1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-19 16:24:58 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-06-29 22:40:52 +02:00
commit 692bc9da36
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
25 changed files with 970 additions and 40 deletions

View File

@ -104,6 +104,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -106,6 +106,7 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -104,6 +104,7 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -103,6 +103,7 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -104,6 +104,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
acq_parameters.samples_per_ms = code_length_;
acq_parameters.samples_per_code = code_length_;
acq_parameters.it_size = item_size_;
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -103,6 +103,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", true);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -102,6 +102,7 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";

View File

@ -682,9 +682,12 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
gr::thread::scoped_lock lk(d_setlock);
if (!d_active or d_worker_active)
{
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += d_fft_size * ninput_items[0];
consume_each(ninput_items[0]);
}
if (d_step_two)
{
d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
@ -708,8 +711,11 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
d_input_power = 0.0;
d_test_statistics = 0.0;
d_state = 1;
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
}
break;
}

View File

@ -50,4 +50,5 @@ Acq_Conf::Acq_Conf()
dump_filename = "";
dump_channel = 0;
it_size = sizeof(char);
blocking_on_standby = false;
}

View File

@ -51,6 +51,7 @@ public:
bool use_CFAR_algorithm_flag;
bool dump;
bool blocking;
bool blocking_on_standby; // enable it only for unit testing to avoid sample consume on idle status
bool make_2_steps;
std::string dump_filename;
unsigned int dump_channel;

View File

@ -117,6 +117,13 @@ void InMemoryConfiguration::set_property(std::string property_name, std::string
}
void InMemoryConfiguration::supersede_property(std::string property_name, std::string value)
{
properties_.erase(property_name);
properties_.insert(std::make_pair(property_name, value));
}
bool InMemoryConfiguration::is_present(std::string property_name)
{
return (properties_.find(property_name) != properties_.end());

View File

@ -63,6 +63,7 @@ public:
float property(std::string property_name, float default_value);
double property(std::string property_name, double default_value);
void set_property(std::string property_name, std::string value);
void supersede_property(std::string property_name, std::string value);
bool is_present(std::string property_name);
private:

View File

@ -47,7 +47,7 @@
#ifndef GNSS_SDR_GNUPLOT_I_H_
#define GNSS_SDR_GNUPLOT_I_H_
#include <gflags/gflags.h>
#include <iostream>
#include <string>
#include <vector>
@ -61,6 +61,7 @@
#include <list> // for std::list
#include <sys/stat.h>
DEFINE_bool(show_plots, true, "Show plots on screen. Disable for non-interactive testing.");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__TOS_WIN__)
//defined for 32 and 64-bit environments

View File

@ -32,6 +32,7 @@
#define GNSS_SDR_SIGNAL_GENERATOR_FLAGS_H_
#include <gflags/gflags.h>
#include <limits>
DEFINE_bool(disable_generator, false, "Disable the signal generator (a external signal file must be available for the test)");
DEFINE_string(generator_binary, std::string(SW_GENERATOR_BIN), "Path of software-defined signal generator binary");
@ -44,5 +45,6 @@ DEFINE_string(filename_raw_data, "signal_out.bin", "Filename of output raw data
DEFINE_int32(fs_gen_sps, 2600000, "Sampling frequency [sps]");
DEFINE_int32(test_satellite_PRN, 1, "PRN of the satellite under test (must be visible during the observation time)");
DEFINE_int32(test_satellite_PRN2, 2, "PRN of the satellite under test (must be visible during the observation time)");
DEFINE_double(CN0_dBHz, std::numeric_limits<double>::infinity(), "Enable noise generator and set the CN0 [dB-Hz]");
#endif

View File

@ -620,7 +620,7 @@ void ObsSystemTest::compute_pseudorange_error(
}
g1.savetops("Pseudorange_error_" + signal_name);
g1.savetopdf("Pseudorange_error_" + signal_name, 18);
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{
@ -711,7 +711,7 @@ void ObsSystemTest::compute_carrierphase_error(
}
g1.savetops("Carrier_phase_error_" + signal_name);
g1.savetopdf("Carrier_phase_error_" + signal_name, 18);
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{
@ -802,7 +802,7 @@ void ObsSystemTest::compute_doppler_error(
}
g1.savetops("Doppler_error_" + signal_name);
g1.savetopdf("Doppler_error_" + signal_name, 18);
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{

