mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-20 22:17:03 +00:00
Fixing bugs in extended correlator for GPS L1
This commit is contained in:
parent
14e109983a
commit
6e076e8143
347
conf/gnss-sdr_Hybrid_gr_complex.conf
Normal file
347
conf/gnss-sdr_Hybrid_gr_complex.conf
Normal file
@ -0,0 +1,347 @@
|
|||||||
|
; Default configuration file
|
||||||
|
; You can define your own receiver and invoke it by doing
|
||||||
|
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
|
||||||
|
;
|
||||||
|
|
||||||
|
[GNSS-SDR]
|
||||||
|
|
||||||
|
;######### GLOBAL OPTIONS ##################
|
||||||
|
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||||
|
GNSS-SDR.internal_fs_hz=4092000
|
||||||
|
|
||||||
|
;######### CONTROL_THREAD CONFIG ############
|
||||||
|
ControlThread.wait_for_flowgraph=false
|
||||||
|
;######### SIGNAL_SOURCE CONFIG ############
|
||||||
|
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||||
|
SignalSource.implementation=File_Signal_Source
|
||||||
|
|
||||||
|
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||||
|
SignalSource.filename=/home/javier/signals/GPS_sim1.dat
|
||||||
|
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
|
SignalSource.item_type=gr_complex
|
||||||
|
|
||||||
|
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||||
|
SignalSource.sampling_frequency=4092000
|
||||||
|
|
||||||
|
;#freq: RF front-end center frequency in [Hz]
|
||||||
|
SignalSource.freq=1575420000
|
||||||
|
|
||||||
|
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
||||||
|
SignalSource.samples=0
|
||||||
|
|
||||||
|
;#repeat: Repeat the processing file. Disable this option in this version
|
||||||
|
SignalSource.repeat=false
|
||||||
|
|
||||||
|
;#dump: Dump the Signal source data to a file. Disable this option in this version
|
||||||
|
SignalSource.dump=false
|
||||||
|
|
||||||
|
SignalSource.dump_filename=../data/signal_source.dat
|
||||||
|
|
||||||
|
|
||||||
|
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
|
||||||
|
; it helps to not overload the CPU, but the processing time will be longer.
|
||||||
|
SignalSource.enable_throttle_control=false
|
||||||
|
|
||||||
|
|
||||||
|
;######### SIGNAL_CONDITIONER CONFIG ############
|
||||||
|
;## It holds blocks to change data type, filter and resample input data.
|
||||||
|
|
||||||
|
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
||||||
|
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||||
|
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||||
|
SignalConditioner.implementation=Pass_Through
|
||||||
|
|
||||||
|
;######### DATA_TYPE_ADAPTER CONFIG ############
|
||||||
|
;## Changes the type of input data.
|
||||||
|
;#implementation: [Pass_Through] disables this block
|
||||||
|
DataTypeAdapter.implementation=Pass_Through
|
||||||
|
DataTypeAdapter.item_type=gr_complex
|
||||||
|
|
||||||
|
;######### INPUT_FILTER CONFIG ############
|
||||||
|
;## Filter the input data. Can be combined with frequency translation for IF signals
|
||||||
|
|
||||||
|
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
||||||
|
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
|
||||||
|
;# that shifts IF down to zero Hz.
|
||||||
|
|
||||||
|
InputFilter.implementation=Pass_Through
|
||||||
|
|
||||||
|
;#dump: Dump the filtered data to a file.
|
||||||
|
InputFilter.dump=false
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename.
|
||||||
|
InputFilter.dump_filename=../data/input_filter.dat
|
||||||
|
|
||||||
|
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
||||||
|
;#These options are based on parameters of gnuradio's function: gr_remez.
|
||||||
|
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
|
||||||
|
;#reponse given a set of band edges, the desired reponse on those bands,
|
||||||
|
;#and the weight given to the error in those bands.
|
||||||
|
|
||||||
|
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
||||||
|
InputFilter.input_item_type=gr_complex
|
||||||
|
|
||||||
|
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
|
||||||
|
InputFilter.output_item_type=gr_complex
|
||||||
|
|
||||||
|
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
|
||||||
|
InputFilter.taps_item_type=float
|
||||||
|
|
||||||
|
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
|
||||||
|
InputFilter.number_of_taps=5
|
||||||
|
|
||||||
|
;#number_of _bands: Number of frequency bands in the filter.
