1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Introduce gsl::span. Bound checking at compile time, no overhead at runtime

See https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
This commit is contained in:
Carles Fernandez 2019-06-29 01:28:30 +02:00
parent a2c6c8a630
commit 751f54990c
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
79 changed files with 5148 additions and 297 deletions

View File

@ -206,7 +206,7 @@ void BeidouB1iPcpsAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
beidou_b1i_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); beidou_b1i_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
for (uint32_t i = 0; i < sampled_ms_; i++) for (uint32_t i = 0; i < sampled_ms_; i++)
{ {
@ -331,6 +331,7 @@ gr::basic_block_sptr BeidouB1iPcpsAcquisition::get_right_block()
return acquisition_; return acquisition_;
} }
void BeidouB1iPcpsAcquisition::set_resampler_latency(uint32_t latency_samples) void BeidouB1iPcpsAcquisition::set_resampler_latency(uint32_t latency_samples)
{ {
acquisition_->set_resampler_latency(latency_samples); acquisition_->set_resampler_latency(latency_samples);

View File

@ -143,6 +143,7 @@ void BeidouB3iPcpsAcquisition::stop_acquisition()
{ {
} }
void BeidouB3iPcpsAcquisition::set_threshold(float threshold) void BeidouB3iPcpsAcquisition::set_threshold(float threshold)
{ {
float pfa = configuration_->property(role_ + ".pfa", 0.0); float pfa = configuration_->property(role_ + ".pfa", 0.0);
@ -203,7 +204,7 @@ void BeidouB3iPcpsAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
beidou_b3i_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); beidou_b3i_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -217,8 +217,10 @@ void GalileoE1Pcps8msAmbiguousAcquisition::set_local_code()
"Acquisition" + std::to_string(channel_) + ".cboc", false); "Acquisition" + std::to_string(channel_) + ".cboc", false);
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
std::array<char, 3> Signal_;
std::memcpy(Signal_.data(), gnss_synchro_->Signal, 3);
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), Signal_,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
for (unsigned int i = 0; i < sampled_ms_ / 4; i++) for (unsigned int i = 0; i < sampled_ms_ / 4; i++)

View File

@ -247,28 +247,30 @@ void GalileoE1PcpsAmbiguousAcquisition::set_local_code()
if (acquire_pilot_ == true) if (acquire_pilot_ == true)
{ {
//set local signal generator to Galileo E1 pilot component (1C) //set local signal generator to Galileo E1 pilot component (1C)
char pilot_signal[3] = "1C"; std::array<char, 3> pilot_signal = {{'1', 'C', '\0'}};
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
galileo_e1_code_gen_complex_sampled(code, pilot_signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), pilot_signal,
cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false); cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false);
} }
else else
{ {
galileo_e1_code_gen_complex_sampled(code, pilot_signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), pilot_signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
} }
} }
else else
{ {
std::array<char, 3> Signal_;
std::memcpy(Signal_.data(), gnss_synchro_->Signal, 3);
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), Signal_,
cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false); cboc, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0, false);
} }
else else
{ {
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), Signal_,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
} }
} }

View File

@ -122,14 +122,14 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
if (acquire_pilot_ == true) if (acquire_pilot_ == true)
{ {
//set local signal generator to Galileo E1 pilot component (1C) //set local signal generator to Galileo E1 pilot component (1C)
char pilot_signal[3] = "1C"; std::array<char, 3> pilot_signal = {{'1', 'C', '\0'}};
galileo_e1_code_gen_complex_sampled(code, pilot_signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, nsamples_total), pilot_signal,
cboc, PRN, fs_in, 0, false); cboc, PRN, fs_in, 0, false);
} }
else else
{ {
char data_signal[3] = "1B"; std::array<char, 3> data_signal = {{'1', 'B', '\0'}};
galileo_e1_code_gen_complex_sampled(code, data_signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, nsamples_total), data_signal,
cboc, PRN, fs_in, 0, false); cboc, PRN, fs_in, 0, false);
} }

View File

@ -203,16 +203,14 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisition::set_local_code()
bool cboc = configuration_->property( bool cboc = configuration_->property(
"Acquisition" + std::to_string(channel_) + ".cboc", false); "Acquisition" + std::to_string(channel_) + ".cboc", false);
char signal[3]; std::array<char, 3> signal = {{'1', 'B', '\0'}};
strcpy(signal, "1B"); galileo_e1_code_gen_complex_sampled(gsl::span<gr_complex>(code_data_, vector_length_), signal,
galileo_e1_code_gen_complex_sampled(code_data_, signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
strcpy(signal, "1C"); std::array<char, 3> signal_C = {{'1', 'C', '\0'}};
galileo_e1_code_gen_complex_sampled(code_pilot_, signal, galileo_e1_code_gen_complex_sampled(gsl::span<gr_complex>(code_pilot_, vector_length_), signal_C,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
acquisition_cc_->set_local_code(code_data_, code_pilot_); acquisition_cc_->set_local_code(code_data_, code_pilot_);

View File

@ -251,8 +251,10 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_local_code()
"Acquisition" + std::to_string(channel_) + ".cboc", false); "Acquisition" + std::to_string(channel_) + ".cboc", false);
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
std::array<char, 3> Signal_;
std::memcpy(Signal_.data(), gnss_synchro_->Signal, 3);
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), Signal_,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);

View File

@ -221,8 +221,9 @@ void GalileoE1PcpsTongAmbiguousAcquisition::set_local_code()
"Acquisition" + std::to_string(channel_) + ".cboc", false); "Acquisition" + std::to_string(channel_) + ".cboc", false);
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
std::array<char, 3> Signal_;
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, std::memcpy(Signal_.data(), gnss_synchro_->Signal, 3);
galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), Signal_,
cboc, gnss_synchro_->PRN, fs_in_, 0, false); cboc, gnss_synchro_->PRN, fs_in_, 0, false);
for (unsigned int i = 0; i < sampled_ms_ / 4; i++) for (unsigned int i = 0; i < sampled_ms_ / 4; i++)

View File

@ -228,18 +228,18 @@ void GalileoE5aNoncoherentIQAcquisitionCaf::set_local_code()
if (gnss_synchro_->Signal[0] == '5' && gnss_synchro_->Signal[1] == 'X') if (gnss_synchro_->Signal[0] == '5' && gnss_synchro_->Signal[1] == 'X')
{ {
char a[3]; std::array<char, 3> a = {{'5', 'I', '\0'}};
strcpy(a, "5I"); galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>>(codeI, code_length_), a,
galileo_e5_a_code_gen_complex_sampled(codeI, a,
gnss_synchro_->PRN, fs_in_, 0); gnss_synchro_->PRN, fs_in_, 0);
strcpy(a, "5Q"); std::array<char, 3> b = {{'5', 'Q', '\0'}};
galileo_e5_a_code_gen_complex_sampled(codeQ, a, galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>>(codeQ, code_length_), b,
gnss_synchro_->PRN, fs_in_, 0); gnss_synchro_->PRN, fs_in_, 0);
} }
else else
{ {
galileo_e5_a_code_gen_complex_sampled(codeI, gnss_synchro_->Signal, std::array<char, 3> signal_type_ = {{'5', 'X', '\0'}};
galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>>(codeI, code_length_), signal_type_,
gnss_synchro_->PRN, fs_in_, 0); gnss_synchro_->PRN, fs_in_, 0);
} }
// WARNING: 3ms are coherently integrated. Secondary sequence (1,1,1) // WARNING: 3ms are coherently integrated. Secondary sequence (1,1,1)

View File

@ -236,28 +236,30 @@ void GalileoE5aPcpsAcquisition::init()
void GalileoE5aPcpsAcquisition::set_local_code() void GalileoE5aPcpsAcquisition::set_local_code()
{ {
auto* code = new gr_complex[code_length_]; auto* code = new gr_complex[code_length_];
char signal_[3]; std::array<char, 3> signal_;
signal_[0] = '5';
signal_[2] = '\0';
if (acq_iq_) if (acq_iq_)
{ {
strcpy(signal_, "5X"); signal_[1] = 'X';
} }
else if (acq_pilot_) else if (acq_pilot_)
{ {
strcpy(signal_, "5Q"); signal_[1] = 'Q';
} }
else else
{ {
strcpy(signal_, "5I"); signal_[1] = 'I';
} }
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
galileo_e5_a_code_gen_complex_sampled(code, signal_, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0); galileo_e5_a_code_gen_complex_sampled(gsl::span<gr_complex>(code, code_length_), signal_, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0);
} }
else else
{ {
galileo_e5_a_code_gen_complex_sampled(code, signal_, gnss_synchro_->PRN, fs_in_, 0); galileo_e5_a_code_gen_complex_sampled(gsl::span<gr_complex>(code, code_length_), signal_, gnss_synchro_->PRN, fs_in_, 0);
} }
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)

View File

@ -119,22 +119,24 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
for (uint32_t PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++) for (uint32_t PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++)
{ {
char signal_[3]; std::array<char, 3> signal_;
signal_[0] = '5';
signal_[2] = '\0';
if (acq_iq_) if (acq_iq_)
{ {
strcpy(signal_, "5X"); signal_[1] = 'X';
} }
else if (acq_pilot_) else if (acq_pilot_)
{ {
strcpy(signal_, "5Q"); signal_[1] = 'Q';
} }
else else
{ {
strcpy(signal_, "5I"); signal_[1] = 'I';
} }
galileo_e5_a_code_gen_complex_sampled(code, signal_, PRN, fs_in, 0); galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, nsamples_total), signal_, PRN, fs_in, 0);
for (uint32_t s = code_length; s < 2 * code_length; s++) for (uint32_t s = code_length; s < 2 * code_length; s++)
{ {

View File

@ -208,7 +208,7 @@ void GlonassL1CaPcpsAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
glonass_l1_ca_code_gen_complex_sampled(code, /* gnss_synchro_->PRN,*/ fs_in_, 0); glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), /* gnss_synchro_->PRN,*/ fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -208,7 +208,7 @@ void GlonassL2CaPcpsAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
glonass_l2_ca_code_gen_complex_sampled(code, /* gnss_synchro_->PRN,*/ fs_in_, 0); glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), /* gnss_synchro_->PRN,*/ fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -41,6 +41,7 @@
#include "gps_sdr_signal_processing.h" #include "gps_sdr_signal_processing.h"
#include <boost/math/distributions/exponential.hpp> #include <boost/math/distributions/exponential.hpp>
#include <glog/logging.h> #include <glog/logging.h>
#include <gsl/gsl>
GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition( GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
@ -230,11 +231,11 @@ void GpsL1CaPcpsAcquisition::set_local_code()
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, acq_parameters_.resampled_fs, 0);
} }
else else
{ {
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
} }
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -163,7 +163,7 @@ void GpsL1CaPcpsAcquisitionFineDoppler::init()
void GpsL1CaPcpsAcquisitionFineDoppler::set_local_code() void GpsL1CaPcpsAcquisitionFineDoppler::set_local_code()
{ {
gps_l1_ca_code_gen_complex_sampled(code_, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code_, vector_length_), gnss_synchro_->PRN, fs_in_, 0);
acquisition_cc_->set_local_code(code_); acquisition_cc_->set_local_code(code_);
} }

View File

@ -113,7 +113,7 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
// temporary maxima search // temporary maxima search
for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++) for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++)
{ {
gps_l1_ca_code_gen_complex_sampled(code, PRN, fs_in, 0); // generate PRN code gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, nsamples_total), PRN, fs_in, 0); // generate PRN code
for (uint32_t s = code_length; s < 2 * code_length; s++) for (uint32_t s = code_length; s < 2 * code_length; s++)
{ {

View File

@ -154,7 +154,7 @@ void GpsL1CaPcpsAssistedAcquisition::init()
void GpsL1CaPcpsAssistedAcquisition::set_local_code() void GpsL1CaPcpsAssistedAcquisition::set_local_code()
{ {
gps_l1_ca_code_gen_complex_sampled(code_, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<gr_complex>(code_, vector_length_), gnss_synchro_->PRN, fs_in_, 0);
acquisition_cc_->set_local_code(code_); acquisition_cc_->set_local_code(code_);
} }

View File

@ -209,7 +209,7 @@ void GpsL1CaPcpsOpenClAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -238,7 +238,7 @@ void GpsL1CaPcpsQuickSyncAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_](); auto* code = new std::complex<float>[code_length_]();
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < (sampled_ms_ / folding_factor_); i++) for (unsigned int i = 0; i < (sampled_ms_ / folding_factor_); i++)
{ {

View File

@ -199,7 +199,7 @@ void GpsL1CaPcpsTongAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++) for (unsigned int i = 0; i < sampled_ms_; i++)
{ {

View File

@ -241,17 +241,15 @@ void GpsL2MPcpsAcquisition::set_local_code()
{ {
auto* code = new std::complex<float>[code_length_]; auto* code = new std::complex<float>[code_length_];
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
gps_l2c_m_code_gen_complex_sampled(code, gnss_synchro_->PRN, acq_parameters_.resampled_fs); gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, acq_parameters_.resampled_fs);
} }
else else
{ {
gps_l2c_m_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_); gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_);
} }
for (unsigned int i = 0; i < num_codes_; i++) for (unsigned int i = 0; i < num_codes_; i++)
{ {
memcpy(&(code_[i * code_length_]), code, memcpy(&(code_[i * code_length_]), code,
@ -268,6 +266,7 @@ void GpsL2MPcpsAcquisition::reset()
acquisition_->set_active(true); acquisition_->set_active(true);
} }
void GpsL2MPcpsAcquisition::set_state(int state) void GpsL2MPcpsAcquisition::set_state(int state)
{ {
acquisition_->set_state(state); acquisition_->set_state(state);

View File

@ -113,7 +113,7 @@ GpsL2MPcpsAcquisitionFpga::GpsL2MPcpsAcquisitionFpga(
for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++) for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++)
{ {
gps_l2c_m_code_gen_complex_sampled(code, PRN, fs_in_); gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, nsamples_total), PRN, fs_in_);
// fill in zero padding // fill in zero padding
for (unsigned int s = code_length; s < nsamples_total; s++) for (unsigned int s = code_length; s < nsamples_total; s++)
{ {

View File

@ -237,11 +237,11 @@ void GpsL5iPcpsAcquisition::set_local_code()
if (acq_parameters_.use_automatic_resampler) if (acq_parameters_.use_automatic_resampler)
{ {
gps_l5i_code_gen_complex_sampled(code, gnss_synchro_->PRN, acq_parameters_.resampled_fs); gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, acq_parameters_.resampled_fs);
} }
else else
{ {
gps_l5i_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_); gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>>(code, code_length_), gnss_synchro_->PRN, fs_in_);
} }
for (unsigned int i = 0; i < num_codes_; i++) for (unsigned int i = 0; i < num_codes_; i++)

View File

@ -118,7 +118,7 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++) for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++)
{ {
gps_l5i_code_gen_complex_sampled(code, PRN, fs_in); gps_l5i_code_gen_complex_sampled(gsl::span<gr_complex>(code, nsamples_total), PRN, fs_in);
for (uint32_t s = code_length; s < 2 * code_length; s++) for (uint32_t s = code_length; s < 2 * code_length; s++)
{ {

View File

@ -450,7 +450,7 @@ void pcps_acquisition::send_positive_acquisition()
if (!d_channel_fsm.expired()) if (!d_channel_fsm.expired())
{ {
//the channel FSM is set, so, notify it directly the positive acquisition to minimize delays // the channel FSM is set, so, notify it directly the positive acquisition to minimize delays
d_channel_fsm.lock()->Event_valid_acquisition(); d_channel_fsm.lock()->Event_valid_acquisition();
} }
else else
@ -510,11 +510,11 @@ void pcps_acquisition::dump_results(int32_t effective_fft_size)
dims[0] = static_cast<size_t>(1); dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1); dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0); matvar = Mat_VarCreate("doppler_max", MAT_C_INT32, MAT_T_INT32, 1, dims, &acq_parameters.doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_doppler_step, 0); matvar = Mat_VarCreate("doppler_step", MAT_C_INT32, MAT_T_INT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
@ -552,7 +552,7 @@ void pcps_acquisition::dump_results(int32_t effective_fft_size)
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
matvar = Mat_VarCreate("num_dwells", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_num_noncoherent_integrations_counter, 0); matvar = Mat_VarCreate("num_dwells", MAT_C_INT32, MAT_T_INT32, 1, dims, &d_num_noncoherent_integrations_counter, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
@ -774,7 +774,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
} }
if (acq_parameters.use_automatic_resampler) if (acq_parameters.use_automatic_resampler)
{ {
//take into account the acquisition resampler ratio // take into account the acquisition resampler ratio
d_gnss_synchro->Acq_delay_samples = static_cast<double>(std::fmod(static_cast<float>(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio; d_gnss_synchro->Acq_delay_samples = static_cast<double>(std::fmod(static_cast<float>(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio;
d_gnss_synchro->Acq_delay_samples -= static_cast<double>(acq_parameters.resampler_latency_samples); //account the resampler filter latency d_gnss_synchro->Acq_delay_samples -= static_cast<double>(acq_parameters.resampler_latency_samples); //account the resampler filter latency
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
@ -832,7 +832,7 @@ void pcps_acquisition::acquisition_core(uint64_t samp_count)
if (acq_parameters.use_automatic_resampler) if (acq_parameters.use_automatic_resampler)
{ {
//take into account the acquisition resampler ratio // take into account the acquisition resampler ratio
d_gnss_synchro->Acq_delay_samples = static_cast<double>(std::fmod(static_cast<float>(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio; d_gnss_synchro->Acq_delay_samples = static_cast<double>(std::fmod(static_cast<float>(indext), acq_parameters.samples_per_code)) * acq_parameters.resampler_ratio;
d_gnss_synchro->Acq_delay_samples -= static_cast<double>(acq_parameters.resampler_latency_samples); //account the resampler filter latency d_gnss_synchro->Acq_delay_samples -= static_cast<double>(acq_parameters.resampler_latency_samples); //account the resampler filter latency
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);

