1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-20 22:17:03 +00:00

Fixing bugs in extended correlator for GPS L1

This commit is contained in:
Javier Arribas 2016-03-11 18:32:56 +01:00
parent 14e109983a
commit 6e076e8143
4 changed files with 390 additions and 28 deletions

View File

@ -0,0 +1,347 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4092000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/home/javier/signals/GPS_sim1.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4092000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=gr_complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter.sampling_frequency=4092000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=8
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=1
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel0.signal=1C
Channel1.signal=1B
Channel2.signal=1B
Channel3.signal=1B
Channel4.signal=1B
Channel5.signal=1B
Channel6.signal=1B
Channel7.signal=1B
Channel8.signal=1B
Channel9.signal=1B
Channel10.signal=1B
Channel11.signal=1B
Channel12.signal=1B
Channel13.signal=1B
Channel14.signal=1B
Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=30
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=100
;######### GALILEO ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=20;
Tracking_1C.pll_bw_narrow_hz=5;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=4.0;
Tracking_1C.dll_bw_narrow_hz=1.5;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1C.fll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;######### TRACKING GALILEO CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1B.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;#decimation factor
TelemetryDecoder_1C.decimation_factor=4;
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
TelemetryDecoder_1B_factor=4;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=Hybrid_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=false
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -323,13 +323,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
Gnss_Synchro current_synchro_data = Gnss_Synchro(); Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars // process vars
double code_error_chips_Ti = 0.0;
double code_error_filt_chips = 0.0;
double code_error_filt_secs_Ti = 0.0; double code_error_filt_secs_Ti = 0.0;
double CURRENT_INTEGRATION_TIME_S; double CURRENT_INTEGRATION_TIME_S;
double CORRECTED_INTEGRATION_TIME_S; double CORRECTED_INTEGRATION_TIME_S;
double dll_code_error_secs_Ti = 0.0; double dll_code_error_secs_Ti = 0.0;
double carr_phase_error_secs_Ti = 0.0;
double old_d_rem_code_phase_samples; double old_d_rem_code_phase_samples;
if (d_enable_tracking == true) if (d_enable_tracking == true)
{ {
@ -396,6 +393,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
if (d_preamble_synchronized==false) if (d_preamble_synchronized==false)
{ {
d_preamble_synchronized=true; d_preamble_synchronized=true;
std::cout<<"dll="<<d_dll_bw_hz<<" dll_n="<<d_dll_bw_narrow_hz<<" pll="<<d_pll_bw_hz<<" pll_n="<<d_pll_bw_narrow_hz<<std::endl;
} }
current_synchro_data.symbol_integration_enabled=true; current_synchro_data.symbol_integration_enabled=true;
// UPDATE INTEGRATION TIME // UPDATE INTEGRATION TIME
@ -409,10 +407,25 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
if(d_preamble_synchronized==true) if(d_preamble_synchronized==true)
{ {
// continue extended coherent correlation // continue extended coherent correlation
d_correlation_length_samples=d_correlation_length_samples-d_rem_code_phase_integer_samples;
d_rem_code_phase_integer_samples=0;
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * d_correlation_length_samples, GPS_TWO_PI); d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * d_correlation_length_samples, GPS_TWO_PI);
d_rem_code_phase_chips = fmod(d_rem_code_phase_chips + d_code_phase_step_chips*d_correlation_length_samples,GPS_L1_CA_CODE_LENGTH_CHIPS);
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
int K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples=K_prn_samples-T_prn_samples;
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
d_rem_code_phase_samples= d_rem_code_phase_samples - K_T_prn_error_samples -dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
d_rem_code_phase_integer_samples=round(d_rem_code_phase_samples);
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
d_rem_code_phase_samples=d_rem_code_phase_samples-d_rem_code_phase_integer_samples;
//code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
//remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// disable tracking loop and inform telemetry decoder // disable tracking loop and inform telemetry decoder
enable_dll_pll=false; enable_dll_pll=false;
}else{ }else{
@ -435,12 +448,12 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
{ {
// ################## PLL ########################################################## // ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti] // Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
// Carrier discriminator filter // Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME; //d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
// Input [s/Ti] -> output [Hz] // Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S); d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti] // PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ; d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
// code Doppler frequency update // code Doppler frequency update
@ -448,10 +461,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
// ################## DLL ########################################################## // ################## DLL ##########################################################
// DLL discriminator // DLL discriminator
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
// Code discriminator filter // Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second] d_code_error_filt_chips = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
// DLL code error estimation [s/Ti] // DLL code error estimation [s/Ti]
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti; dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
@ -645,19 +658,19 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
//PLL commands //PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands //DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test // CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes) // AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples; tmp_double = d_code_phase_step_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples); tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));

View File

@ -160,6 +160,9 @@ private:
double d_acc_carrier_phase_cycles; double d_acc_carrier_phase_cycles;
double d_code_phase_samples; double d_code_phase_samples;
double d_pll_to_dll_assist_secs_Ti; double d_pll_to_dll_assist_secs_Ti;
double d_code_error_chips_Ti;
double d_code_error_filt_chips;
double d_carr_phase_error_secs_Ti;
// symbol history to detect bit transition // symbol history to detect bit transition
std::deque<gr_complex> d_E_history; std::deque<gr_complex> d_E_history;

View File

@ -85,20 +85,19 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
return true; return true;
} }
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips) void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
{ {
float local_code_chip_index; int local_code_chip_index;
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++) for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
{ {
for (int n = 0; n < correlator_length_samples; n++) for (int n = 0; n < correlator_length_samples; n++)
{ {
// resample code for current tap // resample code for current tap
local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips); local_code_chip_index = floor(code_phase_step_chips*static_cast<float>(n) + d_shifts_chips[current_correlator_tap]- rem_code_phase_chips);
local_code_chip_index = local_code_chip_index % d_code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative! //Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips; if (local_code_chip_index < 0) local_code_chip_index += d_code_length_chips;
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))]; d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[local_code_chip_index];
} }
} }
} }