|
||||||
|
InputFilter.number_of_bands=2
|
||||||
|
|
||||||
|
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
|
||||||
|
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
|
||||||
|
;#The number of band_begin and band_end elements must match the number of bands
|
||||||
|
|
||||||
|
InputFilter.band1_begin=0.0
|
||||||
|
InputFilter.band1_end=0.45
|
||||||
|
InputFilter.band2_begin=0.55
|
||||||
|
InputFilter.band2_end=1.0
|
||||||
|
|
||||||
|
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
|
||||||
|
;#The number of ampl_begin and ampl_end elements must match the number of bands
|
||||||
|
|
||||||
|
InputFilter.ampl1_begin=1.0
|
||||||
|
InputFilter.ampl1_end=1.0
|
||||||
|
InputFilter.ampl2_begin=0.0
|
||||||
|
InputFilter.ampl2_end=0.0
|
||||||
|
|
||||||
|
;#band_error: weighting applied to each band (usually 1).
|
||||||
|
;#The number of band_error elements must match the number of bands
|
||||||
|
InputFilter.band1_error=1.0
|
||||||
|
InputFilter.band2_error=1.0
|
||||||
|
|
||||||
|
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
|
||||||
|
InputFilter.filter_type=bandpass
|
||||||
|
|
||||||
|
;#grid_density: determines how accurately the filter will be constructed.
|
||||||
|
;The minimum value is 16; higher values are slower to compute the filter.
|
||||||
|
InputFilter.grid_density=16
|
||||||
|
|
||||||
|
;# Original sampling frequency stored in the signal file
|
||||||
|
InputFilter.sampling_frequency=4092000
|
||||||
|
|
||||||
|
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||||
|
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||||
|
|
||||||
|
InputFilter.IF=5499998.47412109
|
||||||
|
|
||||||
|
;# Decimation factor after the frequency tranaslating block
|
||||||
|
InputFilter.decimation_factor=8
|
||||||
|
|
||||||
|
|
||||||
|
;######### RESAMPLER CONFIG ############
|
||||||
|
;## Resamples the input data.
|
||||||
|
|
||||||
|
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
||||||
|
;#[Pass_Through] disables this block
|
||||||
|
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
||||||
|
Resampler.implementation=Pass_Through
|
||||||
|
|
||||||
|
;######### CHANNELS GLOBAL CONFIG ############
|
||||||
|
;#count: Number of available GPS satellite channels.
|
||||||
|
Channels_1C.count=1
|
||||||
|
;#count: Number of available Galileo satellite channels.
|
||||||
|
Channels_1B.count=0
|
||||||
|
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||||
|
Channels.in_acquisition=1
|
||||||
|
|
||||||
|
;#signal:
|
||||||
|
;# "1C" GPS L1 C/A
|
||||||
|
;# "2S" GPS L2 L2C (M)
|
||||||
|
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
|
||||||
|
;# "5X" GALILEO E5a I+Q
|
||||||
|
|
||||||
|
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
||||||
|
Channel0.signal=1C
|
||||||
|
Channel1.signal=1B
|
||||||
|
Channel2.signal=1B
|
||||||
|
Channel3.signal=1B
|
||||||
|
Channel4.signal=1B
|
||||||
|
Channel5.signal=1B
|
||||||
|
Channel6.signal=1B
|
||||||
|
Channel7.signal=1B
|
||||||
|
Channel8.signal=1B
|
||||||
|
Channel9.signal=1B
|
||||||
|
Channel10.signal=1B
|
||||||
|
Channel11.signal=1B
|
||||||
|
Channel12.signal=1B
|
||||||
|
Channel13.signal=1B
|
||||||
|
Channel14.signal=1B
|
||||||
|
Channel15.signal=1B
|
||||||
|
|
||||||
|
|
||||||
|
;######### GPS ACQUISITION CONFIG ############
|
||||||
|
|
||||||
|
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||||
|
Acquisition_1C.dump=false
|
||||||
|
;#filename: Log path and filename
|
||||||
|
Acquisition_1C.dump_filename=./acq_dump.dat
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
|
Acquisition_1C.item_type=gr_complex
|
||||||
|
;#if: Signal intermediate frequency in [Hz]
|
||||||
|
Acquisition_1C.if=0
|
||||||
|
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||||
|
Acquisition_1C.sampled_ms=1
|
||||||
|
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||||
|
Acquisition_1C.use_CFAR_algorithm=false;
|
||||||
|
;#threshold: Acquisition threshold
|
||||||
|
Acquisition_1C.threshold=30
|
||||||
|
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
;Acquisition_1C.pfa=0.01
|
||||||
|
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||||
|
Acquisition_1C.doppler_max=5000
|
||||||
|
;#doppler_max: Doppler step in the grid search [Hz]
|
||||||
|
Acquisition_1C.doppler_step=100
|