View File

@ -430,7 +430,7 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler()
//1. generate local code aligned with the acquisition code phase estimation //1. generate local code aligned with the acquisition code phase estimation
auto *code_replica = static_cast<gr_complex *>(volk_gnsssdr_malloc(signal_samples * sizeof(gr_complex), volk_gnsssdr_get_alignment())); auto *code_replica = static_cast<gr_complex *>(volk_gnsssdr_malloc(signal_samples * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0); gps_l1_ca_code_gen_complex_sampled(gsl::span<gr_complex>(code_replica, signal_samples * sizeof(gr_complex)), d_gnss_synchro->PRN, d_fs_in, 0);
int shift_index = static_cast<int>(d_gnss_synchro->Acq_delay_samples); int shift_index = static_cast<int>(d_gnss_synchro->Acq_delay_samples);
@ -705,11 +705,11 @@ void pcps_acquisition_fine_doppler_cc::dump_results(int effective_fft_size)
dims[0] = static_cast<size_t>(1); dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1); dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_config_doppler_max, 0); matvar = Mat_VarCreate("doppler_max", MAT_C_INT32, MAT_T_INT32, 1, dims, &d_config_doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_doppler_step, 0); matvar = Mat_VarCreate("doppler_step", MAT_C_INT32, MAT_T_INT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);

View File

@ -92,6 +92,15 @@ else()
target_link_libraries(algorithms_libs PRIVATE Boost::filesystem Boost::system) target_link_libraries(algorithms_libs PRIVATE Boost::filesystem Boost::system)
endif() endif()
if(NOT (CMAKE_CXX_STANDARD VERSION_LESS 20))
target_compile_definitions(algorithms_libs PUBLIC -DHAS_SPAN=1)
else()
target_include_directories(algorithms_libs
PUBLIC
${CMAKE_SOURCE_DIR}/src/algorithms/libs/gsl/include
)
endif()
target_link_libraries(algorithms_libs target_link_libraries(algorithms_libs
PUBLIC PUBLIC
Armadillo::armadillo Armadillo::armadillo

View File

@ -34,7 +34,7 @@
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); }; auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void beidou_b1i_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift) void beidou_b1i_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
const uint32_t _code_length = 2046; const uint32_t _code_length = 2046;
bool G1[_code_length]; bool G1[_code_length];
@ -112,12 +112,12 @@ void beidou_b1i_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift)
} }
void beidou_b1i_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift) void beidou_b1i_code_gen_float(gsl::span<float> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
uint32_t _code_length = 2046; uint32_t _code_length = 2046;
int32_t b1i_code_int[_code_length]; int32_t b1i_code_int[_code_length];
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift); beidou_b1i_code_gen_int(gsl::span<int32_t>(b1i_code_int, _code_length), _prn, _chip_shift);
for (uint32_t ii = 0; ii < _code_length; ++ii) for (uint32_t ii = 0; ii < _code_length; ++ii)
{ {
@ -126,12 +126,12 @@ void beidou_b1i_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift)
} }
void beidou_b1i_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift) void beidou_b1i_code_gen_complex(gsl::span<std::complex<float>> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
uint32_t _code_length = 2046; uint32_t _code_length = 2046;
int32_t b1i_code_int[_code_length]; int32_t b1i_code_int[_code_length];
beidou_b1i_code_gen_int(b1i_code_int, _prn, _chip_shift); beidou_b1i_code_gen_int(gsl::span<int32_t>(b1i_code_int, _code_length), _prn, _chip_shift);
for (uint32_t ii = 0; ii < _code_length; ++ii) for (uint32_t ii = 0; ii < _code_length; ++ii)
{ {
@ -143,7 +143,7 @@ void beidou_b1i_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint3
/* /*
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency * Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
*/ */
void beidou_b1i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) void beidou_b1i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{ {
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book // This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[2046]; std::complex<float> _code[2046];

View File

@ -36,20 +36,27 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//! Generates int32_t GPS L1 C/A code for the desired SV ID and code shift //! Generates int32_t GPS L1 C/A code for the desired SV ID and code shift
void beidou_b1i_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift); void beidou_b1i_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates float GPS L1 C/A code for the desired SV ID and code shift //! Generates float GPS L1 C/A code for the desired SV ID and code shift
void beidou_b1i_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift); void beidou_b1i_code_gen_float(gsl::span<float> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency //! Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
void beidou_b1i_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift); void beidou_b1i_code_gen_complex(gsl::span<std::complex<float>> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates N complex GPS L1 C/A codes for the desired SV ID and code shift //! Generates N complex GPS L1 C/A codes for the desired SV ID and code shift
void beidou_b1i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes); void beidou_b1i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes);
//! Generates complex GPS L1 C/A code for the desired SV ID and code shift //! Generates complex GPS L1 C/A code for the desired SV ID and code shift
void beidou_b1i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift); void beidou_b1i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift);
#endif /* BEIDOU_B1I_SDR_SIGNAL_PROCESSING_H_ */ #endif /* BEIDOU_B1I_SDR_SIGNAL_PROCESSING_H_ */

View File

@ -34,7 +34,7 @@
auto auxCeil = [](float x) { return static_cast<int>(static_cast<long>((x) + 1)); }; auto auxCeil = [](float x) { return static_cast<int>(static_cast<long>((x) + 1)); };
void beidou_b3i_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift) void beidou_b3i_code_gen_int(gsl::span<int> _dest, signed int _prn, unsigned int _chip_shift)
{ {
const unsigned int _code_length = 10230; const unsigned int _code_length = 10230;
bool G1[_code_length]; bool G1[_code_length];
@ -170,7 +170,7 @@ void beidou_b3i_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shi
} }
void beidou_b3i_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift) void beidou_b3i_code_gen_float(gsl::span<float> _dest, signed int _prn, unsigned int _chip_shift)
{ {
unsigned int _code_length = 10230; unsigned int _code_length = 10230;
int b3i_code_int[10230]; int b3i_code_int[10230];
@ -184,7 +184,7 @@ void beidou_b3i_code_gen_float(float* _dest, signed int _prn, unsigned int _chip
} }
void beidou_b3i_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift) void beidou_b3i_code_gen_complex(gsl::span<std::complex<float>> _dest, signed int _prn, unsigned int _chip_shift)
{ {
unsigned int _code_length = 10230; unsigned int _code_length = 10230;
int b3i_code_int[10230]; int b3i_code_int[10230];
@ -198,7 +198,7 @@ void beidou_b3i_code_gen_complex(std::complex<float>* _dest, signed int _prn, un
} }
void beidou_b3i_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, int _fs, unsigned int _chip_shift) void beidou_b3i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, unsigned int _prn, int _fs, unsigned int _chip_shift)
{ {
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book // This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[10230]; std::complex<float> _code[10230];

View File

@ -39,19 +39,26 @@
#include <array> #include <array>
#include <algorithm> #include <algorithm>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//! Generates int BeiDou B3I code for the desired SV ID and code shift //! Generates int BeiDou B3I code for the desired SV ID and code shift
void beidou_b3i_code_gen_int(int* _dest, signed int _prn, unsigned int _chip_shift); void beidou_b3i_code_gen_int(gsl::span<int> _dest, signed int _prn, unsigned int _chip_shift);
//! Generates float BeiDou B3I code for the desired SV ID and code shift //! Generates float BeiDou B3I code for the desired SV ID and code shift
void beidou_b3i_code_gen_float(float* _dest, signed int _prn, unsigned int _chip_shift); void beidou_b3i_code_gen_float(gsl::span<float> _dest, signed int _prn, unsigned int _chip_shift);
//! Generates complex BeiDou B3I code for the desired SV ID and code shift, and sampled to specific sampling frequency //! Generates complex BeiDou B3I code for the desired SV ID and code shift, and sampled to specific sampling frequency
void beidou_b3i_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift); void beidou_b3i_code_gen_complex(gsl::span<std::complex<float>> _dest, signed int _prn, unsigned int _chip_shift);
//! Generates N complex BeiDou B3I codes for the desired SV ID and code shift //! Generates N complex BeiDou B3I codes for the desired SV ID and code shift
void beidou_b3i_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, int _fs, unsigned int _chip_shift, unsigned int _ncodes); void beidou_b3i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, unsigned int _prn, int _fs, unsigned int _chip_shift, unsigned int _ncodes);
//! Generates complex BeiDou B3I code for the desired SV ID and code shift //! Generates complex BeiDou B3I code for the desired SV ID and code shift
void beidou_b3i_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, int _fs, unsigned int _chip_shift); void beidou_b3i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, unsigned int _prn, int _fs, unsigned int _chip_shift);
#endif /* GNSS_SDR_BEIDOU_B3I_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_BEIDOU_B3I_SIGNAL_PROCESSING_H_ */

View File

@ -37,9 +37,9 @@
#include <string> #include <string>
void galileo_e1_code_gen_int(int* _dest, char _Signal[3], int32_t _prn) void galileo_e1_code_gen_int(gsl::span<int> _dest, std::array<char, 3> _Signal, int32_t _prn)
{ {
std::string _galileo_signal = _Signal; std::string _galileo_signal = _Signal.data();
int32_t prn = _prn - 1; int32_t prn = _prn - 1;
int32_t index = 0; int32_t index = 0;
@ -68,10 +68,10 @@ void galileo_e1_code_gen_int(int* _dest, char _Signal[3], int32_t _prn)
} }
void galileo_e1_sinboc_11_gen_int(int* _dest, const int* _prn, uint32_t _length_out) void galileo_e1_sinboc_11_gen_int(gsl::span<int> _dest, gsl::span<const int> _prn)
{ {
const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS;
auto _period = static_cast<uint32_t>(_length_out / _length_in); auto _period = static_cast<uint32_t>(_dest.size() / _length_in);
for (uint32_t i = 0; i < _length_in; i++) for (uint32_t i = 0; i < _length_in; i++)
{ {
for (uint32_t j = 0; j < (_period / 2); j++) for (uint32_t j = 0; j < (_period / 2); j++)
@ -86,10 +86,10 @@ void galileo_e1_sinboc_11_gen_int(int* _dest, const int* _prn, uint32_t _length_
} }
void galileo_e1_sinboc_61_gen_int(int* _dest, const int* _prn, uint32_t _length_out) void galileo_e1_sinboc_61_gen_int(gsl::span<int> _dest, gsl::span<const int> _prn)
{ {
const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS; const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS;
auto _period = static_cast<uint32_t>(_length_out / _length_in); auto _period = static_cast<uint32_t>(_dest.size() / _length_in);
for (uint32_t i = 0; i < _length_in; i++) for (uint32_t i = 0; i < _length_in; i++)
{ {
@ -105,9 +105,9 @@ void galileo_e1_sinboc_61_gen_int(int* _dest, const int* _prn, uint32_t _length_
} }
void galileo_e1_code_gen_sinboc11_float(float* _dest, char _Signal[3], uint32_t _prn) void galileo_e1_code_gen_sinboc11_float(gsl::span<float> _dest, std::array<char, 3> _Signal, uint32_t _prn)
{ {
std::string _galileo_signal = _Signal; std::string _galileo_signal = _Signal.data();
const auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS); const auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS);
int32_t primary_code_E1_chips[4092]; // _codeLength not accepted by Clang int32_t primary_code_E1_chips[4092]; // _codeLength not accepted by Clang
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
@ -119,18 +119,20 @@ void galileo_e1_code_gen_sinboc11_float(float* _dest, char _Signal[3], uint32_t
} }
void galileo_e1_gen_float(float* _dest, int* _prn, char _Signal[3]) void galileo_e1_gen_float(gsl::span<float> _dest, gsl::span<int> _prn, std::array<char, 3> _Signal)
{ {
std::string _galileo_signal = _Signal; std::string _galileo_signal = _Signal.data();
const uint32_t _codeLength = 12 * GALILEO_E1_B_CODE_LENGTH_CHIPS; const uint32_t _codeLength = 12 * GALILEO_E1_B_CODE_LENGTH_CHIPS;
const float alpha = sqrt(10.0 / 11.0); const float alpha = sqrt(10.0 / 11.0);
const float beta = sqrt(1.0 / 11.0); const float beta = sqrt(1.0 / 11.0);
int32_t sinboc_11[12 * 4092] = {0}; // _codeLength not accepted by Clang int32_t sinboc_11[12 * 4092] = {0}; // _codeLength not accepted by Clang
int32_t sinboc_61[12 * 4092] = {0}; int32_t sinboc_61[12 * 4092] = {0};
gsl::span<int32_t> sinboc_11_(sinboc_11, _codeLength);
gsl::span<int32_t> sinboc_61_(sinboc_61, _codeLength);
galileo_e1_sinboc_11_gen_int(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip galileo_e1_sinboc_11_gen_int(sinboc_11_, _prn); //generate sinboc(1,1) 12 samples per chip
galileo_e1_sinboc_61_gen_int(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip galileo_e1_sinboc_61_gen_int(sinboc_61_, _prn); //generate sinboc(6,1) 12 samples per chip
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2) if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
{ {
@ -151,12 +153,12 @@ void galileo_e1_gen_float(float* _dest, int* _prn, char _Signal[3])
} }
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag) bool _secondary_flag)
{ {
// This function is based on the GNU software GPS for MATLAB in Kay Borre's book // This function is based on the GNU software GPS for MATLAB in Kay Borre's book
std::string _galileo_signal = _Signal; std::string _galileo_signal = _Signal.data();
uint32_t _samplesPerCode; uint32_t _samplesPerCode;
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz
auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS); auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS);
@ -167,7 +169,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
const uint32_t delay = ((static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS; const uint32_t delay = ((static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS;
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip galileo_e1_code_gen_int(gsl::span<int32_t>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
float* _signal_E1; float* _signal_E1;
@ -176,12 +178,12 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
if (_cboc == true) if (_cboc == true)
{ {
galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); // generate cboc 12 samples per chip galileo_e1_gen_float(gsl::span<float>(_signal_E1, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal); // generate cboc 12 samples per chip
} }
else else
{ {
auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment())); auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); // generate sinboc(1,1) 2 samples per chip galileo_e1_sinboc_11_gen_int(gsl::span<int32_t>(_signal_E1_int, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS))); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii) for (uint32_t ii = 0; ii < _codeLength; ++ii)
{ {
@ -194,8 +196,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
{ {
auto* _resampled_signal = new float[_samplesPerCode]; auto* _resampled_signal = new float[_samplesPerCode];
resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs, resampler(gsl::span<float>(_signal_E1, _codeLength), gsl::span<float>(_resampled_signal, _samplesPerCode), _samplesPerChip * _codeFreqBasis, _fs); // resamples code to fs
_codeLength, _samplesPerCode); // resamples code to fs
delete[] _signal_E1; delete[] _signal_E1;
_signal_E1 = _resampled_signal; _signal_E1 = _resampled_signal;
@ -229,11 +230,11 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
} }
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3], void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag) bool _secondary_flag)
{ {
std::string _galileo_signal = _Signal; std::string _galileo_signal = _Signal.data();
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_HZ; // Hz
auto _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / auto _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis) / static_cast<double>(GALILEO_E1_B_CODE_LENGTH_CHIPS))); (static_cast<double>(_codeFreqBasis) / static_cast<double>(GALILEO_E1_B_CODE_LENGTH_CHIPS)));
@ -245,7 +246,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment())); auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag); galileo_e1_code_gen_float_sampled(gsl::span<float>(real_code, _samplesPerCode), _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
for (uint32_t ii = 0; ii < _samplesPerCode; ++ii) for (uint32_t ii = 0; ii < _samplesPerCode; ++ii)
{ {
@ -255,14 +256,14 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
} }
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{ {
galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
} }
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3], void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{ {
galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false); galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);

View File

@ -32,21 +32,29 @@
#ifndef GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_ #ifndef GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_
#define GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_ #define GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_
#include <array>
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
/*! /*!
* \brief This function generates Galileo E1 code (can select E1B or E1C sinboc). * \brief This function generates Galileo E1 code (can select E1B or E1C sinboc).
* *
*/ */
void galileo_e1_code_gen_sinboc11_float(float* _dest, char _Signal[3], uint32_t _prn); void galileo_e1_code_gen_sinboc11_float(gsl::span<float> _dest, std::array<char, 3> _Signal, uint32_t _prn);
/*! /*!
* \brief This function generates Galileo E1 code (can select E1B or E1C, cboc or sinboc * \brief This function generates Galileo E1 code (can select E1B or E1C, cboc or sinboc
* and the sample frequency _fs). * and the sample frequency _fs).
* *
*/ */
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag); bool _secondary_flag);
@ -55,7 +63,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
* and the sample frequency _fs). * and the sample frequency _fs).
* *
*/ */
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3], void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift); bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift);
/*! /*!
@ -63,14 +71,14 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
* and the sample frequency _fs). * and the sample frequency _fs).
* *
*/ */
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3], void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag); bool _secondary_flag);
/*! /*!
* \brief galileo_e1_code_gen_complex_sampled without _secondary_flag for backward compatibility. * \brief galileo_e1_code_gen_complex_sampled without _secondary_flag for backward compatibility.
*/ */
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3], void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, std::array<char, 3> _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift); bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift);
#endif /* GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GALILEO_E1_SIGNAL_PROCESSING_H_ */

