1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-22 15:07:23 +00:00

Remove some warnings

This commit is contained in:
Carles Fernandez 2017-05-08 23:03:42 +02:00
parent 9fef3fbfe9
commit 74f08ede2f

View File

@ -73,51 +73,51 @@
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
bool gps_fpga_acquisition_8sc::init(unsigned int fft_size, unsigned int nsamples_total, long freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue)
{
float phase_step_rad_fpga;
bool gps_fpga_acquisition_8sc::init(unsigned int fft_size, unsigned int nsamples_total, long freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue)
{
float phase_step_rad_fpga;
d_phase_step_rad_vector = new float[num_doppler_bins];
d_phase_step_rad_vector = new float[num_doppler_bins];
for (int doppler_index = 0; doppler_index < num_doppler_bins; doppler_index++)
{
int doppler = -static_cast<int>(doppler_max) + doppler_step * doppler_index;
float phase_step_rad = GPS_TWO_PI * (freq + doppler) / static_cast<float>(fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_fpga = phase_step_rad/(GPS_TWO_PI/2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
if (phase_step_rad_fpga == 1.0)
{
phase_step_rad_fpga = MAX_PHASE_STEP_RAD;
}
d_phase_step_rad_vector[doppler_index] = phase_step_rad_fpga;
for (int doppler_index = 0; doppler_index < num_doppler_bins; doppler_index++)
{
int doppler = -static_cast<int>(doppler_max) + doppler_step * doppler_index;
float phase_step_rad = GPS_TWO_PI * (freq + doppler) / static_cast<float>(fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_fpga = phase_step_rad/(GPS_TWO_PI/2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
if (phase_step_rad_fpga == 1.0)
{
phase_step_rad_fpga = MAX_PHASE_STEP_RAD;
}
d_phase_step_rad_vector[doppler_index] = phase_step_rad_fpga;
}
}
// sanity check : check test register
unsigned writeval = 0x55AA;
unsigned readval;
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
printf("test register fail\n");
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
printf("test register success\n");
LOG(INFO) << "Acquisition test register sanity check success !";
}
// sanity check : check test register
unsigned writeval = 0x55AA;
unsigned readval;
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
printf("test register fail\n");
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
printf("test register success\n");
LOG(INFO) << "Acquisition test register sanity check success !";
}
d_nsamples = fft_size;
d_nsamples_total = nsamples_total;
d_select_queue = select_queue;
d_nsamples = fft_size;
d_nsamples_total = nsamples_total;
d_select_queue = select_queue;
gps_fpga_acquisition_8sc::configure_acquisition();
gps_fpga_acquisition_8sc::configure_acquisition();
return true;
}
@ -126,28 +126,28 @@
bool gps_fpga_acquisition_8sc::set_local_code(gr_complex* fft_codes)
{
unsigned int i;
float max = 0;
d_fft_codes = new lv_16sc_t[d_nsamples_total];
unsigned int i;
float max = 0;
d_fft_codes = new lv_16sc_t[d_nsamples_total];
for (i=0;i<d_nsamples_total;i++)
{
if(abs(fft_codes[i].real()) > max)
{
max = abs(fft_codes[i].real());
}
if(abs(fft_codes[i].imag()) > max)
{
max = abs(fft_codes[i].imag());
}
}
for (i=0;i<d_nsamples_total;i++)
{
if(std::abs(fft_codes[i].real()) > max)
{
max = std::abs(fft_codes[i].real());
}
if(std::abs(fft_codes[i].imag()) > max)
{
max = std::abs(fft_codes[i].imag());
}
}
for (i=0;i<d_nsamples_total;i++)
{
d_fft_codes[i] = lv_16sc_t((int) (fft_codes[i].real()*(pow(2,7) - 1)/max), (int) (fft_codes[i].imag()*(pow(2,7) - 1)/max));
}
for (i=0;i<d_nsamples_total;i++)
{
d_fft_codes[i] = lv_16sc_t((int) (fft_codes[i].real()*(pow(2,7) - 1)/max), (int) (fft_codes[i].imag()*(pow(2,7) - 1)/max));
}
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(d_fft_codes);
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(d_fft_codes);
return true;
}
@ -156,8 +156,6 @@ bool gps_fpga_acquisition_8sc::set_local_code(gr_complex* fft_codes)
gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc()
{
if ((d_fd = open(d_device_io_name, O_RDWR | O_SYNC )) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << d_device_io_name;
@ -168,17 +166,16 @@ gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc()
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
}
}
