradio/block.h>
#include "gnss_synchro.h"
@ -44,7 +47,7 @@ class hybrid_observables_cc;
typedef boost::shared_ptr<hybrid_observables_cc> hybrid_observables_cc_sptr;
hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename);
/*!
* \brief This class implements a block that computes Galileo observables
@ -58,17 +61,18 @@ public:
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename);
hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename);
//Tracking observable history
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
std::vector<std::pair<Gnss_Synchro, Gnss_Synchro>> d_gnss_synchro_history;
boost::dynamic_bitset<> valid_channels;
double T_rx_s;
double T_rx_step_s;
double max_extrapol_time_s;
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;
unsigned int d_num_valid_channels;
std::string d_dump_filename;
std::ofstream d_dump_file;

View File

@ -107,6 +107,8 @@ galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
gr::block("galileo_e1b_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
set_max_output_buffer(1);
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out

View File

@ -183,6 +183,8 @@ galileo_e5a_telemetry_decoder_cc::galileo_e5a_telemetry_decoder_cc(
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
set_max_output_buffer(1);
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out

View File

@ -55,6 +55,8 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
set_max_output_buffer(1);
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out

View File

@ -52,6 +52,8 @@ gps_l2c_telemetry_decoder_cc::gps_l2c_telemetry_decoder_cc(
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
set_max_output_buffer(1);
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out

View File

@ -54,6 +54,8 @@ gps_l5_telemetry_decoder_cc::gps_l5_telemetry_decoder_cc(
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
set_max_output_buffer(1);
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out

View File

@ -117,6 +117,7 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
gr::block("galileo_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->set_relative_rate(1.0 / vector_length);

View File

@ -97,6 +97,7 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));

View File

@ -93,6 +93,7 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Pll_Tracking_cc(
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));

View File

@ -90,6 +90,7 @@ gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));

View File

@ -90,6 +90,7 @@ gps_l5i_dll_pll_tracking_cc::gps_l5i_dll_pll_tracking_cc(
gr::block("gps_l5i_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
set_max_noutput_items(1);
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));