View File

@ -37,7 +37,7 @@
#include <gnuradio/gr_complex.h> #include <gnuradio/gr_complex.h>
void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, int32_t _prn, const char _Signal[3]) void galileo_e5_a_code_gen_complex_primary(gsl::span<std::complex<float>> _dest, int32_t _prn, std::array<char, 3> _Signal)
{ {
uint32_t prn = _prn - 1; uint32_t prn = _prn - 1;
uint32_t index = 0; uint32_t index = 0;
@ -100,7 +100,7 @@ void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, int32_t _
} }
void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3], void galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, std::array<char, 3> _Signal,
uint32_t _prn, int32_t _fs, uint32_t _chip_shift) uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{ {
uint32_t _samplesPerCode; uint32_t _samplesPerCode;
@ -110,7 +110,7 @@ void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Sig
auto* _code = new std::complex<float>[_codeLength](); auto* _code = new std::complex<float>[_codeLength]();
galileo_e5_a_code_gen_complex_primary(_code, _prn, _Signal); galileo_e5_a_code_gen_complex_primary(gsl::span<std::complex<float>>(_code, _codeLength), _prn, _Signal);
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength))); _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
@ -122,7 +122,7 @@ void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Sig
if (posix_memalign(reinterpret_cast<void**>(&_resampled_signal), 16, _samplesPerCode * sizeof(gr_complex)) == 0) if (posix_memalign(reinterpret_cast<void**>(&_resampled_signal), 16, _samplesPerCode * sizeof(gr_complex)) == 0)
{ {
}; };
resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); // resamples code to fs resampler(gsl::span<std::complex<float>>(_code, _codeLength), gsl::span<std::complex<float>>(_resampled_signal, _samplesPerCode), _codeFreqBasis, _fs); // resamples code to fs
delete[] _code; delete[] _code;
_code = _resampled_signal; _code = _resampled_signal;
} }

View File

@ -36,22 +36,27 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
/*! /*!
* \brief Generates Galileo E5a code at 1 sample/chip * \brief Generates Galileo E5a code at 1 sample/chip
* bool _pilot generates E5aQ code if true and E5aI (data signal) if false. * bool _pilot generates E5aQ code if true and E5aI (data signal) if false.
*/ */
void galileo_e5_a_code_gen_complex_primary(std::complex<float>* _dest, int32_t _prn, const char _Signal[3]); void galileo_e5_a_code_gen_complex_primary(gsl::span<std::complex<float>> _dest, int32_t _prn, std::array<char, 3> _Signal);
void galileo_e5_a_code_gen_tiered(std::complex<float>* _dest, std::complex<float>* _primary, uint32_t _prn, char _Signal[3]);
/*! /*!
* \brief Generates Galileo E5a complex code, shifted to the desired chip and sampled at a frequency fs * \brief Generates Galileo E5a complex code, shifted to the desired chip and sampled at a frequency fs
* bool _pilot generates E5aQ code if true and E5aI (data signal) if false. * bool _pilot generates E5aQ code if true and E5aI (data signal) if false.
*/ */
void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, void galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest,
char _Signal[3], uint32_t _prn, int32_t _fs, uint32_t _chip_shift); std::array<char, 3> _Signal, uint32_t _prn, int32_t _fs, uint32_t _chip_shift);
#endif /* GNSS_SDR_GALILEO_E5_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GALILEO_E5_SIGNAL_PROCESSING_H_ */

View File

@ -34,7 +34,7 @@
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); }; auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void glonass_l1_ca_code_gen_complex(std::complex<float>* _dest, /* int32_t _prn,*/ uint32_t _chip_shift) void glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /* int32_t _prn,*/ uint32_t _chip_shift)
{ {
const uint32_t _code_length = 511; const uint32_t _code_length = 511;
bool G1[_code_length]; bool G1[_code_length];
@ -104,7 +104,7 @@ void glonass_l1_ca_code_gen_complex(std::complex<float>* _dest, /* int32_t _prn
/* /*
* Generates complex GLONASS L1 C/A code for the desired SV ID and sampled to specific sampling frequency * Generates complex GLONASS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
*/ */
void glonass_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift) void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift)
{ {
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book // This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[511]; std::complex<float> _code[511];
@ -119,9 +119,9 @@ void glonass_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint3
_samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength)); _samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength));
//--- Find time constants -------------------------------------------------- //--- Find time constants --------------------------------------------------
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec _ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec _tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l1_ca_code_gen_complex(_code, _chip_shift); //generate C/A code 1 sample per chip glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>>(_code, 511), _chip_shift); //generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++) for (int32_t i = 0; i < _samplesPerCode; i++)
{ {

View File

@ -36,13 +36,20 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//!Generates complex GLONASS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency //!Generates complex GLONASS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
void glonass_l1_ca_code_gen_complex(std::complex<float>* _dest, /*int32_t _prn,*/ uint32_t _chip_shift); void glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /*int32_t _prn,*/ uint32_t _chip_shift);
//! Generates N complex GLONASS L1 C/A codes for the desired SV ID and code shift //! Generates N complex GLONASS L1 C/A codes for the desired SV ID and code shift
void glonass_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes); void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes);
//! Generates complex GLONASS L1 C/A code for the desired SV ID and code shift //! Generates complex GLONASS L1 C/A code for the desired SV ID and code shift
void glonass_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift); void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift);
#endif /* GNSS_SDR_GLONASS_SDR_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GLONASS_SDR_SIGNAL_PROCESSING_H_ */

View File

@ -34,7 +34,7 @@
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); }; auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void glonass_l2_ca_code_gen_complex(std::complex<float>* _dest, /* int32_t _prn,*/ uint32_t _chip_shift) void glonass_l2_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /* int32_t _prn,*/ uint32_t _chip_shift)
{ {
const uint32_t _code_length = 511; const uint32_t _code_length = 511;
bool G1[_code_length]; bool G1[_code_length];
@ -104,7 +104,7 @@ void glonass_l2_ca_code_gen_complex(std::complex<float>* _dest, /* int32_t _prn,
/* /*
* Generates complex GLONASS L2 C/A code for the desired SV ID and sampled to specific sampling frequency * Generates complex GLONASS L2 C/A code for the desired SV ID and sampled to specific sampling frequency
*/ */
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift) void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift)
{ {
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book // This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[511]; std::complex<float> _code[511];
@ -119,9 +119,9 @@ void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint3
_samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength)); _samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength));
//--- Find time constants -------------------------------------------------- //--- Find time constants --------------------------------------------------
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec _ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec _tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l2_ca_code_gen_complex(_code, _chip_shift); //generate C/A code 1 sample per chip glonass_l2_ca_code_gen_complex(gsl::span<std::complex<float>>(_code, 511), _chip_shift); //generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++) for (int32_t i = 0; i < _samplesPerCode; i++)
{ {

View File

@ -36,13 +36,20 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//!Generates complex GLONASS L2 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency //!Generates complex GLONASS L2 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
void glonass_l2_ca_code_gen_complex(std::complex<float>* _dest, /*int32_t _prn,*/ uint32_t _chip_shift); void glonass_l2_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, /*int32_t _prn,*/ uint32_t _chip_shift);
//! Generates N complex GLONASS L2 C/A codes for the desired SV ID and code shift //! Generates N complex GLONASS L2 C/A codes for the desired SV ID and code shift
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes); void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes);
//! Generates complex GLONASS L2 C/A code for the desired SV ID and code shift //! Generates complex GLONASS L2 C/A code for the desired SV ID and code shift
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift); void glonass_l2_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, /* uint32_t _prn,*/ int32_t _fs, uint32_t _chip_shift);
#endif /* GNSS_SDR_GLONASS_L2_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GLONASS_L2_SIGNAL_PROCESSING_H_ */

View File

@ -38,19 +38,19 @@
auto auxCeil2 = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); }; auto auxCeil2 = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void complex_exp_gen(std::complex<float>* _dest, double _f, double _fs, uint32_t _samps) void complex_exp_gen(gsl::span<std::complex<float>> _dest, double _f, double _fs)
{ {
gr::fxpt_nco d_nco; gr::fxpt_nco d_nco;
d_nco.set_freq((GPS_TWO_PI * _f) / _fs); d_nco.set_freq((GPS_TWO_PI * _f) / _fs);
d_nco.sincos(_dest, _samps, 1); d_nco.sincos(_dest.data(), _dest.size(), 1);
} }
void complex_exp_gen_conj(std::complex<float>* _dest, double _f, double _fs, uint32_t _samps) void complex_exp_gen_conj(gsl::span<std::complex<float>> _dest, double _f, double _fs)
{ {
gr::fxpt_nco d_nco; gr::fxpt_nco d_nco;
d_nco.set_freq(-(GPS_TWO_PI * _f) / _fs); d_nco.set_freq(-(GPS_TWO_PI * _f) / _fs);
d_nco.sincos(_dest, _samps, 1); d_nco.sincos(_dest.data(), _dest.size(), 1);
} }
@ -158,15 +158,15 @@ void hex_to_binary_converter(int32_t* _dest, char _from)
} }
void resampler(const float* _from, float* _dest, float _fs_in, void resampler(const gsl::span<float> _from, gsl::span<float> _dest, float _fs_in,
float _fs_out, uint32_t _length_in, uint32_t _length_out) float _fs_out)
{ {
uint32_t _codeValueIndex; uint32_t _codeValueIndex;
float aux; float aux;
//--- Find time constants -------------------------------------------------- //--- Find time constants --------------------------------------------------
const float _t_in = 1 / _fs_in; // Incoming sampling period in sec const float _t_in = 1 / _fs_in; // Incoming sampling period in sec
const float _t_out = 1 / _fs_out; // Out sampling period in sec const float _t_out = 1 / _fs_out; // Out sampling period in sec
for (uint32_t i = 0; i < _length_out - 1; i++) for (uint32_t i = 0; i < _dest.size() - 1; i++)
{ {
//=== Digitizing ======================================================= //=== Digitizing =======================================================
//--- compute index array to read sampled values ------------------------- //--- compute index array to read sampled values -------------------------
@ -178,19 +178,19 @@ void resampler(const float* _from, float* _dest, float _fs_in,
_dest[i] = _from[_codeValueIndex]; _dest[i] = _from[_codeValueIndex];
} }
//--- Correct the last index (due to number rounding issues) ----------- //--- Correct the last index (due to number rounding issues) -----------
_dest[_length_out - 1] = _from[_length_in - 1]; _dest[_dest.size() - 1] = _from[_from.size() - 1];
} }
void resampler(const std::complex<float>* _from, std::complex<float>* _dest, float _fs_in, void resampler(gsl::span<const std::complex<float>> _from, gsl::span<std::complex<float>> _dest, float _fs_in,
float _fs_out, uint32_t _length_in, uint32_t _length_out) float _fs_out)
{ {
uint32_t _codeValueIndex; uint32_t _codeValueIndex;
float aux; float aux;
//--- Find time constants -------------------------------------------------- //--- Find time constants --------------------------------------------------
const float _t_in = 1 / _fs_in; // Incoming sampling period in sec const float _t_in = 1 / _fs_in; // Incoming sampling period in sec
const float _t_out = 1 / _fs_out; // Out sampling period in sec const float _t_out = 1 / _fs_out; // Out sampling period in sec
for (uint32_t i = 0; i < _length_out - 1; i++) for (uint32_t i = 0; i < _dest.size() - 1; i++)
{ {
//=== Digitizing ======================================================= //=== Digitizing =======================================================
//--- compute index array to read sampled values ------------------------- //--- compute index array to read sampled values -------------------------
@ -202,5 +202,5 @@ void resampler(const std::complex<float>* _from, std::complex<float>* _dest, flo
_dest[i] = _from[_codeValueIndex]; _dest[i] = _from[_codeValueIndex];
} }
//--- Correct the last index (due to number rounding issues) ----------- //--- Correct the last index (due to number rounding issues) -----------
_dest[_length_out - 1] = _from[_length_in - 1]; _dest[_dest.size() - 1] = _from[_from.size() - 1];
} }

View File

@ -38,21 +38,25 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
/*! /*!
* \brief This function generates a complex exponential in _dest. * \brief This function generates a complex exponential in _dest.
* *
*/ */
void complex_exp_gen(std::complex<float>* _dest, double _f, double _fs, void complex_exp_gen(gsl::span<std::complex<float>> _dest, double _f, double _fs);
uint32_t _samps);
/*! /*!
* \brief This function generates a conjugate complex exponential in _dest. * \brief This function generates a conjugate complex exponential in _dest.
* *
*/ */
void complex_exp_gen_conj(std::complex<float>* _dest, double _f, double _fs, void complex_exp_gen_conj(gsl::span<std::complex<float>> _dest, double _f, double _fs);
uint32_t _samps);
/*! /*!
* \brief This function makes a conversion from hex (the input is a char) * \brief This function makes a conversion from hex (the input is a char)
@ -65,15 +69,14 @@ void hex_to_binary_converter(int32_t* _dest, char _from);
* \brief This function resamples a sequence of float values. * \brief This function resamples a sequence of float values.
* *
*/ */
void resampler(const float* _from, float* _dest, void resampler(const gsl::span<float> _from, gsl::span<float> _dest,
float _fs_in, float _fs_out, uint32_t _length_in, float _fs_in, float _fs_out);
uint32_t _length_out);
/*! /*!
* \brief This function resamples a sequence of complex values. * \brief This function resamples a sequence of complex values.
* *
*/ */
void resampler(const std::complex<float>* _from, std::complex<float>* _dest, void resampler(gsl::span<const std::complex<float>> _from, gsl::span<std::complex<float>> _dest,
float _fs_in, float _fs_out, uint32_t _length_in, float _fs_in, float _fs_out);
uint32_t _length_out);
#endif /* GNSS_SDR_GNSS_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GNSS_SIGNAL_PROCESSING_H_ */

View File

@ -41,7 +41,7 @@ int32_t gps_l2c_m_shift(int32_t x)
} }
void gps_l2c_m_code(int32_t* _dest, uint32_t _prn) void gps_l2c_m_code(gsl::span<int32_t> _dest, uint32_t _prn)
{ {
int32_t x; int32_t x;
x = GPS_L2C_M_INIT_REG[_prn - 1]; x = GPS_L2C_M_INIT_REG[_prn - 1];
@ -53,13 +53,13 @@ void gps_l2c_m_code(int32_t* _dest, uint32_t _prn)
} }
void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, uint32_t _prn) void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(_code, _prn); gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn);
} }
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
@ -71,13 +71,13 @@ void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
} }
void gps_l2c_m_code_gen_float(float* _dest, uint32_t _prn) void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(_code, _prn); gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn);
} }
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
@ -92,12 +92,12 @@ void gps_l2c_m_code_gen_float(float* _dest, uint32_t _prn)
/* /*
* Generates complex GPS L2C M code for the desired SV ID and sampled to specific sampling frequency * Generates complex GPS L2C M code for the desired SV ID and sampled to specific sampling frequency
*/ */
void gps_l2c_m_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs) void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(_code, _prn); gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;

View File

@ -36,12 +36,19 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//! Generates complex GPS L2C M code for the desired SV ID //! Generates complex GPS L2C M code for the desired SV ID
void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, uint32_t _prn); void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn);
void gps_l2c_m_code_gen_float(float* _dest, uint32_t _prn); void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn);
//! Generates complex GPS L2C M code for the desired SV ID, and sampled to specific sampling frequency //! Generates complex GPS L2C M code for the desired SV ID, and sampled to specific sampling frequency
void gps_l2c_m_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs); void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs);
#endif /* GNSS_GPS_L2C_SIGNAL_H_ */ #endif /* GNSS_GPS_L2C_SIGNAL_H_ */

View File

@ -131,7 +131,7 @@ std::deque<bool> make_l5q_xb()
} }
void make_l5i(int32_t* _dest, int32_t prn) void make_l5i(gsl::span<int32_t> _dest, int32_t prn)
{ {
int32_t xb_offset = GPS_L5I_INIT_REG[prn]; int32_t xb_offset = GPS_L5I_INIT_REG[prn];
@ -151,7 +151,7 @@ void make_l5i(int32_t* _dest, int32_t prn)
} }
void make_l5q(int32_t* _dest, int32_t prn) void make_l5q(gsl::span<int32_t> _dest, int32_t prn)
{ {
int32_t xb_offset = GPS_L5Q_INIT_REG[prn]; int32_t xb_offset = GPS_L5Q_INIT_REG[prn];
@ -171,13 +171,13 @@ void make_l5q(int32_t* _dest, int32_t prn)
} }
void gps_l5i_code_gen_complex(std::complex<float>* _dest, uint32_t _prn) void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(_code, _prn - 1); make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
@ -189,13 +189,13 @@ void gps_l5i_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
} }
void gps_l5i_code_gen_float(float* _dest, uint32_t _prn) void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(_code, _prn - 1); make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
@ -210,12 +210,12 @@ void gps_l5i_code_gen_float(float* _dest, uint32_t _prn)
/* /*
* Generates complex GPS L5i code for the desired SV ID and sampled to specific sampling frequency * Generates complex GPS L5i code for the desired SV ID and sampled to specific sampling frequency
*/ */
void gps_l5i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs) void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(_code, _prn - 1); make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;
@ -252,13 +252,13 @@ void gps_l5i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn,
} }
void gps_l5q_code_gen_complex(std::complex<float>* _dest, uint32_t _prn) void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(_code, _prn - 1); make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
@ -270,13 +270,13 @@ void gps_l5q_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
} }
void gps_l5q_code_gen_float(float* _dest, uint32_t _prn) void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(_code, _prn - 1); make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
@ -291,12 +291,12 @@ void gps_l5q_code_gen_float(float* _dest, uint32_t _prn)
/* /*
* Generates complex GPS L5Q code for the desired SV ID and sampled to specific sampling frequency * Generates complex GPS L5Q code for the desired SV ID and sampled to specific sampling frequency
*/ */
void gps_l5q_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs) void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(_code, _prn - 1); make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;