View File

@ -336,7 +336,7 @@ int StaticPositionSystemTest::configure_receiver()
config->set_property("Channel.signal", "1C");
// Set Acquisition
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
@ -347,6 +347,9 @@ int StaticPositionSystemTest::configure_receiver()
config->set_property("Acquisition_1C.tong_init_val", std::to_string(tong_init_val));
config->set_property("Acquisition_1C.tong_max_val", std::to_string(tong_max_val));
config->set_property("Acquisition_1C.tong_max_dwells", std::to_string(tong_max_dwells));
config->set_property("Acquisition_1C.dump", "false");
config->set_property("Acquisition_1C.dump_filename", "./acquisition");
config->set_property("Acquisition_1C.dump_channel", "1");
// Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
@ -632,7 +635,7 @@ void StaticPositionSystemTest::print_results(const std::vector<double>& east,
g1.savetops("Position_test_2D");
g1.savetopdf("Position_test_2D", 18);
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("3D precision");
@ -653,7 +656,7 @@ void StaticPositionSystemTest::print_results(const std::vector<double>& east,
g2.savetops("Position_test_3D");
g2.savetopdf("Position_test_3D");
g2.showonscreen(); // window output
if (FLAGS_show_plots) g2.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{

View File

@ -145,6 +145,7 @@ DECLARE_string(log_dir);
#if EXTRA_TESTS
#include "unit-tests/signal-processing-blocks/acquisition/gps_l2_m_pcps_acquisition_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_acq_performance_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l2_m_dll_pll_tracking_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_test.cc"
#include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_pull-in_test.cc"

View File

@ -124,7 +124,7 @@ TEST(FFTLengthTest, MeasureExecutionTime)
g1.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g1.savetops("FFT_execution_times_extended");
g1.savetopdf("FFT_execution_times_extended", 18);
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
Gnuplot g2("linespoints");
g2.set_title("FFT execution times for different lengths (up to 2^{14}=16384)");
@ -136,7 +136,7 @@ TEST(FFTLengthTest, MeasureExecutionTime)
g2.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g2.savetops("FFT_execution_times");
g2.savetopdf("FFT_execution_times", 18);
g2.showonscreen(); // window output
if (FLAGS_show_plots) g2.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{

View File

@ -209,7 +209,7 @@ void GalileoE1PcpsAmbiguousAcquisitionTest::plot_grid()
g1.savetops("Galileo_E1_acq_grid");
g1.savetopdf("Galileo_E1_acq_grid");
g1.showonscreen();
if (FLAGS_show_plots) g1.showonscreen();
}
catch (const GnuplotException& ge)
{