||||||
|
|
||||||
|
|
||||||
|
;######### GALILEO ACQUISITION CONFIG ############
|
||||||
|
|
||||||
|
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||||
|
Acquisition_1B.dump=false
|
||||||
|
;#filename: Log path and filename
|
||||||
|
Acquisition_1B.dump_filename=./acq_dump.dat
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||||
|
Acquisition_1B.item_type=gr_complex
|
||||||
|
;#if: Signal intermediate frequency in [Hz]
|
||||||
|
Acquisition_1B.if=0
|
||||||
|
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||||
|
Acquisition_1B.sampled_ms=4
|
||||||
|
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
|
||||||
|
;#threshold: Acquisition threshold
|
||||||
|
;Acquisition_1B.threshold=0
|
||||||
|
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||||
|
Acquisition_1B.pfa=0.0000002
|
||||||
|
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||||
|
Acquisition_1B.doppler_max=15000
|
||||||
|
;#doppler_max: Doppler step in the grid search [Hz]
|
||||||
|
Acquisition_1B.doppler_step=125
|
||||||
|
|
||||||
|
;######### TRACKING GPS CONFIG ############
|
||||||
|
|
||||||
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||||
|
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
|
Tracking_1C.item_type=gr_complex
|
||||||
|
|
||||||
|
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||||
|
Tracking_1C.if=0
|
||||||
|
|
||||||
|
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||||
|
Tracking_1C.dump=true
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||||
|
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||||
|
|
||||||
|
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1C.pll_bw_hz=20;
|
||||||
|
Tracking_1C.pll_bw_narrow_hz=5;
|
||||||
|
|
||||||
|
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1C.dll_bw_hz=4.0;
|
||||||
|
|
||||||
|
Tracking_1C.dll_bw_narrow_hz=1.5;
|
||||||
|
|
||||||
|
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1C.fll_bw_hz=2.0;
|
||||||
|
|
||||||
|
;#order: PLL/DLL loop filter order [2] or [3]
|
||||||
|
Tracking_1C.order=3;
|
||||||
|
|
||||||
|
;######### TRACKING GALILEO CONFIG ############
|
||||||
|
|
||||||
|
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||||
|
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
|
||||||
|
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||||
|
Tracking_1B.item_type=gr_complex
|
||||||
|
|
||||||
|
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||||
|
Tracking_1B.if=0
|
||||||
|
|
||||||
|
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||||
|
Tracking_1B.dump=false
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||||
|
Tracking_1B.dump_filename=../data/veml_tracking_ch_
|
||||||
|
|
||||||
|
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.pll_bw_hz=15.0;
|
||||||
|
|
||||||
|
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.dll_bw_hz=2.0;
|
||||||
|
|
||||||
|
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||||
|
Tracking_1B.fll_bw_hz=10.0;
|
||||||
|
|
||||||
|
;#order: PLL/DLL loop filter order [2] or [3]
|
||||||
|
Tracking_1B.order=3;
|
||||||
|
|
||||||
|
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
|
||||||
|
Tracking_1B.early_late_space_chips=0.15;
|
||||||
|
|
||||||
|
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
|
||||||
|
Tracking_1B.very_early_late_space_chips=0.6;
|
||||||
|
|
||||||
|
|
||||||
|
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||||
|
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
|
||||||
|
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||||
|
TelemetryDecoder_1C.dump=false
|
||||||
|
;#decimation factor
|
||||||
|
TelemetryDecoder_1C.decimation_factor=4;
|
||||||
|
|
||||||
|
;######### TELEMETRY DECODER GALILEO CONFIG ############
|
||||||
|
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
|
||||||
|
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
|
||||||
|
TelemetryDecoder_1B.dump=false
|
||||||
|
TelemetryDecoder_1B_factor=4;
|
||||||
|
|
||||||
|
;######### OBSERVABLES CONFIG ############
|
||||||
|
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
||||||
|
Observables.implementation=Hybrid_Observables
|
||||||
|
|
||||||
|
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
||||||
|
Observables.dump=false
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename.