View File

@ -36,23 +36,30 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//! Generates complex GPS L5I code for the desired SV ID //! Generates complex GPS L5I code for the desired SV ID
void gps_l5i_code_gen_complex(std::complex<float>* _dest, uint32_t _prn); void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn);
//! Generates real GPS L5I code for the desired SV ID //! Generates real GPS L5I code for the desired SV ID
void gps_l5i_code_gen_float(float* _dest, uint32_t _prn); void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn);
//! Generates complex GPS L5Q code for the desired SV ID //! Generates complex GPS L5Q code for the desired SV ID
void gps_l5q_code_gen_complex(std::complex<float>* _dest, uint32_t _prn); void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn);
//! Generates real GPS L5Q code for the desired SV ID //! Generates real GPS L5Q code for the desired SV ID
void gps_l5q_code_gen_float(float* _dest, uint32_t _prn); void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn);
//! Generates complex GPS L5I code for the desired SV ID, and sampled to specific sampling frequency //! Generates complex GPS L5I code for the desired SV ID, and sampled to specific sampling frequency
void gps_l5i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs); void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs);
//! Generates complex GPS L5Q code for the desired SV ID, and sampled to specific sampling frequency //! Generates complex GPS L5Q code for the desired SV ID, and sampled to specific sampling frequency
void gps_l5q_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs); void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs);
#endif /* GNSS_SDR_GPS_L5_SIGNAL_H_ */ #endif /* GNSS_SDR_GPS_L5_SIGNAL_H_ */

View File

@ -34,7 +34,7 @@
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); }; auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void gps_l1_ca_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift) void gps_l1_ca_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
const uint32_t _code_length = 1023; const uint32_t _code_length = 1023;
bool G1[_code_length]; bool G1[_code_length];
@ -116,7 +116,7 @@ void gps_l1_ca_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift)
} }
void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift) void gps_l1_ca_code_gen_float(gsl::span<float> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
const uint32_t _code_length = 1023; const uint32_t _code_length = 1023;
int32_t ca_code_int[_code_length]; int32_t ca_code_int[_code_length];
@ -130,7 +130,7 @@ void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift)
} }
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift) void gps_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, int32_t _prn, uint32_t _chip_shift)
{ {
const uint32_t _code_length = 1023; const uint32_t _code_length = 1023;
int32_t ca_code_int[_code_length] = {0}; int32_t ca_code_int[_code_length] = {0};
@ -148,7 +148,7 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32
* Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency * Generates complex GPS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
* NOTICE: the number of samples is rounded towards zero (integer truncation) * NOTICE: the number of samples is rounded towards zero (integer truncation)
*/ */
void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift) void gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{ {
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book // This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[1023]; std::complex<float> _code[1023];

View File

@ -36,19 +36,26 @@
#include <complex> #include <complex>
#include <cstdint> #include <cstdint>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
//! Generates int GPS L1 C/A code for the desired SV ID and code shift //! Generates int GPS L1 C/A code for the desired SV ID and code shift
void gps_l1_ca_code_gen_int(int32_t* _dest, int32_t _prn, uint32_t _chip_shift); void gps_l1_ca_code_gen_int(gsl::span<int32_t> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates float GPS L1 C/A code for the desired SV ID and code shift //! Generates float GPS L1 C/A code for the desired SV ID and code shift
void gps_l1_ca_code_gen_float(float* _dest, int32_t _prn, uint32_t _chip_shift); void gps_l1_ca_code_gen_float(gsl::span<float> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency //! Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, int32_t _prn, uint32_t _chip_shift); void gps_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, int32_t _prn, uint32_t _chip_shift);
//! Generates N complex GPS L1 C/A codes for the desired SV ID and code shift //! Generates N complex GPS L1 C/A codes for the desired SV ID and code shift
void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes); void gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift, uint32_t _ncodes);
//! Generates complex GPS L1 C/A code for the desired SV ID and code shift //! Generates complex GPS L1 C/A code for the desired SV ID and code shift
void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift); void gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs, uint32_t _chip_shift);
#endif /* GNSS_SDR_GPS_SDR_SIGNAL_PROCESSING_H_ */ #endif /* GNSS_SDR_GPS_SDR_SIGNAL_PROCESSING_H_ */

View File

@ -0,0 +1,29 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_GSL_H
#define GSL_GSL_H
#include <gsl/gsl_algorithm> // copy
#include <gsl/gsl_assert> // Ensures/Expects
#include <gsl/gsl_byte> // byte
#include <gsl/gsl_util> // finally()/narrow()/narrow_cast()...
#include <gsl/multi_span> // multi_span, strided_span...
#include <gsl/pointers> // owner, not_null
#include <gsl/span> // span
#include <gsl/string_span> // zstring, string_span, zstring_builder...
#endif // GSL_GSL_H

View File

@ -0,0 +1,61 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_ALGORITHM_H
#define GSL_ALGORITHM_H
#include <gsl/gsl_assert> // for Expects
#include <gsl/span> // for dynamic_extent, span
#include <algorithm> // for copy_n
#include <cstddef> // for ptrdiff_t
#include <type_traits> // for is_assignable
#ifdef _MSC_VER
#pragma warning(push)
// turn off some warnings that are noisy about our Expects statements
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4996) // unsafe use of std::copy_n
#endif // _MSC_VER
namespace gsl
{
// Note: this will generate faster code than std::copy using span iterator in older msvc+stl
// not necessary for msvc since VS2017 15.8 (_MSC_VER >= 1915)
template <class SrcElementType, std::ptrdiff_t SrcExtent, class DestElementType,
std::ptrdiff_t DestExtent>
void copy(span<SrcElementType, SrcExtent> src, span<DestElementType, DestExtent> dest)
{
static_assert(std::is_assignable<decltype(*dest.data()), decltype(*src.data())>::value,
"Elements of source span can not be assigned to elements of destination span");
static_assert(SrcExtent == dynamic_extent || DestExtent == dynamic_extent ||
(SrcExtent <= DestExtent),
"Source range is longer than target range");
Expects(dest.size() >= src.size());
GSL_SUPPRESS(stl.1) // NO-FORMAT: attribute
std::copy_n(src.data(), src.size(), dest.data());
}
} // namespace gsl
#ifdef _MSC_VER
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_ALGORITHM_H

View File

@ -0,0 +1,177 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_CONTRACTS_H
#define GSL_CONTRACTS_H
#include <exception>
#include <stdexcept> // for logic_error
//
// make suppress attributes parse for some compilers
// Hopefully temporary until suppression standardization occurs
//
#if defined(__clang__)
#define GSL_SUPPRESS(x) [[gsl::suppress("x")]]
#else
#if defined(_MSC_VER)
#define GSL_SUPPRESS(x) [[gsl::suppress(x)]]
#else
#define GSL_SUPPRESS(x)
#endif // _MSC_VER
#endif // __clang__
//
// Temporary until MSVC STL supports no-exceptions mode.
// Currently terminate is a no-op in this mode, so we add termination behavior back
//
#if defined(_MSC_VER) && defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS
#define GSL_MSVC_USE_STL_NOEXCEPTION_WORKAROUND
#include <intrin.h>
#define RANGE_CHECKS_FAILURE 0
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-noreturn"
#endif
#endif
//
// There are three configuration options for this GSL implementation's behavior
// when pre/post conditions on the GSL types are violated:
//
// 1. GSL_TERMINATE_ON_CONTRACT_VIOLATION: std::terminate will be called (default)
// 2. GSL_THROW_ON_CONTRACT_VIOLATION: a gsl::fail_fast exception will be thrown
// 3. GSL_UNENFORCED_ON_CONTRACT_VIOLATION: nothing happens
//
#if !(defined(GSL_THROW_ON_CONTRACT_VIOLATION) || defined(GSL_TERMINATE_ON_CONTRACT_VIOLATION) || \
defined(GSL_UNENFORCED_ON_CONTRACT_VIOLATION))
#define GSL_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#define GSL_STRINGIFY_DETAIL(x) #x
#define GSL_STRINGIFY(x) GSL_STRINGIFY_DETAIL(x)
#if defined(__clang__) || defined(__GNUC__)
#define GSL_LIKELY(x) __builtin_expect(!!(x), 1)
#define GSL_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define GSL_LIKELY(x) (!!(x))
#define GSL_UNLIKELY(x) (!!(x))
#endif
//
// GSL_ASSUME(cond)
//
// Tell the optimizer that the predicate cond must hold. It is unspecified
// whether or not cond is actually evaluated.
//
#ifdef _MSC_VER
#define GSL_ASSUME(cond) __assume(cond)
#elif defined(__GNUC__)
#define GSL_ASSUME(cond) ((cond) ? static_cast<void>(0) : __builtin_unreachable())
#else
#define GSL_ASSUME(cond) static_cast<void>((cond) ? 0 : 0)
#endif
//
// GSL.assert: assertions
//
namespace gsl
{
struct fail_fast : public std::logic_error
{
explicit fail_fast(char const* const message) : std::logic_error(message) {}
};
namespace details
{
#if defined(GSL_MSVC_USE_STL_NOEXCEPTION_WORKAROUND)
typedef void (__cdecl *terminate_handler)();
GSL_SUPPRESS(f.6) // NO-FORMAT: attribute
[[noreturn]] inline void __cdecl default_terminate_handler()
{
__fastfail(RANGE_CHECKS_FAILURE);
}
inline gsl::details::terminate_handler& get_terminate_handler() noexcept
{
static terminate_handler handler = &default_terminate_handler;
return handler;
}
#endif
[[noreturn]] inline void terminate() noexcept
{
#if defined(GSL_MSVC_USE_STL_NOEXCEPTION_WORKAROUND)
(*gsl::details::get_terminate_handler())();
#else
std::terminate();
#endif
}
#if defined(GSL_TERMINATE_ON_CONTRACT_VIOLATION)
template <typename Exception>
[[noreturn]] void throw_exception(Exception&&) noexcept
{
gsl::details::terminate();
}
#else
template <typename Exception>
[[noreturn]] void throw_exception(Exception&& exception)
{
throw std::forward<Exception>(exception);
}
#endif // GSL_TERMINATE_ON_CONTRACT_VIOLATION
} // namespace details
} // namespace gsl
#if defined(GSL_THROW_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) \
(GSL_LIKELY(cond) ? static_cast<void>(0) \
: gsl::details::throw_exception(gsl::fail_fast( \
"GSL: " type " failure at " __FILE__ ": " GSL_STRINGIFY(__LINE__))))
#elif defined(GSL_TERMINATE_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) \
(GSL_LIKELY(cond) ? static_cast<void>(0) : gsl::details::terminate())
#elif defined(GSL_UNENFORCED_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) GSL_ASSUME(cond)
#endif // GSL_THROW_ON_CONTRACT_VIOLATION
#define Expects(cond) GSL_CONTRACT_CHECK("Precondition", cond)
#define Ensures(cond) GSL_CONTRACT_CHECK("Postcondition", cond)
#if defined(GSL_MSVC_USE_STL_NOEXCEPTION_WORKAROUND) && defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // GSL_CONTRACTS_H

View File

@ -0,0 +1,203 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_BYTE_H
#define GSL_BYTE_H
//
// make suppress attributes work for some compilers
// Hopefully temporary until suppression standardization occurs
//
#if defined(__clang__)
#define GSL_SUPPRESS(x) [[gsl::suppress("x")]]
#else
#if defined(_MSC_VER)
#define GSL_SUPPRESS(x) [[gsl::suppress(x)]]
#else
#define GSL_SUPPRESS(x)
#endif // _MSC_VER
#endif // __clang__
#include <type_traits>
#ifdef _MSC_VER
#pragma warning(push)
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26493) // don't use c-style casts // TODO: MSVC suppression in templates does not always work
#ifndef GSL_USE_STD_BYTE
// this tests if we are under MSVC and the standard lib has std::byte and it is enabled
#if defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#define GSL_USE_STD_BYTE 1
#else // defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#define GSL_USE_STD_BYTE 0
#endif // defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#endif // GSL_USE_STD_BYTE
#else // _MSC_VER
#ifndef GSL_USE_STD_BYTE
// this tests if we are under GCC or Clang with enough -std:c++1z power to get us std::byte
// also check if libc++ version is sufficient (> 5.0) or libstc++ actually contains std::byte
#if defined(__cplusplus) && (__cplusplus >= 201703L) && \
(defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) || \
defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
#define GSL_USE_STD_BYTE 1
#include <cstddef>
#else // defined(__cplusplus) && (__cplusplus >= 201703L) &&
// (defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) ||
// defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
#define GSL_USE_STD_BYTE 0
#endif //defined(__cplusplus) && (__cplusplus >= 201703L) &&
// (defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) ||
// defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
#endif // GSL_USE_STD_BYTE
#endif // _MSC_VER
// Use __may_alias__ attribute on gcc and clang
#if defined __clang__ || (defined(__GNUC__) && __GNUC__ > 5)
#define byte_may_alias __attribute__((__may_alias__))
#else // defined __clang__ || defined __GNUC__
#define byte_may_alias
#endif // defined __clang__ || defined __GNUC__
namespace gsl
{
#if GSL_USE_STD_BYTE
using std::byte;
using std::to_integer;
#else // GSL_USE_STD_BYTE
// This is a simple definition for now that allows
// use of byte within span<> to be standards-compliant
enum class byte_may_alias byte : unsigned char
{
};
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte& operator<<=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte operator<<(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte& operator>>=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) >> shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte operator>>(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) >> shift);
}
constexpr byte& operator|=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) | static_cast<unsigned char>(r));
}
constexpr byte operator|(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) | static_cast<unsigned char>(r));
}
constexpr byte& operator&=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) & static_cast<unsigned char>(r));
}
constexpr byte operator&(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) & static_cast<unsigned char>(r));
}
constexpr byte& operator^=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) ^ static_cast<unsigned char>(r));
}
constexpr byte operator^(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) ^ static_cast<unsigned char>(r));
}
constexpr byte operator~(byte b) noexcept { return byte(~static_cast<unsigned char>(b)); }
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr IntegerType to_integer(byte b) noexcept
{
return static_cast<IntegerType>(b);
}
#endif // GSL_USE_STD_BYTE
template <bool E, typename T>
constexpr byte to_byte_impl(T t) noexcept
{
static_assert(
E, "gsl::to_byte(t) must be provided an unsigned char, otherwise data loss may occur. "
"If you are calling to_byte with an integer contant use: gsl::to_byte<t>() version.");
return static_cast<byte>(t);
}
template <>
// NOTE: need suppression since c++14 does not allow "return {t}"
// GSL_SUPPRESS(type.4) // NO-FORMAT: attribute // TODO: suppression does not work
constexpr byte to_byte_impl<true, unsigned char>(unsigned char t) noexcept
{
return byte(t);
}
template <typename T>
constexpr byte to_byte(T t) noexcept
{
return to_byte_impl<std::is_same<T, unsigned char>::value, T>(t);
}
template <int I>
constexpr byte to_byte() noexcept
{
static_assert(I >= 0 && I <= 255,
"gsl::byte only has 8 bits of storage, values must be in range 0-255");
return static_cast<byte>(I);
}
} // namespace gsl
#ifdef _MSC_VER
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_BYTE_H