gps_fpga_acquisition_8sc::~gps_fpga_acquisition_8sc()
{
if (munmap((void*)d_map_base, PAGE_SIZE) == -1)
{
printf("Failed to unmap memory uio\n");
}
if (munmap((void*)d_map_base, PAGE_SIZE) == -1)
{
printf("Failed to unmap memory uio\n");
}
close(d_fd);
@ -187,16 +184,16 @@ gps_fpga_acquisition_8sc::~gps_fpga_acquisition_8sc()
bool gps_fpga_acquisition_8sc::free()
{
if (d_fft_codes != nullptr)
{
delete [] d_fft_codes;
d_fft_codes = nullptr;
}
if (d_phase_step_rad_vector != nullptr)
{
delete [] d_phase_step_rad_vector;
d_phase_step_rad_vector = nullptr;
}
if (d_fft_codes != nullptr)
{
delete [] d_fft_codes;
d_fft_codes = nullptr;
}
if (d_phase_step_rad_vector != nullptr)
{
delete [] d_phase_step_rad_vector;
d_phase_step_rad_vector = nullptr;
}
return true;
}
@ -204,43 +201,43 @@ bool gps_fpga_acquisition_8sc::free()
unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(unsigned writeval)
{
unsigned readval;
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
// return read value
return readval;
unsigned readval;
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
// return read value
return readval;
}
void gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
{
short int local_code;
unsigned int k, tmp, tmp2;
short int local_code;
unsigned int k, tmp, tmp2;
// clear memory address counter
d_map_base[4] = 0x10000000;
for (k = 0; k < d_nsamples_total; k++)
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
local_code = (tmp & 0xFF) | ((tmp2*256) & 0xFF00); // put together the real part and the imaginary part
d_map_base[4] = 0x0C000000 | (local_code & 0xFFFF);
}
// clear memory address counter
d_map_base[4] = 0x10000000;
for (k = 0; k < d_nsamples_total; k++)
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
local_code = (tmp & 0xFF) | ((tmp2*256) & 0xFF00); // put together the real part and the imaginary part
d_map_base[4] = 0x0C000000 | (local_code & 0xFFFF);
}
}
void gps_fpga_acquisition_8sc::run_acquisition(void)
{
// enable interrupts
int reenable = 1;
write(d_fd, (void *)&reenable, sizeof(int));
// enable interrupts
int reenable = 1;
write(d_fd, (void *)&reenable, sizeof(int));
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
int irq_count;
int irq_count;
ssize_t nb;
// wait for interrupt
nb=read(d_fd, &irq_count, sizeof(irq_count));
@ -250,8 +247,6 @@ void gps_fpga_acquisition_8sc::run_acquisition(void)
printf("Tracking_module Interrupt number %d\n", irq_count);
}
}
@ -260,51 +255,51 @@ void gps_fpga_acquisition_8sc::run_acquisition(void)
void gps_fpga_acquisition_8sc::configure_acquisition()
{
d_map_base[0] = d_select_queue;
d_map_base[1] = d_nsamples_total;
d_map_base[2] = d_nsamples;
d_map_base[0] = d_select_queue;
d_map_base[1] = d_nsamples_total;
d_map_base[2] = d_nsamples;
}
void gps_fpga_acquisition_8sc::set_phase_step(unsigned int doppler_index)
{
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
phase_step_rad_real = d_phase_step_rad_vector[doppler_index];
phase_step_rad_real = d_phase_step_rad_vector[doppler_index];
phase_step_rad_int_temp = phase_step_rad_real*4; // * 2^2
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp*(536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
d_map_base[3] = phase_step_rad_int;
phase_step_rad_int_temp = phase_step_rad_real*4; // * 2^2
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp*(536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
d_map_base[3] = phase_step_rad_int;
}
void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum)
{
unsigned readval = 0;
readval = d_map_base[0];
readval = d_map_base[1];
*initial_sample = readval;
readval = d_map_base[2];
*max_magnitude = (float) readval;
readval = d_map_base[4];
*power_sum = (float) readval;
readval = d_map_base[3];
*max_index = readval;
unsigned readval = 0;
readval = d_map_base[0];
readval = d_map_base[1];
*initial_sample = readval;
readval = d_map_base[2];
*max_magnitude = (float) readval;
readval = d_map_base[4];
*power_sum = (float) readval;
readval = d_map_base[3];
*max_index = readval;
}
void gps_fpga_acquisition_8sc::block_samples()
{
d_map_base[14] = 1; // block the samples
d_map_base[14] = 1; // block the samples
}
void gps_fpga_acquisition_8sc::unblock_samples()
{
d_map_base[14] = 0; // unblock the samples
d_map_base[14] = 0; // unblock the samples
}