|
||||||
|
Observables.dump_filename=./observables.dat
|
||||||
|
|
||||||
|
|
||||||
|
;######### PVT CONFIG ############
|
||||||
|
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
||||||
|
PVT.implementation=Hybrid_PVT
|
||||||
|
|
||||||
|
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
||||||
|
PVT.averaging_depth=10
|
||||||
|
|
||||||
|
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
||||||
|
PVT.flag_averaging=false
|
||||||
|
|
||||||
|
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
||||||
|
PVT.output_rate_ms=10;
|
||||||
|
|
||||||
|
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
||||||
|
PVT.display_rate_ms=500;
|
||||||
|
|
||||||
|
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||||
|
PVT.dump=false
|
||||||
|
|
||||||
|
PVT.flag_rtcm_server=false
|
||||||
|
PVT.flag_rtcm_tty_port=false
|
||||||
|
PVT.rtcm_dump_devname=/dev/pts/1
|
||||||
|
|
||||||
|
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||||
|
PVT.dump_filename=./PVT
|
||||||
|
|
||||||
|
;######### OUTPUT_FILTER CONFIG ############
|
||||||
|
;# Receiver output filter: Leave this block disabled in this version
|
||||||
|
OutputFilter.implementation=Null_Sink_Output_Filter
|
||||||
|
OutputFilter.filename=data/gnss-sdr.dat
|
||||||
|
OutputFilter.item_type=gr_complex
|
@ -323,13 +323,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||||
|
|
||||||
// process vars
|
// process vars
|
||||||
double code_error_chips_Ti = 0.0;
|
|
||||||
double code_error_filt_chips = 0.0;
|
|
||||||
double code_error_filt_secs_Ti = 0.0;
|
double code_error_filt_secs_Ti = 0.0;
|
||||||
double CURRENT_INTEGRATION_TIME_S;
|
double CURRENT_INTEGRATION_TIME_S;
|
||||||
double CORRECTED_INTEGRATION_TIME_S;
|
double CORRECTED_INTEGRATION_TIME_S;
|
||||||
double dll_code_error_secs_Ti = 0.0;
|
double dll_code_error_secs_Ti = 0.0;
|
||||||
double carr_phase_error_secs_Ti = 0.0;
|
|
||||||
double old_d_rem_code_phase_samples;
|
double old_d_rem_code_phase_samples;
|
||||||
if (d_enable_tracking == true)
|
if (d_enable_tracking == true)
|
||||||
{
|
{
|
||||||
@ -396,6 +393,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
if (d_preamble_synchronized==false)
|
if (d_preamble_synchronized==false)
|
||||||
{
|
{
|
||||||
d_preamble_synchronized=true;
|
d_preamble_synchronized=true;
|
||||||
|
std::cout<<"dll="<<d_dll_bw_hz<<" dll_n="<<d_dll_bw_narrow_hz<<" pll="<<d_pll_bw_hz<<" pll_n="<<d_pll_bw_narrow_hz<<std::endl;
|
||||||
}
|
}
|
||||||
current_synchro_data.symbol_integration_enabled=true;
|
current_synchro_data.symbol_integration_enabled=true;
|
||||||
// UPDATE INTEGRATION TIME
|
// UPDATE INTEGRATION TIME
|
||||||
@ -409,10 +407,25 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
if(d_preamble_synchronized==true)
|
if(d_preamble_synchronized==true)
|
||||||
{
|
{
|
||||||
// continue extended coherent correlation
|
// continue extended coherent correlation
|
||||||
d_correlation_length_samples=d_correlation_length_samples-d_rem_code_phase_integer_samples;
|
|
||||||
d_rem_code_phase_integer_samples=0;
|
|
||||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * d_correlation_length_samples, GPS_TWO_PI);
|
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * d_correlation_length_samples, GPS_TWO_PI);
|
||||||
d_rem_code_phase_chips = fmod(d_rem_code_phase_chips + d_code_phase_step_chips*d_correlation_length_samples,GPS_L1_CA_CODE_LENGTH_CHIPS);
|
|
||||||
|
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
|
||||||
|
double T_chip_seconds = 1 / d_code_freq_chips;
|
||||||
|
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||||
|
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||||
|
int K_prn_samples = round(T_prn_samples);
|
||||||
|
double K_T_prn_error_samples=K_prn_samples-T_prn_samples;
|
||||||
|
|
||||||
|
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
|
||||||
|
d_rem_code_phase_samples= d_rem_code_phase_samples - K_T_prn_error_samples -dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||||
|
d_rem_code_phase_integer_samples=round(d_rem_code_phase_samples);
|
||||||
|
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; //round to a discrete samples
|
||||||
|
d_rem_code_phase_samples=d_rem_code_phase_samples-d_rem_code_phase_integer_samples;
|
||||||
|
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||||
|
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||||
|
//remnant code phase [chips]
|
||||||
|
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||||
|
|
||||||
// disable tracking loop and inform telemetry decoder