View File

@ -0,0 +1,175 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_UTIL_H
#define GSL_UTIL_H
#include <gsl/gsl_assert> // for Expects
#include <array>
#include <cstddef> // for ptrdiff_t, size_t
#include <exception> // for exception
#include <initializer_list> // for initializer_list
#include <type_traits> // for is_signed, integral_constant
#include <utility> // for forward
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // _MSC_VER < 1910
#endif // _MSC_VER
#if (defined(_MSC_VER) && _MSC_VER < 1910) || (!defined(__clang__) && defined(__GNUC__) && __GUNC__ < 6)
#define GSL_CONSTEXPR_NARROW 0
#else
#define GSL_CONSTEXPR_NARROW 1
#endif
namespace gsl
{
//
// GSL.util: utilities
//
// index type for all container indexes/subscripts/sizes
using index = std::ptrdiff_t;
// final_action allows you to ensure something gets run at the end of a scope
template <class F>
class final_action
{
public:
explicit final_action(F f) noexcept : f_(std::move(f)) {}
final_action(final_action&& other) noexcept : f_(std::move(other.f_)), invoke_(other.invoke_)
{
other.invoke_ = false;
}
final_action(const final_action&) = delete;
final_action& operator=(const final_action&) = delete;
final_action& operator=(final_action&&) = delete;
GSL_SUPPRESS(f.6) // NO-FORMAT: attribute // terminate if throws
~final_action() noexcept
{
if (invoke_) f_();
}
private:
F f_;
bool invoke_{true};
};
// finally() - convenience function to generate a final_action
template <class F>
final_action<F> finally(const F& f) noexcept
{
return final_action<F>(f);
}
template <class F>
final_action<F> finally(F&& f) noexcept
{
return final_action<F>(std::forward<F>(f));
}
// narrow_cast(): a searchable way to do narrowing casts of values
template <class T, class U>
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
constexpr T narrow_cast(U&& u) noexcept
{
return static_cast<T>(std::forward<U>(u));
}
struct narrowing_error : public std::exception
{
};
namespace details
{
template <class T, class U>
struct is_same_signedness
: public std::integral_constant<bool, std::is_signed<T>::value == std::is_signed<U>::value>
{
};
} // namespace details
// narrow() : a checked version of narrow_cast() that throws if the cast changed the value
template <class T, class U>
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
GSL_SUPPRESS(f.6) // NO-FORMAT: attribute // TODO: MSVC /analyze does not recognise noexcept(false)
#if GSL_CONSTEXPR_NARROW
constexpr
#endif
T narrow(U u) noexcept(false)
{
T t = narrow_cast<T>(u);
if (static_cast<U>(t) != u) gsl::details::throw_exception(narrowing_error());
if (!details::is_same_signedness<T, U>::value && ((t < T{}) != (u < U{})))
gsl::details::throw_exception(narrowing_error());
return t;
}
//
// at() - Bounds-checked way of accessing builtin arrays, std::array, std::vector
//
template <class T, std::size_t N>
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
constexpr T& at(T (&arr)[N], const index i)
{
Expects(i >= 0 && i < narrow_cast<index>(N));
return arr[narrow_cast<std::size_t>(i)];
}
template <class Cont>
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
constexpr auto at(Cont& cont, const index i) -> decltype(cont[cont.size()])
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
using size_type = decltype(cont.size());
return cont[narrow_cast<size_type>(i)];
}
template <class T>
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr T at(const std::initializer_list<T> cont, const index i)
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
return *(cont.begin() + i);
}
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_UTIL_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,294 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_POINTERS_H
#define GSL_POINTERS_H
#include <gsl/gsl_assert> // for Ensures, Expects
#include <algorithm> // for forward
#include <iosfwd> // for ptrdiff_t, nullptr_t, ostream, size_t
#include <memory> // for shared_ptr, unique_ptr
#include <system_error> // for hash
#include <type_traits> // for enable_if_t, is_convertible, is_assignable
#if defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // defined(_MSC_VER) && _MSC_VER < 1910
namespace gsl
{
//
// GSL.owner: ownership pointers
//
using std::unique_ptr;
using std::shared_ptr;
//
// owner
//
// owner<T> is designed as a bridge for code that must deal directly with owning pointers for some reason
//
// T must be a pointer type
// - disallow construction from any type other than pointer type
//
template <class T, class = std::enable_if_t<std::is_pointer<T>::value>>
using owner = T;
//
// not_null
//
// Restricts a pointer or smart pointer to only hold non-null values.
//
// Has zero size overhead over T.
//
// If T is a pointer (i.e. T == U*) then
// - allow construction from U*
// - disallow construction from nullptr_t
// - disallow default construction
// - ensure construction from null U* fails
// - allow implicit conversion to U*
//
template <class T>
class not_null
{
public:
static_assert(std::is_assignable<T&, std::nullptr_t>::value, "T cannot be assigned nullptr.");
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(U&& u) : ptr_(std::forward<U>(u))
{
Expects(ptr_ != nullptr);
}
template <typename = std::enable_if_t<!std::is_same<std::nullptr_t, T>::value>>
constexpr not_null(T u) : ptr_(u)
{
Expects(ptr_ != nullptr);
}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(const not_null<U>& other) : not_null(other.get())
{
}
not_null(not_null&& other) = default;
not_null(const not_null& other) = default;
not_null& operator=(const not_null& other) = default;
constexpr T get() const
{
Ensures(ptr_ != nullptr);
return ptr_;
}
constexpr operator T() const { return get(); }
constexpr T operator->() const { return get(); }
constexpr decltype(auto) operator*() const { return *get(); }
// prevents compilation when someone attempts to assign a null pointer constant
not_null(std::nullptr_t) = delete;
not_null& operator=(std::nullptr_t) = delete;
// unwanted operators...pointers only point to single objects!
not_null& operator++() = delete;
not_null& operator--() = delete;
not_null operator++(int) = delete;
not_null operator--(int) = delete;
not_null& operator+=(std::ptrdiff_t) = delete;
not_null& operator-=(std::ptrdiff_t) = delete;
void operator[](std::ptrdiff_t) const = delete;
private:
T ptr_;
};
template <class T>
auto make_not_null(T&& t) {
return not_null<std::remove_cv_t<std::remove_reference_t<T>>>{std::forward<T>(t)};
}
template <class T>
std::ostream& operator<<(std::ostream& os, const not_null<T>& val)
{
os << val.get();
return os;
}
template <class T, class U>
auto operator==(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() == rhs.get())
{
return lhs.get() == rhs.get();
}
template <class T, class U>
auto operator!=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() != rhs.get())
{
return lhs.get() != rhs.get();
}
template <class T, class U>
auto operator<(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() < rhs.get())
{
return lhs.get() < rhs.get();
}
template <class T, class U>
auto operator<=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() <= rhs.get())
{
return lhs.get() <= rhs.get();
}
template <class T, class U>
auto operator>(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() > rhs.get())
{
return lhs.get() > rhs.get();
}
template <class T, class U>
auto operator>=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() >= rhs.get())
{
return lhs.get() >= rhs.get();
}
// more unwanted operators
template <class T, class U>
std::ptrdiff_t operator-(const not_null<T>&, const not_null<U>&) = delete;
template <class T>
not_null<T> operator-(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(std::ptrdiff_t, const not_null<T>&) = delete;
} // namespace gsl
namespace std
{
template <class T>
struct hash<gsl::not_null<T>>
{
std::size_t operator()(const gsl::not_null<T>& value) const { return hash<T>{}(value); }
};
} // namespace std
namespace gsl
{
//
// strict_not_null
//
// Restricts a pointer or smart pointer to only hold non-null values,
//
// - provides a strict (i.e. explicit contructor from T) wrapper of not_null
// - to be used for new code that wishes the design to be cleaner and make not_null
// checks intentional, or in old code that would like to make the transition.
//
// To make the transition from not_null, incrementally replace not_null
// by strict_not_null and fix compilation errors
//
// Expect to
// - remove all unneded conversions from raw pointer to not_null and back
// - make API clear by specifyning not_null in parameters where needed
// - remove unnesessary asserts
//
template <class T>
class strict_not_null: public not_null<T>
{
public:
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr explicit strict_not_null(U&& u) :
not_null<T>(std::forward<U>(u))
{}
template <typename = std::enable_if_t<!std::is_same<std::nullptr_t, T>::value>>
constexpr explicit strict_not_null(T u) :
not_null<T>(u)
{}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr strict_not_null(const not_null<U>& other) :
not_null<T>(other)
{}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr strict_not_null(const strict_not_null<U>& other) :
not_null<T>(other)
{}
strict_not_null(strict_not_null&& other) = default;
strict_not_null(const strict_not_null& other) = default;
strict_not_null& operator=(const strict_not_null& other) = default;
strict_not_null& operator=(const not_null<T>& other)
{
not_null<T>::operator=(other);
return *this;
}
// prevents compilation when someone attempts to assign a null pointer constant
strict_not_null(std::nullptr_t) = delete;
strict_not_null& operator=(std::nullptr_t) = delete;
// unwanted operators...pointers only point to single objects!
strict_not_null& operator++() = delete;
strict_not_null& operator--() = delete;
strict_not_null operator++(int) = delete;
strict_not_null operator--(int) = delete;
strict_not_null& operator+=(std::ptrdiff_t) = delete;
strict_not_null& operator-=(std::ptrdiff_t) = delete;
void operator[](std::ptrdiff_t) const = delete;
};
// more unwanted operators
template <class T, class U>
std::ptrdiff_t operator-(const strict_not_null<T>&, const strict_not_null<U>&) = delete;
template <class T>
strict_not_null<T> operator-(const strict_not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
strict_not_null<T> operator+(const strict_not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
strict_not_null<T> operator+(std::ptrdiff_t, const strict_not_null<T>&) = delete;
template <class T>
auto make_strict_not_null(T&& t) {
return strict_not_null<std::remove_cv_t<std::remove_reference_t<T>>>{std::forward<T>(t)};
}
} // namespace gsl
namespace std
{
template <class T>
struct hash<gsl::strict_not_null<T>>
{
std::size_t operator()(const gsl::strict_not_null<T>& value) const { return hash<T>{}(value); }
};
} // namespace std
#if defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#undef constexpr
#pragma pop_macro("constexpr")
#endif // defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#endif // GSL_POINTERS_H