View File

@ -0,0 +1,900 @@
/*!
* \file gps_l1_acq_performance_test.cc
* \brief This class implements an acquisition performance test
* \author Carles Fernandez-Prades, 2018. cfernandez(at)cttc.cat
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "test_flags.h"
#include "signal_generator_flags.h"
#include "tracking_true_obs_reader.h"
#include "true_observables_reader.h"
#include "display.h"
#include "gnuplot_i.h"
#include <boost/filesystem.hpp>
#include <gnuradio/top_block.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
DEFINE_string(config_file_ptest, std::string(""), "File containing alternative configuration parameters for the acquisition performance test.");
DEFINE_string(acq_test_input_file, std::string(""), "File containing raw signal data, must be in int8_t format. The signal generator will not be used.");
DEFINE_int32(acq_test_doppler_max, 5000, "Maximum Doppler, in Hz");
DEFINE_int32(acq_test_doppler_step, 125, "Doppler step, in Hz.");
DEFINE_int32(acq_test_coherent_time_ms, 1, "Acquisition coherent time, in ms");
DEFINE_int32(acq_test_max_dwells, 1, "Number of non-coherent integrations");
DEFINE_bool(acq_test_use_CFAR_algorithm, true, "Use CFAR algorithm");
DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag");
DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration, in s");
DEFINE_int32(acq_test_num_meas, 0, "Number of measurements per run. 0 means the complete file.");
DEFINE_double(acq_test_cn0_init, 33.0, "Initial CN0, in dBHz.");
DEFINE_double(acq_test_cn0_final, 45.0, "Final CN0, in dBHz.");
DEFINE_double(acq_test_cn0_step, 3.0, "CN0 step, in dB.");
DEFINE_double(acq_test_threshold_init, 11.0, "Initial acquisition threshold");
DEFINE_double(acq_test_threshold_final, 16.0, "Final acquisition threshold");
DEFINE_double(acq_test_threshold_step, 1.0, "Acquisition threshold step");
DEFINE_double(acq_test_pfa_init, 1e-5, "Set initial threshold via probability of false alarm. Disable with -1.0");
DEFINE_int32(acq_test_PRN, 1, "PRN number of a present satellite");
DEFINE_int32(acq_test_fake_PRN, 33, "PRN number of a non-present satellite");
DEFINE_int32(acq_test_iterations, 1, "Number of iterations (same signal, different noise realization)");
DEFINE_bool(plot_acq_test, false, "Plots results with gnuplot, if available");
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class AcqPerfTest_msg_rx;
typedef boost::shared_ptr<AcqPerfTest_msg_rx> AcqPerfTest_msg_rx_sptr;
AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue<int>& queue);
class AcqPerfTest_msg_rx : public gr::block
{
private:
friend AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue<int>& queue);
void msg_handler_events(pmt::pmt_t msg);
AcqPerfTest_msg_rx(concurrent_queue<int>& queue);
concurrent_queue<int>& channel_internal_queue;
public:
int rx_message;
~AcqPerfTest_msg_rx();
};
AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue<int>& queue)
{
return AcqPerfTest_msg_rx_sptr(new AcqPerfTest_msg_rx(queue));
}
void AcqPerfTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
long int message = pmt::to_long(msg);
rx_message = message;
channel_internal_queue.push(rx_message);
}
catch (boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
AcqPerfTest_msg_rx::AcqPerfTest_msg_rx(concurrent_queue<int>& queue) : gr::block("AcqPerfTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue)
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&AcqPerfTest_msg_rx::msg_handler_events, this, _1));
rx_message = 0;
}
AcqPerfTest_msg_rx::~AcqPerfTest_msg_rx()
{
}
// -----------------------------------------
class AcquisitionPerformanceTest : public ::testing::Test
{
protected:
AcquisitionPerformanceTest()
{
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
doppler_max = static_cast<unsigned int>(FLAGS_acq_test_doppler_max);
doppler_step = static_cast<unsigned int>(FLAGS_acq_test_doppler_step);
stop = false;
if (FLAGS_acq_test_input_file.empty())
{
cn0_vector.push_back(FLAGS_acq_test_cn0_init);
double aux = FLAGS_acq_test_cn0_init + FLAGS_acq_test_cn0_step;
while (aux <= FLAGS_acq_test_cn0_final)
{
cn0_vector.push_back(aux);
aux = aux + FLAGS_acq_test_cn0_step;
}
}
else
{
cn0_vector = {0.0};
}
init();
if (FLAGS_acq_test_pfa_init > 0.0)
{
pfa_vector.push_back(FLAGS_acq_test_pfa_init);
float aux = 1.0;
while ((FLAGS_acq_test_pfa_init * std::pow(10, aux)) < 1)
{
pfa_vector.push_back(FLAGS_acq_test_pfa_init * std::pow(10, aux));
aux = aux + 1.0;
}
pfa_vector.push_back(1.0);
}
else
{
float aux = static_cast<float>(FLAGS_acq_test_threshold_init);