|
// disable tracking loop and inform telemetry decoder
|
||||||
enable_dll_pll=false;
|
enable_dll_pll=false;
|
||||||
}else{
|
}else{
|
||||||
@ -435,12 +448,12 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
{
|
{
|
||||||
// ################## PLL ##########################################################
|
// ################## PLL ##########################################################
|
||||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||||
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; //prompt output
|
||||||
// Carrier discriminator filter
|
// Carrier discriminator filter
|
||||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||||
// Input [s/Ti] -> output [Hz]
|
// Input [s/Ti] -> output [Hz]
|
||||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||||
// PLL to DLL assistance [Secs/Ti]
|
// PLL to DLL assistance [Secs/Ti]
|
||||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||||
// code Doppler frequency update
|
// code Doppler frequency update
|
||||||
@ -448,10 +461,10 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
|
|
||||||
// ################## DLL ##########################################################
|
// ################## DLL ##########################################################
|
||||||
// DLL discriminator
|
// DLL discriminator
|
||||||
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
|
||||||
// Code discriminator filter
|
// Code discriminator filter
|
||||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
d_code_error_filt_chips = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||||
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
code_error_filt_secs_Ti = d_code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
||||||
// DLL code error estimation [s/Ti]
|
// DLL code error estimation [s/Ti]
|
||||||
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
|
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
|
||||||
|
|
||||||
@ -645,19 +658,19 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||||
|
|
||||||
//PLL commands
|
//PLL commands
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||||
|
|
||||||
//DLL commands
|
//DLL commands
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips), sizeof(double));
|
||||||
|
|
||||||
// CN0 and carrier lock test
|
// CN0 and carrier lock test
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||||
|
|
||||||
// AUX vars (for debug purposes)
|
// AUX vars (for debug purposes)
|
||||||
tmp_double = d_rem_code_phase_samples;
|
tmp_double = d_code_phase_step_chips;
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||||
|
@ -160,6 +160,9 @@ private:
|
|||||||
double d_acc_carrier_phase_cycles;
|
double d_acc_carrier_phase_cycles;
|
||||||
double d_code_phase_samples;
|
double d_code_phase_samples;
|
||||||
double d_pll_to_dll_assist_secs_Ti;
|
double d_pll_to_dll_assist_secs_Ti;
|
||||||
|
double d_code_error_chips_Ti;
|
||||||
|
double d_code_error_filt_chips;
|
||||||
|
double d_carr_phase_error_secs_Ti;
|
||||||
|
|
||||||
// symbol history to detect bit transition
|
// symbol history to detect bit transition
|
||||||
std::deque<gr_complex> d_E_history;
|
std::deque<gr_complex> d_E_history;
|
||||||
|
@ -85,20 +85,19 @@ bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
|
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
|
||||||
{
|
{
|
||||||
float local_code_chip_index;
|
int local_code_chip_index;
|
||||||
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
||||||
{
|
{
|
||||||
for (int n = 0; n < correlator_length_samples; n++)
|
for (int n = 0; n < correlator_length_samples; n++)
|
||||||
{
|
{
|
||||||
// resample code for current tap
|
// resample code for current tap
|
||||||
local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
|
local_code_chip_index = floor(code_phase_step_chips*static_cast<float>(n) + d_shifts_chips[current_correlator_tap]- rem_code_phase_chips);
|
||||||
|
local_code_chip_index = local_code_chip_index % d_code_length_chips;
|
||||||
//Take into account that in multitap correlators, the shifts can be negative!
|
//Take into account that in multitap correlators, the shifts can be negative!
|
||||||
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
|
if (local_code_chip_index < 0) local_code_chip_index += d_code_length_chips;
|
||||||
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
|
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[local_code_chip_index];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user