View File

@ -0,0 +1,793 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_SPAN_H
#define GSL_SPAN_H
#include <gsl/gsl_assert> // for Expects
#include <gsl/gsl_byte> // for byte
#include <gsl/gsl_util> // for narrow_cast, narrow
#include <algorithm> // for lexicographical_compare
#include <array> // for array
#include <cstddef> // for ptrdiff_t, size_t, nullptr_t
#include <iterator> // for reverse_iterator, distance, random_access_...
#include <limits>
#include <stdexcept>
#include <type_traits> // for enable_if_t, declval, is_convertible, inte...
#include <utility>
#include <memory> // for std::addressof
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
// turn off some warnings that are noisy about our Expects statements
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4702) // unreachable code
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26495) // uninitalized member when constructor calls constructor
#pragma warning(disable : 26446) // parser bug does not allow attributes on some templates
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#define GSL_USE_STATIC_CONSTEXPR_WORKAROUND
#endif // _MSC_VER < 1910
#endif // _MSC_VER
// See if we have enough C++17 power to use a static constexpr data member
// without needing an out-of-line definition
#if !(defined(__cplusplus) && (__cplusplus >= 201703L))
#define GSL_USE_STATIC_CONSTEXPR_WORKAROUND
#endif // !(defined(__cplusplus) && (__cplusplus >= 201703L))
// GCC 7 does not like the signed unsigned missmatch (size_t ptrdiff_t)
// While there is a conversion from signed to unsigned, it happens at
// compiletime, so the compiler wouldn't have to warn indiscriminently, but
// could check if the source value actually doesn't fit into the target type
// and only warn in those cases.
#if defined(__GNUC__) && __GNUC__ > 6
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
namespace gsl
{
// [views.constants], constants
constexpr const std::ptrdiff_t dynamic_extent = -1;
template <class ElementType, std::ptrdiff_t Extent = dynamic_extent>
class span;
// implementation details
namespace details
{
template <class T>
struct is_span_oracle : std::false_type
{
};
template <class ElementType, std::ptrdiff_t Extent>
struct is_span_oracle<gsl::span<ElementType, Extent>> : std::true_type
{
};
template <class T>
struct is_span : public is_span_oracle<std::remove_cv_t<T>>
{
};
template <class T>
struct is_std_array_oracle : std::false_type
{
};
template <class ElementType, std::size_t Extent>
struct is_std_array_oracle<std::array<ElementType, Extent>> : std::true_type
{
};
template <class T>
struct is_std_array : public is_std_array_oracle<std::remove_cv_t<T>>
{
};
template <std::ptrdiff_t From, std::ptrdiff_t To>
struct is_allowed_extent_conversion
: public std::integral_constant<bool, From == To || From == gsl::dynamic_extent ||
To == gsl::dynamic_extent>
{
};
template <class From, class To>
struct is_allowed_element_type_conversion
: public std::integral_constant<bool, std::is_convertible<From (*)[], To (*)[]>::value>
{
};
template <class Span, bool IsConst>
class span_iterator
{
using element_type_ = typename Span::element_type;
public:
#ifdef _MSC_VER
// Tell Microsoft standard library that span_iterators are checked.
using _Unchecked_type = typename Span::pointer;
#endif
using iterator_category = std::random_access_iterator_tag;
using value_type = std::remove_cv_t<element_type_>;
using difference_type = typename Span::index_type;
using reference = std::conditional_t<IsConst, const element_type_, element_type_>&;
using pointer = std::add_pointer_t<reference>;
span_iterator() = default;
constexpr span_iterator(const Span* span, typename Span::index_type idx) noexcept
: span_(span), index_(idx)
{}
friend span_iterator<Span, true>;
template <bool B, std::enable_if_t<!B && IsConst>* = nullptr>
constexpr span_iterator(const span_iterator<Span, B>& other) noexcept
: span_iterator(other.span_, other.index_)
{}
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr reference operator*() const
{
Expects(index_ != span_->size());
return *(span_->data() + index_);
}
constexpr pointer operator->() const
{
Expects(index_ != span_->size());
return span_->data() + index_;
}
constexpr span_iterator& operator++()
{
Expects(0 <= index_ && index_ != span_->size());
++index_;
return *this;
}
constexpr span_iterator operator++(int)
{
auto ret = *this;
++(*this);
return ret;
}
constexpr span_iterator& operator--()
{
Expects(index_ != 0 && index_ <= span_->size());
--index_;
return *this;
}
constexpr span_iterator operator--(int)
{
auto ret = *this;
--(*this);
return ret;
}
constexpr span_iterator operator+(difference_type n) const
{
auto ret = *this;
return ret += n;
}
friend constexpr span_iterator operator+(difference_type n, span_iterator const& rhs)
{
return rhs + n;
}
constexpr span_iterator& operator+=(difference_type n)
{
Expects((index_ + n) >= 0 && (index_ + n) <= span_->size());
index_ += n;
return *this;
}
constexpr span_iterator operator-(difference_type n) const
{
auto ret = *this;
return ret -= n;
}
constexpr span_iterator& operator-=(difference_type n) { return *this += -n; }
constexpr difference_type operator-(span_iterator rhs) const
{
Expects(span_ == rhs.span_);
return index_ - rhs.index_;
}
constexpr reference operator[](difference_type n) const { return *(*this + n); }
constexpr friend bool operator==(span_iterator lhs, span_iterator rhs) noexcept
{
return lhs.span_ == rhs.span_ && lhs.index_ == rhs.index_;
}
constexpr friend bool operator!=(span_iterator lhs, span_iterator rhs) noexcept
{
return !(lhs == rhs);
}
constexpr friend bool operator<(span_iterator lhs, span_iterator rhs) noexcept
{
return lhs.index_ < rhs.index_;
}
constexpr friend bool operator<=(span_iterator lhs, span_iterator rhs) noexcept
{
return !(rhs < lhs);
}
constexpr friend bool operator>(span_iterator lhs, span_iterator rhs) noexcept
{
return rhs < lhs;
}
constexpr friend bool operator>=(span_iterator lhs, span_iterator rhs) noexcept
{
return !(rhs > lhs);
}
#ifdef _MSC_VER
// MSVC++ iterator debugging support; allows STL algorithms in 15.8+
// to unwrap span_iterator to a pointer type after a range check in STL
// algorithm calls
friend constexpr void _Verify_range(span_iterator lhs, span_iterator rhs) noexcept
{ // test that [lhs, rhs) forms a valid range inside an STL algorithm
Expects(lhs.span_ == rhs.span_ // range spans have to match
&& lhs.index_ <= rhs.index_); // range must not be transposed
}
constexpr void _Verify_offset(const difference_type n) const noexcept
{ // test that the iterator *this + n is a valid range in an STL
// algorithm call
Expects((index_ + n) >= 0 && (index_ + n) <= span_->size());
}
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr pointer _Unwrapped() const noexcept
{ // after seeking *this to a high water mark, or using one of the
// _Verify_xxx functions above, unwrap this span_iterator to a raw
// pointer
return span_->data() + index_;
}
// Tell the STL that span_iterator should not be unwrapped if it can't
// validate in advance, even in release / optimized builds:
#if defined(GSL_USE_STATIC_CONSTEXPR_WORKAROUND)
static constexpr const bool _Unwrap_when_unverified = false;
#else
static constexpr bool _Unwrap_when_unverified = false;
#endif
GSL_SUPPRESS(con.3) // NO-FORMAT: attribute // TODO: false positive
constexpr void _Seek_to(const pointer p) noexcept
{ // adjust the position of *this to previously verified location p
// after _Unwrapped
index_ = p - span_->data();
}
#endif
protected:
const Span* span_ = nullptr;
std::ptrdiff_t index_ = 0;
};
template <std::ptrdiff_t Ext>
class extent_type
{
public:
using index_type = std::ptrdiff_t;
static_assert(Ext >= 0, "A fixed-size span must be >= 0 in size.");
constexpr extent_type() noexcept {}
template <index_type Other>
constexpr extent_type(extent_type<Other> ext)
{
static_assert(Other == Ext || Other == dynamic_extent,
"Mismatch between fixed-size extent and size of initializing data.");
Expects(ext.size() == Ext);
}
constexpr extent_type(index_type size) { Expects(size == Ext); }
constexpr index_type size() const noexcept { return Ext; }
};
template <>
class extent_type<dynamic_extent>
{
public:
using index_type = std::ptrdiff_t;
template <index_type Other>
explicit constexpr extent_type(extent_type<Other> ext) : size_(ext.size())
{}
explicit constexpr extent_type(index_type size) : size_(size) { Expects(size >= 0); }
constexpr index_type size() const noexcept { return size_; }
private:
index_type size_;
};
template <class ElementType, std::ptrdiff_t Extent, std::ptrdiff_t Offset, std::ptrdiff_t Count>
struct calculate_subspan_type
{
using type = span<ElementType, Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset : Extent)>;
};
} // namespace details
// [span], class template span
template <class ElementType, std::ptrdiff_t Extent>
class span
{
public:
// constants and types
using element_type = ElementType;
using value_type = std::remove_cv_t<ElementType>;
using index_type = std::ptrdiff_t;
using pointer = element_type*;
using reference = element_type&;
using iterator = details::span_iterator<span<ElementType, Extent>, false>;
using const_iterator = details::span_iterator<span<ElementType, Extent>, true>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using size_type = index_type;
#if defined(GSL_USE_STATIC_CONSTEXPR_WORKAROUND)
static constexpr const index_type extent{Extent};
#else
static constexpr index_type extent{Extent};
#endif
// [span.cons], span constructors, copy, assignment, and destructor
template <bool Dependent = false,
// "Dependent" is needed to make "std::enable_if_t<Dependent || Extent <= 0>" SFINAE,
// since "std::enable_if_t<Extent <= 0>" is ill-formed when Extent is greater than 0.
class = std::enable_if_t<(Dependent || Extent <= 0)>>
constexpr span() noexcept : storage_(nullptr, details::extent_type<0>())
{}
constexpr span(pointer ptr, index_type count) : storage_(ptr, count) {}
constexpr span(pointer firstElem, pointer lastElem)
: storage_(firstElem, std::distance(firstElem, lastElem))
{}
template <std::size_t N>
constexpr span(element_type (&arr)[N]) noexcept
: storage_(KnownNotNull{std::addressof(arr[0])}, details::extent_type<N>())
{}
template <std::size_t N, class = std::enable_if_t<(N > 0)>>
constexpr span(std::array<std::remove_const_t<element_type>, N>& arr) noexcept
: storage_(KnownNotNull{arr.data()}, details::extent_type<N>())
{
}
constexpr span(std::array<std::remove_const_t<element_type>, 0>&) noexcept
: storage_(static_cast<pointer>(nullptr), details::extent_type<0>())
{
}
template <std::size_t N, class = std::enable_if_t<(N > 0)>>
constexpr span(const std::array<std::remove_const_t<element_type>, N>& arr) noexcept
: storage_(KnownNotNull{arr.data()}, details::extent_type<N>())
{
}
constexpr span(const std::array<std::remove_const_t<element_type>, 0>&) noexcept
: storage_(static_cast<pointer>(nullptr), details::extent_type<0>())
{
}
// NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the requirement
// on Container to be a contiguous sequence container.
template <class Container,
class = std::enable_if_t<
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr span(Container& cont) : span(cont.data(), narrow<index_type>(cont.size()))
{}
template <class Container,
class = std::enable_if_t<
std::is_const<element_type>::value && !details::is_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr span(const Container& cont) : span(cont.data(), narrow<index_type>(cont.size()))
{}
constexpr span(const span& other) noexcept = default;
template <
class OtherElementType, std::ptrdiff_t OtherExtent,
class = std::enable_if_t<
details::is_allowed_extent_conversion<OtherExtent, Extent>::value &&
details::is_allowed_element_type_conversion<OtherElementType, element_type>::value>>
constexpr span(const span<OtherElementType, OtherExtent>& other)
: storage_(other.data(), details::extent_type<OtherExtent>(other.size()))
{}
~span() noexcept = default;
constexpr span& operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::ptrdiff_t Count>
constexpr span<element_type, Count> first() const
{
Expects(Count >= 0 && Count <= size());
return {data(), Count};
}
template <std::ptrdiff_t Count>
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr span<element_type, Count> last() const
{
Expects(Count >= 0 && size() - Count >= 0);
return {data() + (size() - Count), Count};
}
template <std::ptrdiff_t Offset, std::ptrdiff_t Count = dynamic_extent>
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr auto subspan() const ->
typename details::calculate_subspan_type<ElementType, Extent, Offset, Count>::type
{
Expects((Offset >= 0 && size() - Offset >= 0) &&
(Count == dynamic_extent || (Count >= 0 && Offset + Count <= size())));
return {data() + Offset, Count == dynamic_extent ? size() - Offset : Count};
}
constexpr span<element_type, dynamic_extent> first(index_type count) const
{
Expects(count >= 0 && count <= size());
return {data(), count};
}
constexpr span<element_type, dynamic_extent> last(index_type count) const
{
return make_subspan(size() - count, dynamic_extent, subspan_selector<Extent>{});
}
constexpr span<element_type, dynamic_extent> subspan(index_type offset,
index_type count = dynamic_extent) const
{
return make_subspan(offset, count, subspan_selector<Extent>{});
}
// [span.obs], span observers
constexpr index_type size() const noexcept { return storage_.size(); }
constexpr index_type size_bytes() const noexcept
{
return size() * narrow_cast<index_type>(sizeof(element_type));
}
constexpr bool empty() const noexcept { return size() == 0; }
// [span.elem], span element access
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr reference operator[](index_type idx) const
{
Expects(CheckRange(idx, storage_.size()));
return data()[idx];
}
constexpr reference at(index_type idx) const { return this->operator[](idx); }
constexpr reference operator()(index_type idx) const { return this->operator[](idx); }
constexpr pointer data() const noexcept { return storage_.data(); }
// [span.iter], span iterator support
constexpr iterator begin() const noexcept { return {this, 0}; }
constexpr iterator end() const noexcept { return {this, size()}; }
constexpr const_iterator cbegin() const noexcept { return {this, 0}; }
constexpr const_iterator cend() const noexcept { return {this, size()}; }
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator{end()}; }
constexpr reverse_iterator rend() const noexcept { return reverse_iterator{begin()}; }
constexpr const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator{cend()};
}
constexpr const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator{cbegin()};
}
#ifdef _MSC_VER
// Tell MSVC how to unwrap spans in range-based-for
constexpr pointer _Unchecked_begin() const noexcept { return data(); }
constexpr pointer _Unchecked_end() const noexcept
{
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
return data() + size();
}
#endif // _MSC_VER
private:
static constexpr bool CheckRange(index_type idx, index_type size) noexcept
{
// Optimization:
//
// idx >= 0 && idx < size
// =>
// static_cast<size_t>(idx) < static_cast<size_t>(size)
//
// because size >=0 by span construction, and negative idx will
// wrap around to a value always greater than size when casted.
// check if we have enough space to wrap around
#if defined(__cpp_if_constexpr)
if constexpr (sizeof(index_type) <= sizeof(size_t))
#else
if (sizeof(index_type) <= sizeof(size_t))
#endif
{
return narrow_cast<size_t>(idx) < narrow_cast<size_t>(size);
}
else
{
return idx >= 0 && idx < size;
}
}
// Needed to remove unnecessary null check in subspans
struct KnownNotNull
{
pointer p;
};
// this implementation detail class lets us take advantage of the
// empty base class optimization to pay for only storage of a single
// pointer in the case of fixed-size spans
template <class ExtentType>
class storage_type : public ExtentType
{
public:
// KnownNotNull parameter is needed to remove unnecessary null check
// in subspans and constructors from arrays
template <class OtherExtentType>
constexpr storage_type(KnownNotNull data, OtherExtentType ext)
: ExtentType(ext), data_(data.p)
{
Expects(ExtentType::size() >= 0);
}
template <class OtherExtentType>
constexpr storage_type(pointer data, OtherExtentType ext) : ExtentType(ext), data_(data)
{
Expects(ExtentType::size() >= 0);
Expects(data || ExtentType::size() == 0);
}
constexpr pointer data() const noexcept { return data_; }
private:
pointer data_;
};
storage_type<details::extent_type<Extent>> storage_;
// The rest is needed to remove unnecessary null check
// in subspans and constructors from arrays
constexpr span(KnownNotNull ptr, index_type count) : storage_(ptr, count) {}
template <std::ptrdiff_t CallerExtent>
class subspan_selector
{
};
template <std::ptrdiff_t CallerExtent>
span<element_type, dynamic_extent> make_subspan(index_type offset, index_type count,
subspan_selector<CallerExtent>) const
{
const span<element_type, dynamic_extent> tmp(*this);
return tmp.subspan(offset, count);
}
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
span<element_type, dynamic_extent> make_subspan(index_type offset, index_type count,
subspan_selector<dynamic_extent>) const
{
Expects(offset >= 0 && size() - offset >= 0);
if (count == dynamic_extent) { return {KnownNotNull{data() + offset}, size() - offset}; }
Expects(count >= 0 && size() - offset >= count);
return {KnownNotNull{data() + offset}, count};
}
};
#if defined(GSL_USE_STATIC_CONSTEXPR_WORKAROUND)
template <class ElementType, std::ptrdiff_t Extent>
constexpr const typename span<ElementType, Extent>::index_type span<ElementType, Extent>::extent;
#endif
// [span.comparison], span comparison operators
template <class ElementType, std::ptrdiff_t FirstExtent, std::ptrdiff_t SecondExtent>
constexpr bool operator==(span<ElementType, FirstExtent> l, span<ElementType, SecondExtent> r)
{
return std::equal(l.begin(), l.end(), r.begin(), r.end());
}
template <class ElementType, std::ptrdiff_t Extent>
constexpr bool operator!=(span<ElementType, Extent> l, span<ElementType, Extent> r)
{
return !(l == r);
}
template <class ElementType, std::ptrdiff_t Extent>
constexpr bool operator<(span<ElementType, Extent> l, span<ElementType, Extent> r)
{
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
}
template <class ElementType, std::ptrdiff_t Extent>
constexpr bool operator<=(span<ElementType, Extent> l, span<ElementType, Extent> r)
{
return !(l > r);
}
template <class ElementType, std::ptrdiff_t Extent>
constexpr bool operator>(span<ElementType, Extent> l, span<ElementType, Extent> r)
{
return r < l;
}
template <class ElementType, std::ptrdiff_t Extent>
constexpr bool operator>=(span<ElementType, Extent> l, span<ElementType, Extent> r)
{
return !(l < r);
}
namespace details
{
// if we only supported compilers with good constexpr support then
// this pair of classes could collapse down to a constexpr function
// we should use a narrow_cast<> to go to std::size_t, but older compilers may not see it as
// constexpr
// and so will fail compilation of the template
template <class ElementType, std::ptrdiff_t Extent>
struct calculate_byte_size
: std::integral_constant<std::ptrdiff_t,
static_cast<std::ptrdiff_t>(sizeof(ElementType) *
static_cast<std::size_t>(Extent))>
{
};
template <class ElementType>
struct calculate_byte_size<ElementType, dynamic_extent>
: std::integral_constant<std::ptrdiff_t, dynamic_extent>
{
};
} // namespace details
// [span.objectrep], views of object representation
template <class ElementType, std::ptrdiff_t Extent>
span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, std::ptrdiff_t Extent,
class = std::enable_if_t<!std::is_const<ElementType>::value>>
span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writeable_bytes(span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
//
// make_span() - Utility functions for creating spans
//
template <class ElementType>
constexpr span<ElementType> make_span(ElementType* ptr,
typename span<ElementType>::index_type count)
{
return span<ElementType>(ptr, count);
}
template <class ElementType>
constexpr span<ElementType> make_span(ElementType* firstElem, ElementType* lastElem)
{
return span<ElementType>(firstElem, lastElem);
}
template <class ElementType, std::size_t N>
constexpr span<ElementType, N> make_span(ElementType (&arr)[N]) noexcept
{
return span<ElementType, N>(arr);
}
template <class Container>
constexpr span<typename Container::value_type> make_span(Container& cont)
{
return span<typename Container::value_type>(cont);
}
template <class Container>
constexpr span<const typename Container::value_type> make_span(const Container& cont)
{
return span<const typename Container::value_type>(cont);
}
template <class Ptr>
constexpr span<typename Ptr::element_type> make_span(Ptr& cont, std::ptrdiff_t count)
{
return span<typename Ptr::element_type>(cont, count);
}
template <class Ptr>
constexpr span<typename Ptr::element_type> make_span(Ptr& cont)
{
return span<typename Ptr::element_type>(cont);
}
// Specialization of gsl::at for span
template <class ElementType, std::ptrdiff_t Extent>
constexpr ElementType& at(span<ElementType, Extent> s, index i)
{
// No bounds checking here because it is done in span::operator[] called below
return s[i];
}
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#pragma warning(pop)
#endif // _MSC_VER
#if defined(__GNUC__) && __GNUC__ > 6
#pragma GCC diagnostic pop
#endif // __GNUC__ > 6
#endif // GSL_SPAN_H