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(FLAGS_acq_test_threshold_step);
while (aux <= static_cast<float>(FLAGS_acq_test_threshold_final))
{
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(FLAGS_acq_test_threshold_step);
}
}
num_thresholds = pfa_vector.size();
int aux2 = ((generated_signal_duration_s * 1000 - FLAGS_acq_test_coherent_time_ms) / FLAGS_acq_test_coherent_time_ms);
if ((FLAGS_acq_test_num_meas > 0) and (FLAGS_acq_test_num_meas < aux2))
{
num_of_measurements = static_cast<unsigned int>(FLAGS_acq_test_num_meas);
}
else
{
num_of_measurements = static_cast<unsigned int>(aux2);
}
Pd.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++) Pd[i].reserve(num_thresholds);
Pfa.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++) Pfa[i].reserve(num_thresholds);
Pd_correct.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++) Pd_correct[i].reserve(num_thresholds);
}
~AcquisitionPerformanceTest()
{
}
std::vector<double> cn0_vector;
std::vector<float> pfa_vector;
int N_iterations = FLAGS_acq_test_iterations;
void init();
int configure_generator(double cn0);
int generate_signal();
int configure_receiver(double cn0, float pfa, unsigned int iter);
void start_queue();
void wait_message();
void process_message();
void stop_queue();
int run_receiver();
int count_executions(const std::string& basename, unsigned int sat);
void check_results();
void plot_results();
concurrent_queue<int> channel_internal_queue;
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
std::shared_ptr<GpsL1CaPcpsAcquisition> acquisition;
std::shared_ptr<InMemoryConfiguration> config;
std::shared_ptr<FileConfiguration> config_f;
Gnss_Synchro gnss_synchro;
size_t item_size;
unsigned int doppler_max;
unsigned int doppler_step;
bool stop;
int message;
boost::thread ch_thread;
std::string implementation = "GPS_L1_CA_PCPS_Acquisition";
const double baseband_sampling_freq = static_cast<double>(FLAGS_fs_gen_sps);
const int coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
const int in_acquisition = 1;
const int dump_channel = 0;
int generated_signal_duration_s = FLAGS_acq_test_signal_duration_s;
unsigned int num_of_measurements;
unsigned int measurement_counter = 0;
unsigned int observed_satellite = FLAGS_acq_test_PRN;
std::string path_str = "./acq-perf-test";
int num_thresholds;
std::vector<std::vector<float>> Pd;
std::vector<std::vector<float>> Pfa;
std::vector<std::vector<float>> Pd_correct;
private:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string p6;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
double compute_stdev_precision(const std::vector<double>& vec);
double compute_stdev_accuracy(const std::vector<double>& vec, double ref);
};
void AcquisitionPerformanceTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = observed_satellite;
message = 0;
measurement_counter = 0;
}
void AcquisitionPerformanceTest::start_queue()
{
stop = false;
ch_thread = boost::thread(&AcquisitionPerformanceTest::wait_message, this);
}
void AcquisitionPerformanceTest::wait_message()
{
while (!stop)
{
channel_internal_queue.wait_and_pop(message);
process_message();
}
}
void AcquisitionPerformanceTest::process_message()
{
measurement_counter++;
acquisition->reset();
acquisition->set_state(1);
std::cout << "Progress: " << round(static_cast<float>(measurement_counter) / static_cast<float>(num_of_measurements) * 100.0) << "% \r" << std::flush;
if (measurement_counter == num_of_measurements)
{
stop_queue();
top_block->stop();
}
}
void AcquisitionPerformanceTest::stop_queue()
{
stop = true;
}
int AcquisitionPerformanceTest::configure_generator(double cn0)
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(std::min(generated_signal_duration_s * 10, 3000));
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(cn0);
return 0;
}
int AcquisitionPerformanceTest::generate_signal()
{
pid_t wait_result;
int child_status;
std::cout << "Generating signal for " << p6 << "..." << std::endl;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], NULL};
int pid;
if ((pid = fork()) == -1)
perror("fork error");
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv error." << std::endl;
std::terminate();
}
wait_result = waitpid(pid, &child_status, 0);
if (wait_result == -1) perror("waitpid error");
return 0;
}
int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsigned int iter)
{
if (FLAGS_config_file_ptest.empty())
{
config = std::make_shared<InMemoryConfiguration>();