View File

@ -0,0 +1,722 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_STRING_SPAN_H
#define GSL_STRING_SPAN_H
#include <gsl/gsl_assert> // for Ensures, Expects
#include <gsl/gsl_util> // for narrow_cast
#include <gsl/span> // for operator!=, operator==, dynamic_extent
#include <gsl/pointers> // for not_null
#include <algorithm> // for equal, lexicographical_compare
#include <array> // for array
#include <cstddef> // for ptrdiff_t, size_t, nullptr_t
#include <cstdint> // for PTRDIFF_MAX
#include <cstring>
#include <string> // for basic_string, allocator, char_traits
#include <type_traits> // for declval, is_convertible, enable_if_t, add_...
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26446) // TODO: bug in parser - attributes and templates
#pragma warning(disable : 26481) // TODO: suppress does not work inside templates sometimes
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // _MSC_VER < 1910
#endif // _MSC_VER
namespace gsl
{
//
// czstring and wzstring
//
// These are "tag" typedefs for C-style strings (i.e. null-terminated character arrays)
// that allow static analysis to help find bugs.
//
// There are no additional features/semantics that we can find a way to add inside the
// type system for these types that will not either incur significant runtime costs or
// (sometimes needlessly) break existing programs when introduced.
//
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
using basic_zstring = CharT*;
template <std::ptrdiff_t Extent = dynamic_extent>
using czstring = basic_zstring<const char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cwzstring = basic_zstring<const wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu16zstring = basic_zstring<const char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu32zstring = basic_zstring<const char32_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using zstring = basic_zstring<char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using wzstring = basic_zstring<wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u16zstring = basic_zstring<char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u32zstring = basic_zstring<char32_t, Extent>;
namespace details
{
template <class CharT>
std::ptrdiff_t string_length(const CharT* str, std::ptrdiff_t n)
{
if (str == nullptr || n <= 0) return 0;
const span<const CharT> str_span{str, n};
std::ptrdiff_t len = 0;
while (len < n && str_span[len]) len++;
return len;
}
} // namespace details
//
// ensure_sentinel()
//
// Provides a way to obtain an span from a contiguous sequence
// that ends with a (non-inclusive) sentinel value.
//
// Will fail-fast if sentinel cannot be found before max elements are examined.
//
template <typename T, const T Sentinel>
span<T, dynamic_extent> ensure_sentinel(T* seq, std::ptrdiff_t max = PTRDIFF_MAX)
{
Ensures(seq != nullptr);
GSL_SUPPRESS(f.23) // NO-FORMAT: attribute // TODO: false positive // TODO: suppress does not work
auto cur = seq;
Ensures(cur != nullptr); // workaround for removing the warning
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute // TODO: suppress does not work
while ((cur - seq) < max && *cur != Sentinel) ++cur;
Ensures(*cur == Sentinel);
return {seq, cur - seq};
}
//
// ensure_z - creates a span for a zero terminated strings.
// Will fail fast if a null-terminator cannot be found before
// the limit of size_type.
//
template <typename CharT>
span<CharT, dynamic_extent> ensure_z(CharT* const& sz, std::ptrdiff_t max = PTRDIFF_MAX)
{
return ensure_sentinel<CharT, CharT(0)>(sz, max);
}
template <typename CharT, std::size_t N>
span<CharT, dynamic_extent> ensure_z(CharT (&sz)[N])
{
return ensure_z(&sz[0], narrow_cast<std::ptrdiff_t>(N));
}
template <class Cont>
span<typename std::remove_pointer<typename Cont::pointer>::type, dynamic_extent>
ensure_z(Cont& cont)
{
return ensure_z(cont.data(), narrow_cast<std::ptrdiff_t>(cont.size()));
}
template <typename CharT, std::ptrdiff_t>
class basic_string_span;
namespace details {
template <typename T>
struct is_basic_string_span_oracle : std::false_type
{
};
template <typename CharT, std::ptrdiff_t Extent>
struct is_basic_string_span_oracle<basic_string_span<CharT, Extent>> : std::true_type
{
};
template <typename T>
struct is_basic_string_span : is_basic_string_span_oracle<std::remove_cv_t<T>>
{
};
} // namespace details
//
// string_span and relatives
//
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
class basic_string_span
{
public:
using element_type = CharT;
using value_type = std::remove_cv_t<element_type>;
using pointer = std::add_pointer_t<element_type>;
using reference = std::add_lvalue_reference_t<element_type>;
using const_reference = std::add_lvalue_reference_t<std::add_const_t<element_type>>;
using impl_type = span<element_type, Extent>;
using index_type = typename impl_type::index_type;
using iterator = typename impl_type::iterator;
using const_iterator = typename impl_type::const_iterator;
using reverse_iterator = typename impl_type::reverse_iterator;
using const_reverse_iterator = typename impl_type::const_reverse_iterator;
using size_type = index_type;
// default (empty)
constexpr basic_string_span() noexcept = default;
// copy
constexpr basic_string_span(const basic_string_span& other) noexcept = default;
// assign
constexpr basic_string_span& operator=(const basic_string_span& other) noexcept = default;
constexpr basic_string_span(pointer ptr, index_type length) : span_(ptr, length) {}
constexpr basic_string_span(pointer firstElem, pointer lastElem) : span_(firstElem, lastElem) {}
// From static arrays - if 0-terminated, remove 0 from the view
// All other containers allow 0s within the length, so we do not remove them
template <std::size_t N>
constexpr basic_string_span(element_type (&arr)[N]) : span_(remove_z(arr))
{}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(std::array<ArrayElementType, N>& arr) noexcept : span_(arr)
{}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(const std::array<ArrayElementType, N>& arr) noexcept : span_(arr)
{}
// Container signature should work for basic_string after C++17 version exists
template <class Traits, class Allocator>
// GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute // TODO: parser bug
constexpr basic_string_span(std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], narrow_cast<std::ptrdiff_t>(str.length()))
{}
template <class Traits, class Allocator>
constexpr basic_string_span(const std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], str.length())
{}
// from containers. Containers must have a pointer type and data() function signatures
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(Container& cont) : span_(cont)
{}
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(const Container& cont) : span_(cont)
{}
// from string_span
template <
class OtherValueType, std::ptrdiff_t OtherExtent,
class = std::enable_if_t<std::is_convertible<
typename basic_string_span<OtherValueType, OtherExtent>::impl_type, impl_type>::value>>
constexpr basic_string_span(basic_string_span<OtherValueType, OtherExtent> other)
: span_(other.data(), other.length())
{}
template <index_type Count>
constexpr basic_string_span<element_type, Count> first() const
{
return {span_.template first<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> first(index_type count) const
{
return {span_.first(count)};
}
template <index_type Count>
constexpr basic_string_span<element_type, Count> last() const
{
return {span_.template last<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> last(index_type count) const
{
return {span_.last(count)};
}
template <index_type Offset, index_type Count>
constexpr basic_string_span<element_type, Count> subspan() const
{
return {span_.template subspan<Offset, Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent>
subspan(index_type offset, index_type count = dynamic_extent) const
{
return {span_.subspan(offset, count)};
}
constexpr reference operator[](index_type idx) const { return span_[idx]; }
constexpr reference operator()(index_type idx) const { return span_[idx]; }
constexpr pointer data() const { return span_.data(); }
constexpr index_type length() const noexcept { return span_.size(); }
constexpr index_type size() const noexcept { return span_.size(); }
constexpr index_type size_bytes() const noexcept { return span_.size_bytes(); }
constexpr index_type length_bytes() const noexcept { return span_.length_bytes(); }
constexpr bool empty() const noexcept { return size() == 0; }
constexpr iterator begin() const noexcept { return span_.begin(); }
constexpr iterator end() const noexcept { return span_.end(); }
constexpr const_iterator cbegin() const noexcept { return span_.cbegin(); }
constexpr const_iterator cend() const noexcept { return span_.cend(); }
constexpr reverse_iterator rbegin() const noexcept { return span_.rbegin(); }
constexpr reverse_iterator rend() const noexcept { return span_.rend(); }
constexpr const_reverse_iterator crbegin() const noexcept { return span_.crbegin(); }
constexpr const_reverse_iterator crend() const noexcept { return span_.crend(); }
private:
static impl_type remove_z(pointer const& sz, std::ptrdiff_t max)
{
return {sz, details::string_length(sz, max)};
}
template <std::size_t N>
static impl_type remove_z(element_type (&sz)[N])
{
return remove_z(&sz[0], narrow_cast<std::ptrdiff_t>(N));
}
impl_type span_;
};
template <std::ptrdiff_t Extent = dynamic_extent>
using string_span = basic_string_span<char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cstring_span = basic_string_span<const char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using wstring_span = basic_string_span<wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cwstring_span = basic_string_span<const wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u16string_span = basic_string_span<char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu16string_span = basic_string_span<const char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u32string_span = basic_string_span<char32_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu32string_span = basic_string_span<const char32_t, Extent>;
//
// to_string() allow (explicit) conversions from string_span to string
//
template <typename CharT, std::ptrdiff_t Extent>
std::basic_string<typename std::remove_const<CharT>::type>
to_string(basic_string_span<CharT, Extent> view)
{
return {view.data(), narrow_cast<std::size_t>(view.length())};
}
template <typename CharT, typename Traits = typename std::char_traits<CharT>,
typename Allocator = std::allocator<CharT>, typename gCharT, std::ptrdiff_t Extent>
std::basic_string<CharT, Traits, Allocator> to_basic_string(basic_string_span<gCharT, Extent> view)
{
return {view.data(), narrow_cast<std::size_t>(view.length())};
}
template <class ElementType, std::ptrdiff_t Extent>
basic_string_span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(basic_string_span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, std::ptrdiff_t Extent,
class = std::enable_if_t<!std::is_const<ElementType>::value>>
basic_string_span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writeable_bytes(basic_string_span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
// zero-terminated string span, used to convert
// zero-terminated spans to legacy strings
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
class basic_zstring_span {
public:
using value_type = CharT;
using const_value_type = std::add_const_t<CharT>;
using pointer = std::add_pointer_t<value_type>;
using const_pointer = std::add_pointer_t<const_value_type>;
using zstring_type = basic_zstring<value_type, Extent>;
using const_zstring_type = basic_zstring<const_value_type, Extent>;
using impl_type = span<value_type, Extent>;
using string_span_type = basic_string_span<value_type, Extent>;
constexpr basic_zstring_span(impl_type s) : span_(s)
{
// expects a zero-terminated span
Expects(s[s.size() - 1] == '\0');
}
// copy
constexpr basic_zstring_span(const basic_zstring_span& other) = default;
// move
constexpr basic_zstring_span(basic_zstring_span&& other) = default;
// assign
constexpr basic_zstring_span& operator=(const basic_zstring_span& other) = default;
// move assign
constexpr basic_zstring_span& operator=(basic_zstring_span&& other) = default;
constexpr bool empty() const noexcept { return span_.size() == 0; }
constexpr string_span_type as_string_span() const noexcept
{
const auto sz = span_.size();
return {span_.data(), sz > 1 ? sz - 1 : 0};
}
constexpr string_span_type ensure_z() const { return gsl::ensure_z(span_); }
constexpr const_zstring_type assume_z() const noexcept { return span_.data(); }
private:
impl_type span_;
};
template <std::ptrdiff_t Max = dynamic_extent>
using zstring_span = basic_zstring_span<char, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using wzstring_span = basic_zstring_span<wchar_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using u16zstring_span = basic_zstring_span<char16_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using u32zstring_span = basic_zstring_span<char32_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using czstring_span = basic_zstring_span<const char, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cwzstring_span = basic_zstring_span<const wchar_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cu16zstring_span = basic_zstring_span<const char16_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cu32zstring_span = basic_zstring_span<const char32_t, Max>;
// operator ==
template <class CharT, std::ptrdiff_t Extent, class T,
class = std::enable_if_t<
details::is_basic_string_span<T>::value ||
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const gsl::basic_string_span<CharT, Extent>& one, const T& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>> tmp(other);
return std::equal(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <class CharT, std::ptrdiff_t Extent, class T,
class = std::enable_if_t<
!details::is_basic_string_span<T>::value &&
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const T& one, const gsl::basic_string_span<CharT, Extent>& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>> tmp(one);
return std::equal(tmp.begin(), tmp.end(), other.begin(), other.end());
}
// operator !=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator!=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one == other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator!=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one == other);
}
// operator<
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#endif
// operator <=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(other < one);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(other < one);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(other < one);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(other < one);
}
#endif
// operator>
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return other < one;
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return other < one;
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return other < one;
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return other < one;
}
#endif
// operator >=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one < other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one < other);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one < other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one < other);
}
#endif
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#endif // _MSC_VER
#endif // GSL_STRING_SPAN_H

View File

@ -208,10 +208,9 @@ void signal_generator_c::generate_codes()
{ {
if (signal_[sat].at(0) == '5') if (signal_[sat].at(0) == '5')
{ {
char signal[3]; std::array<char, 3> signal = {{'5', 'X', '\0'}};
strcpy(signal, "5X");
galileo_e5_a_code_gen_complex_sampled(sampled_code_data_[sat], signal, PRN_[sat], fs_in_, galileo_e5_a_code_gen_complex_sampled(gsl::span<gr_complex>(sampled_code_data_[sat], vector_length_), signal, PRN_[sat], fs_in_,
static_cast<int>(GALILEO_E5A_CODE_LENGTH_CHIPS) - delay_chips_[sat]); static_cast<int>(GALILEO_E5A_CODE_LENGTH_CHIPS) - delay_chips_[sat]);
//noise //noise
if (noise_flag_) if (noise_flag_)
@ -226,10 +225,9 @@ void signal_generator_c::generate_codes()
{ {
// Generate one code-period of E1B signal // Generate one code-period of E1B signal
bool cboc = true; bool cboc = true;
char signal[3]; std::array<char, 3> signal = {{'1', 'B', '\0'}};
strcpy(signal, "1B");
galileo_e1_code_gen_complex_sampled(code, signal, cboc, PRN_[sat], fs_in_, galileo_e1_code_gen_complex_sampled(gsl::span<gr_complex>(code, 64000), signal, cboc, PRN_[sat], fs_in_,
static_cast<int>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - delay_chips_[sat]); static_cast<int>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - delay_chips_[sat]);
// Obtain the desired CN0 assuming that Pn = 1. // Obtain the desired CN0 assuming that Pn = 1.
@ -251,9 +249,9 @@ void signal_generator_c::generate_codes()
// Generate E1C signal (25 code-periods, with secondary code) // Generate E1C signal (25 code-periods, with secondary code)
sampled_code_pilot_[sat] = static_cast<gr_complex *>(std::malloc(vector_length_ * sizeof(gr_complex))); sampled_code_pilot_[sat] = static_cast<gr_complex *>(std::malloc(vector_length_ * sizeof(gr_complex)));
strcpy(signal, "1C"); std::array<char, 3> signal_1C = {{'1', 'C', '\0'}};
galileo_e1_code_gen_complex_sampled(sampled_code_pilot_[sat], signal, cboc, PRN_[sat], fs_in_, galileo_e1_code_gen_complex_sampled(gsl::span<gr_complex>(sampled_code_pilot_[sat], vector_length_), signal_1C, cboc, PRN_[sat], fs_in_,
static_cast<int>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - delay_chips_[sat], true); static_cast<int>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - delay_chips_[sat], true);
// Obtain the desired CN0 assuming that Pn = 1. // Obtain the desired CN0 assuming that Pn = 1.

View File

@ -227,12 +227,12 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
for (uint32_t PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++) for (uint32_t PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++)
{ {
char data_signal[3] = "1B"; std::array<char, 3> data_signal = {'1', 'B', '\0'};
if (d_track_pilot) if (d_track_pilot)
{ {
char pilot_signal[3] = "1C"; std::array<char, 3> pilot_signal = {'1', 'C', '\0'};
galileo_e1_code_gen_sinboc11_float(ca_codes_f, pilot_signal, PRN); galileo_e1_code_gen_sinboc11_float(gsl::span<float>(ca_codes_f, static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), pilot_signal, PRN);
galileo_e1_code_gen_sinboc11_float(data_codes_f, data_signal, PRN); galileo_e1_code_gen_sinboc11_float(gsl::span<float>(data_codes_f, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA // The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++) for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)
@ -255,7 +255,7 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
} }
else else
{ {
galileo_e1_code_gen_sinboc11_float(ca_codes_f, data_signal, PRN); galileo_e1_code_gen_sinboc11_float(gsl::span<float>(ca_codes_f, static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA // The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++) for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)

View File

@ -217,7 +217,8 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
for (uint32_t PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++) for (uint32_t PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++)
{ {
galileo_e5_a_code_gen_complex_primary(aux_code, PRN, const_cast<char *>(sig_)); std::array<char, 3> sig_a = {'5', 'X', '\0'};
galileo_e5_a_code_gen_complex_primary(gsl::span<gr_complex>(aux_code, code_length_chips * code_samples_per_chip), PRN, sig_a);
if (trk_param_fpga.track_pilot) if (trk_param_fpga.track_pilot)
{ {

View File

@ -212,7 +212,7 @@ GpsL1CaDllPllTrackingFpga::GpsL1CaDllPllTrackingFpga(
d_ca_codes = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int32_t), volk_gnsssdr_get_alignment())); d_ca_codes = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++) for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++)
{ {
gps_l1_ca_code_gen_int(&d_ca_codes[(int32_t(GPS_L1_CA_CODE_LENGTH_CHIPS)) * (PRN - 1)], PRN, 0); gps_l1_ca_code_gen_int(gsl::span<int32_t>(&d_ca_codes[static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS) * (PRN - 1)], &d_ca_codes[static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS) * (PRN)]), PRN, 0);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA // The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t k = 0; k < GPS_L1_CA_CODE_LENGTH_CHIPS; k++) for (uint32_t k = 0; k < GPS_L1_CA_CODE_LENGTH_CHIPS; k++)

View File

@ -128,7 +128,7 @@ GpsL2MDllPllTrackingFpga::GpsL2MDllPllTrackingFpga(
d_ca_codes = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment())); d_ca_codes = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment()));
for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++) for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++)
{ {
gps_l2c_m_code_gen_float(ca_codes_f, PRN); gps_l2c_m_code_gen_float(gsl::span<float>(ca_codes_f, static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS)), PRN);
for (unsigned int s = 0; s < 2 * static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS); s++) for (unsigned int s = 0; s < 2 * static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS); s++)
{ {
d_ca_codes[static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * (PRN - 1) + s] = static_cast<int>(ca_codes_f[s]); d_ca_codes[static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * (PRN - 1) + s] = static_cast<int>(ca_codes_f[s]);

View File

@ -236,8 +236,8 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
{ {
if (track_pilot) if (track_pilot)
{ {
gps_l5q_code_gen_float(tracking_code, PRN); gps_l5q_code_gen_float(gsl::span<float>(tracking_code, code_length_chips), PRN);
gps_l5i_code_gen_float(data_code, PRN); gps_l5i_code_gen_float(gsl::span<float>(data_code, code_length_chips), PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA // The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < code_length_chips; s++) for (uint32_t s = 0; s < code_length_chips; s++)
@ -261,7 +261,7 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
} }
else else
{ {
gps_l5i_code_gen_float(tracking_code, PRN); gps_l5i_code_gen_float(gsl::span<float>(tracking_code, code_length_chips), PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA // The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < code_length_chips; s++) for (uint32_t s = 0; s < code_length_chips; s++)

View File

@ -63,7 +63,8 @@
#include <algorithm> // for fill_n #include <algorithm> // for fill_n
#include <cmath> // for fmod, round, floor #include <cmath> // for fmod, round, floor
#include <exception> // for exception #include <exception> // for exception
#include <iostream> // for cout, cerr #include <gsl/gsl>
#include <iostream> // for cout, cerr
#include <map> #include <map>
#include <numeric> #include <numeric>
@ -587,48 +588,52 @@ void dll_pll_veml_tracking::start_tracking()
d_carrier_phase_rate_step_rad = 0.0; d_carrier_phase_rate_step_rad = 0.0;
d_carr_ph_history.clear(); d_carr_ph_history.clear();
d_code_ph_history.clear(); d_code_ph_history.clear();
std::array<char, 3> Signal_;
std::memcpy(Signal_.data(), d_acquisition_gnss_synchro->Signal, 3);
if (systemName == "GPS" and signal_type == "1C") if (systemName == "GPS" and signal_type == "1C")
{ {
gps_l1_ca_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN, 0); gps_l1_ca_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN, 0);
} }
else if (systemName == "GPS" and signal_type == "2S") else if (systemName == "GPS" and signal_type == "2S")
{ {
gps_l2c_m_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN); gps_l2c_m_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN);
} }
else if (systemName == "GPS" and signal_type == "L5") else if (systemName == "GPS" and signal_type == "L5")
{ {
if (trk_parameters.track_pilot) if (trk_parameters.track_pilot)
{ {
gps_l5q_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN); gps_l5q_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN);
gps_l5i_code_gen_float(d_data_code, d_acquisition_gnss_synchro->PRN); gps_l5i_code_gen_float(gsl::span<float>(d_data_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN);
d_Prompt_Data[0] = gr_complex(0.0, 0.0); d_Prompt_Data[0] = gr_complex(0.0, 0.0);
correlator_data_cpu.set_local_code_and_taps(d_code_length_chips, d_data_code, d_prompt_data_shift); correlator_data_cpu.set_local_code_and_taps(d_code_length_chips, d_data_code, d_prompt_data_shift);
} }
else else
{ {
gps_l5i_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN); gps_l5i_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN);
} }
} }
else if (systemName == "Galileo" and signal_type == "1B") else if (systemName == "Galileo" and signal_type == "1B")
{ {
if (trk_parameters.track_pilot) if (trk_parameters.track_pilot)
{ {
char pilot_signal[3] = "1C"; std::array<char, 3> pilot_signal = {{'1', 'C', '\0'}};
galileo_e1_code_gen_sinboc11_float(d_tracking_code, pilot_signal, d_acquisition_gnss_synchro->PRN);
galileo_e1_code_gen_sinboc11_float(d_data_code, d_acquisition_gnss_synchro->Signal, d_acquisition_gnss_synchro->PRN); galileo_e1_code_gen_sinboc11_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), pilot_signal, d_acquisition_gnss_synchro->PRN);
galileo_e1_code_gen_sinboc11_float(gsl::span<float>(d_data_code, 2 * d_code_length_chips), Signal_, d_acquisition_gnss_synchro->PRN);
d_Prompt_Data[0] = gr_complex(0.0, 0.0); d_Prompt_Data[0] = gr_complex(0.0, 0.0);
correlator_data_cpu.set_local_code_and_taps(d_code_samples_per_chip * d_code_length_chips, d_data_code, d_prompt_data_shift); correlator_data_cpu.set_local_code_and_taps(d_code_samples_per_chip * d_code_length_chips, d_data_code, d_prompt_data_shift);
} }
else else
{ {
galileo_e1_code_gen_sinboc11_float(d_tracking_code, d_acquisition_gnss_synchro->Signal, d_acquisition_gnss_synchro->PRN); galileo_e1_code_gen_sinboc11_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), Signal_, d_acquisition_gnss_synchro->PRN);
} }
} }
else if (systemName == "Galileo" and signal_type == "5X") else if (systemName == "Galileo" and signal_type == "5X")
{ {
auto *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * d_code_length_chips, volk_gnsssdr_get_alignment())); auto *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * d_code_length_chips, volk_gnsssdr_get_alignment()));
galileo_e5_a_code_gen_complex_primary(aux_code, d_acquisition_gnss_synchro->PRN, const_cast<char *>(signal_type.c_str())); std::array<char, 3> signal_type_ = {{'5', 'X', '\0'}};
galileo_e5_a_code_gen_complex_primary(gsl::span<gr_complex>(aux_code, d_code_length_chips), d_acquisition_gnss_synchro->PRN, signal_type_);
if (trk_parameters.track_pilot) if (trk_parameters.track_pilot)
{ {
d_secondary_code_string = const_cast<std::string *>(&GALILEO_E5A_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]); d_secondary_code_string = const_cast<std::string *>(&GALILEO_E5A_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]);
@ -651,7 +656,7 @@ void dll_pll_veml_tracking::start_tracking()
} }
else if (systemName == "Beidou" and signal_type == "B1") else if (systemName == "Beidou" and signal_type == "B1")
{ {
beidou_b1i_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN, 0); beidou_b1i_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN, 0);
// Update secondary code settings for geo satellites // Update secondary code settings for geo satellites
if (d_acquisition_gnss_synchro->PRN > 0 and d_acquisition_gnss_synchro->PRN < 6) if (d_acquisition_gnss_synchro->PRN > 0 and d_acquisition_gnss_synchro->PRN < 6)
{ {
@ -691,7 +696,7 @@ void dll_pll_veml_tracking::start_tracking()
else if (systemName == "Beidou" and signal_type == "B3") else if (systemName == "Beidou" and signal_type == "B3")
{ {
beidou_b3i_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN, 0); beidou_b3i_code_gen_float(gsl::span<float>(d_tracking_code, 2 * d_code_length_chips), d_acquisition_gnss_synchro->PRN, 0);
// Update secondary code settings for geo satellites // Update secondary code settings for geo satellites
if (d_acquisition_gnss_synchro->PRN > 0 and d_acquisition_gnss_synchro->PRN < 6) if (d_acquisition_gnss_synchro->PRN > 0 and d_acquisition_gnss_synchro->PRN < 6)
{ {

View File

@ -188,10 +188,12 @@ void Galileo_E1_Tcp_Connector_Tracking_cc::start_tracking()
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
std::array<char, 3> Signal_;
std::memcpy(Signal_.data(), d_acquisition_gnss_synchro->Signal, 3);
// generate local reference ALWAYS starting at chip 1 (2 samples per chip) // generate local reference ALWAYS starting at chip 1 (2 samples per chip)
galileo_e1_code_gen_complex_sampled(d_ca_code, galileo_e1_code_gen_complex_sampled(gsl::span<gr_complex>(d_ca_code, (2 * GALILEO_E1_B_CODE_LENGTH_CHIPS)),
d_acquisition_gnss_synchro->Signal, Signal_,
false, false,
d_acquisition_gnss_synchro->PRN, d_acquisition_gnss_synchro->PRN,
2 * GALILEO_E1_CODE_CHIP_RATE_HZ, 2 * GALILEO_E1_CODE_CHIP_RATE_HZ,

View File

@ -272,7 +272,7 @@ void glonass_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l1_ca_code_gen_complex(d_ca_code, 0); glonass_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, GLONASS_L1_CA_CODE_LENGTH_CHIPS), 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -266,7 +266,7 @@ void glonass_l1_ca_dll_pll_c_aid_tracking_sc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l1_ca_code_gen_complex(d_ca_code, 0); glonass_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, GLONASS_L1_CA_CODE_LENGTH_CHIPS), 0);
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS)); volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS));
multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips); multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);

View File

@ -226,7 +226,7 @@ void Glonass_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l1_ca_code_gen_complex(d_ca_code, 0); glonass_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, GLONASS_L1_CA_CODE_LENGTH_CHIPS), 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -269,7 +269,7 @@ void glonass_l2_ca_dll_pll_c_aid_tracking_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0); glonass_l2_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS)), 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -265,7 +265,7 @@ void glonass_l2_ca_dll_pll_c_aid_tracking_sc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0); glonass_l2_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS)), 0);
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS)); volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS));
multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips); multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);

View File

@ -226,7 +226,7 @@ void Glonass_L2_Ca_Dll_Pll_Tracking_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0); glonass_l2_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS)), 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -217,7 +217,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0); gps_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS)), d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_gpu->set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips, d_n_correlator_taps); multicorrelator_gpu->set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips, d_n_correlator_taps);

View File

@ -49,6 +49,7 @@
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath> #include <cmath>
#include <exception> #include <exception>
#include <gsl/gsl>
#include <iostream> #include <iostream>
#include <memory> #include <memory>
#include <sstream> #include <sstream>
@ -320,7 +321,7 @@ void Gps_L1_Ca_Kf_Tracking_cc::start_tracking()
d_code_loop_filter.initialize(); // initialize the code filter d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_float(d_ca_code, d_acquisition_gnss_synchro->PRN, 0); gps_l1_ca_code_gen_float(gsl::span<float>(d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(float)), d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -223,7 +223,7 @@ void Gps_L1_Ca_Tcp_Connector_Tracking_cc::start_tracking()
d_carrier_doppler_hz = d_acq_carrier_doppler_hz; d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// generate local reference ALWAYS starting at chip 1 (1 sample per chip) // generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0); gps_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex)), d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++) for (int32_t n = 0; n < d_n_correlator_taps; n++)

View File

@ -33,6 +33,12 @@
#include "gps_sdr_signal_processing.h" #include "gps_sdr_signal_processing.h"
#include <chrono> #include <chrono>
#include <complex> #include <complex>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
TEST(CodeGenerationTest, CodeGenGPSL1Test) TEST(CodeGenerationTest, CodeGenGPSL1Test)
@ -48,7 +54,7 @@ TEST(CodeGenerationTest, CodeGenGPSL1Test)
for (int i = 0; i < iterations; i++) for (int i = 0; i < iterations; i++)
{ {
gps_l1_ca_code_gen_complex(_dest, _prn, _chip_shift); gps_l1_ca_code_gen_complex(gsl::span<std::complex<float>>(_dest, 1023), _prn, _chip_shift);
} }
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();
@ -77,7 +83,7 @@ TEST(CodeGenerationTest, CodeGenGPSL1SampledTest)
for (int i = 0; i < iterations; i++) for (int i = 0; i < iterations; i++)
{ {
gps_l1_ca_code_gen_complex_sampled(_dest, _prn, _fs, _chip_shift); gps_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>>(_dest, _samplesPerCode), _prn, _fs, _chip_shift);
} }
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();
@ -105,7 +111,7 @@ TEST(CodeGenerationTest, ComplexConjugateTest)
for (int i = 0; i < iterations; i++) for (int i = 0; i < iterations; i++)
{ {
complex_exp_gen_conj(_dest, _f, _fs, _samplesPerCode); complex_exp_gen_conj(gsl::span<std::complex<float>>(_dest, _samplesPerCode), _f, _fs);
} }
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();

View File

@ -34,6 +34,12 @@
#include <armadillo> #include <armadillo>
#include <chrono> #include <chrono>
#include <complex> #include <complex>
#if HAS_SPAN
#include <span>
namespace gsl = std;
#else
#include <gsl/gsl>
#endif
DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing"); DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing");
@ -120,7 +126,7 @@ TEST(ComplexCarrierTest, OwnComplexImplementation)
std::chrono::time_point<std::chrono::system_clock> start, end; std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now(); start = std::chrono::system_clock::now();
complex_exp_gen(output, _f, _fs, static_cast<unsigned int>(FLAGS_size_carrier_test)); complex_exp_gen(gsl::span<std::complex<float>>(output, static_cast<unsigned int>(FLAGS_size_carrier_test)), _f, _fs);
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start; std::chrono::duration<double> elapsed_seconds = end - start;

View File

@ -259,6 +259,7 @@ public:
Gnss_Synchro gnss_synchro_master; Gnss_Synchro gnss_synchro_master;
std::vector<Gnss_Synchro> gnss_synchro_vec; std::vector<Gnss_Synchro> gnss_synchro_vec;
size_t item_size; size_t item_size;
pthread_mutex_t mutex_obs_test = PTHREAD_MUTEX_INITIALIZER;
}; };
int HybridObservablesTestFpga::configure_generator() int HybridObservablesTestFpga::configure_generator()
@ -305,11 +306,10 @@ int HybridObservablesTestFpga::generate_signal()
} }
const size_t TEST_OBS_PAGE_SIZE = 0x10000;
const unsigned int TEST_OBS_TEST_REGISTER_TRACK_WRITEVAL = 0x55AA;
void setup_fpga_switch_obs_test(void) void setup_fpga_switch_obs_test(void)
{ {
const size_t TEST_OBS_PAGE_SIZE = 0x10000;
const unsigned int TEST_OBS_TEST_REGISTER_TRACK_WRITEVAL = 0x55AA;
int switch_device_descriptor; // driver descriptor int switch_device_descriptor; // driver descriptor
volatile unsigned* switch_map_base; // driver memory map volatile unsigned* switch_map_base; // driver memory map
@ -348,7 +348,7 @@ void setup_fpga_switch_obs_test(void)
} }
static pthread_mutex_t mutex_obs_test = PTHREAD_MUTEX_INITIALIZER; //static pthread_mutex_t mutex_obs_test = PTHREAD_MUTEX_INITIALIZER;
volatile unsigned int send_samples_start_obs_test = 0; volatile unsigned int send_samples_start_obs_test = 0;
@ -642,9 +642,9 @@ bool HybridObservablesTestFpga::acquire_signal()
{ {
std::cout << "ERROR cannot create DMA Process" << std::endl; std::cout << "ERROR cannot create DMA Process" << std::endl;
} }
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 1; send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex_obs_test);
pthread_join(thread_DMA, nullptr); pthread_join(thread_DMA, nullptr);
send_samples_start_obs_test = 0; send_samples_start_obs_test = 0;
@ -669,9 +669,9 @@ bool HybridObservablesTestFpga::acquire_signal()
msg_rx->rx_message = 0; msg_rx->rx_message = 0;
top_block->start(); top_block->start();
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 1; send_samples_start_obs_test = 1;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex_obs_test);
acquisition->reset(); // set active acquisition->reset(); // set active
@ -686,9 +686,9 @@ bool HybridObservablesTestFpga::acquire_signal()
// wait for the child DMA process to finish // wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr); pthread_join(thread_DMA, nullptr);
pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex_obs_test);
send_samples_start_obs_test = 0; send_samples_start_obs_test = 0;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&mutex_obs_test);
// the DMA sends the exact number of samples needed for the acquisition. // the DMA sends the exact number of samples needed for the acquisition.
// however because of the LPF in the GPS L1/Gal E1 acquisition, this calculation is approximate // however because of the LPF in the GPS L1/Gal E1 acquisition, this calculation is approximate

View File

@ -106,7 +106,7 @@ TEST(CpuMulticorrelatorRealCodesTest, MeasureExecutionTime)
//local code resampler on GPU //local code resampler on GPU
// generate local reference (1 sample per chip) // generate local reference (1 sample per chip)
gps_l1_ca_code_gen_float(d_ca_code, 1, 0); gps_l1_ca_code_gen_float(gsl::span<float>(d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(float)), 1, 0);
// generate inut signal // generate inut signal
std::random_device r; std::random_device r;
std::default_random_engine e1(r()); std::default_random_engine e1(r());

View File

@ -104,7 +104,7 @@ TEST(CpuMulticorrelatorTest, MeasureExecutionTime)
//local code resampler on GPU //local code resampler on GPU
// generate local reference (1 sample per chip) // generate local reference (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, 1, 0); gps_l1_ca_code_gen_complex(gsl::span<gr_complex>(d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex)), 1, 0);
// generate inut signal // generate inut signal
std::random_device r; std::random_device r;
std::default_random_engine e1(r()); std::default_random_engine e1(r());

View File

@ -248,6 +248,7 @@ public:
std::shared_ptr<InMemoryConfiguration> config; std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro; Gnss_Synchro gnss_synchro;
size_t item_size; size_t item_size;
pthread_mutex_t the_mutex = PTHREAD_MUTEX_INITIALIZER;
}; };
@ -386,12 +387,10 @@ void TrackingPullInTestFpga::configure_receiver(
} }
const size_t PAGE_SIZE = 0x10000;
const unsigned int TEST_REGISTER_TRACK_WRITEVAL = 0x55AA;
void setup_fpga_switch(void) void setup_fpga_switch(void)
{ {
const size_t PAGE_SIZE_ = 0x10000;
const unsigned int TEST_REGISTER_TRACK_WRITEVAL = 0x55AA;
int switch_device_descriptor; // driver descriptor int switch_device_descriptor; // driver descriptor
volatile unsigned* switch_map_base; // driver memory map volatile unsigned* switch_map_base; // driver memory map
@ -400,7 +399,7 @@ void setup_fpga_switch(void)
LOG(WARNING) << "Cannot open deviceio" LOG(WARNING) << "Cannot open deviceio"
<< "/dev/uio1"; << "/dev/uio1";
} }
switch_map_base = reinterpret_cast<volatile unsigned*>(mmap(nullptr, PAGE_SIZE, switch_map_base = reinterpret_cast<volatile unsigned*>(mmap(nullptr, PAGE_SIZE_,
PROT_READ | PROT_WRITE, MAP_SHARED, switch_device_descriptor, 0)); PROT_READ | PROT_WRITE, MAP_SHARED, switch_device_descriptor, 0));
if (switch_map_base == reinterpret_cast<void*>(-1)) if (switch_map_base == reinterpret_cast<void*>(-1))
@ -430,7 +429,7 @@ void setup_fpga_switch(void)
} }
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; //static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
volatile unsigned int send_samples_start = 0; volatile unsigned int send_samples_start = 0;
@ -728,9 +727,9 @@ bool TrackingPullInTestFpga::acquire_signal(int SV_ID)
{ {
std::cout << "ERROR cannot create DMA Process" << std::endl; std::cout << "ERROR cannot create DMA Process" << std::endl;
} }
pthread_mutex_lock(&mutex); pthread_mutex_lock(&the_mutex);
send_samples_start = 1; send_samples_start = 1;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&the_mutex);
pthread_join(thread_DMA, nullptr); pthread_join(thread_DMA, nullptr);
send_samples_start = 0; send_samples_start = 0;
@ -753,9 +752,9 @@ bool TrackingPullInTestFpga::acquire_signal(int SV_ID)
msg_rx->rx_message = 0; msg_rx->rx_message = 0;
top_block->start(); top_block->start();
pthread_mutex_lock(&mutex); pthread_mutex_lock(&the_mutex);
send_samples_start = 1; send_samples_start = 1;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&the_mutex);
acquisition->reset(); // set active acquisition->reset(); // set active
@ -770,9 +769,9 @@ bool TrackingPullInTestFpga::acquire_signal(int SV_ID)
// wait for the child DMA process to finish // wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr); pthread_join(thread_DMA, nullptr);
pthread_mutex_lock(&mutex); pthread_mutex_lock(&the_mutex);
send_samples_start = 0; send_samples_start = 0;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&the_mutex);
// the DMA sends the exact number of samples needed for the acquisition. // the DMA sends the exact number of samples needed for the acquisition.
// however because of the LPF in the GPS L1/Gal E1 acquisition, this calculation is approximate // however because of the LPF in the GPS L1/Gal E1 acquisition, this calculation is approximate
@ -1063,9 +1062,9 @@ TEST_F(TrackingPullInTestFpga, ValidationOfResults)
tracking->start_tracking(); tracking->start_tracking();
pthread_mutex_lock(&mutex); pthread_mutex_lock(&the_mutex);
send_samples_start = 1; send_samples_start = 1;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&the_mutex);
top_block->start(); top_block->start();
@ -1077,9 +1076,9 @@ TEST_F(TrackingPullInTestFpga, ValidationOfResults)
// reset the HW to launch the pending interrupts // reset the HW to launch the pending interrupts
acquisition->stop_acquisition(); acquisition->stop_acquisition();
pthread_mutex_lock(&mutex); pthread_mutex_lock(&the_mutex);
send_samples_start = 0; send_samples_start = 0;
pthread_mutex_unlock(&mutex); pthread_mutex_unlock(&the_mutex);
pull_in_results_v.push_back(msg_rx->rx_message != 3); //save last asynchronous tracking message in order to detect a loss of lock pull_in_results_v.push_back(msg_rx->rx_message != 3); //save last asynchronous tracking message in order to detect a loss of lock