const int sampling_rate_internal = baseband_sampling_freq;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal));
// Set Acquisition
config->set_property("Acquisition_1C.implementation", implementation);
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.threshold", std::to_string(pfa));
//if (FLAGS_acq_test_pfa_init > 0.0) config->supersede_property("Acquisition_1C.pfa", std::to_string(pfa));
if (FLAGS_acq_test_pfa_init > 0.0)
{
config->supersede_property("Acquisition_1C.pfa", std::to_string(pfa));
}
if (FLAGS_acq_test_use_CFAR_algorithm)
{
config->set_property("Acquisition_1C.use_CFAR_algorithm", "true");
}
else
{
config->set_property("Acquisition_1C.use_CFAR_algorithm", "false");
}
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
if (FLAGS_acq_test_bit_transition_flag)
{
config->set_property("Acquisition_1C.bit_transition_flag", "true");
}
else
{
config->set_property("Acquisition_1C.bit_transition_flag", "false");
}
config->set_property("Acquisition_1C.max_dwells", std::to_string(FLAGS_acq_test_max_dwells));
config->set_property("Acquisition_1C.repeat_satellite", "true");
config->set_property("Acquisition_1C.blocking", "true");
config->set_property("Acquisition_1C.make_two_steps", "false");
config->set_property("Acquisition_1C.second_nbins", std::to_string(4));
config->set_property("Acquisition_1C.second_doppler_step", std::to_string(125));
config->set_property("Acquisition_1C.dump", "true");
std::string dump_file = path_str + std::string("/acquisition_") + std::to_string(cn0) + "_" + std::to_string(iter) + "_" + std::to_string(pfa);
config->set_property("Acquisition_1C.dump_filename", dump_file);
config->set_property("Acquisition_1C.dump_channel", std::to_string(dump_channel));
config->set_property("Acquisition_1C.blocking_on_standby", "true");
config_f = 0;
}
else
{
config_f = std::make_shared<FileConfiguration>(FLAGS_config_file_ptest);
config = 0;
}
return 0;
}
int AcquisitionPerformanceTest::run_receiver()
{
std::string file;
if (FLAGS_acq_test_input_file.empty())
{
file = "./" + filename_raw_data;
}
else
{
file = FLAGS_acq_test_input_file;
}
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
top_block = gr::make_top_block("Acquisition test");
boost::shared_ptr<AcqPerfTest_msg_rx> msg_rx = AcqPerfTest_msg_rx_make(channel_internal_queue);
queue = gr::msg_queue::make(0);
gnss_synchro = Gnss_Synchro();
init();
int nsamples = floor(config->property("GNSS-SDR.internal_fs_sps", 2000000) * generated_signal_duration_s);
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
acquisition->set_gnss_synchro(&gnss_synchro);
acquisition->set_channel(0);
acquisition->set_local_code();
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
acquisition->init();
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
start_queue();
top_block->run(); // Start threads and wait
#ifdef OLD_BOOST
ch_thread.timed_join(boost::posix_time::seconds(1));
#endif
#ifndef OLD_BOOST
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
#endif
return 0;
}
int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat)
{
FILE* fp;
std::string argum2 = std::string("/usr/bin/find ") + path_str + std::string(" -maxdepth 1 -name ") + basename.substr(path_str.length() + 1, basename.length() - path_str.length()) + std::string("* | grep sat_") + std::to_string(sat) + std::string(" | wc -l");
char buffer[1024];
fp = popen(&argum2[0], "r");
int num_executions = 1;
if (fp == NULL)
{
std::cout << "Failed to run command: " << argum2 << std::endl;
return 0;
}
while (fgets(buffer, sizeof(buffer), fp) != NULL)
{
std::string aux = std::string(buffer);
EXPECT_EQ(aux.empty(), false);
num_executions = std::stoi(aux);
}
pclose(fp);
return num_executions;
}
void AcquisitionPerformanceTest::plot_results()
{
if (FLAGS_plot_acq_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("linespoints");
g1.cmd("set font \"Times,18\"");
g1.set_title("Receiver Operating Characteristic for GPS L1 C/A acquisition");
g1.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition_1C.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition_1C.max_dwells", 1)) + " \" at screen 0.12, 0.83 font \"Times,16\"");
g1.cmd("set logscale x");
g1.cmd("set yrange [0:1]");
g1.cmd("set xrange[0.0001:1]");
g1.cmd("set grid mxtics");
g1.cmd("set grid ytics");
g1.set_xlabel("Pfa");
g1.set_ylabel("Pd");
g1.set_grid();
g1.cmd("show grid");
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
std::vector<float> Pd_i;
std::vector<float> Pfa_i;
for (int k = 0; k < num_thresholds; k++)
{
Pd_i.push_back(Pd[i][k]);
Pfa_i.push_back(Pfa[i][k]);
}
g1.plot_xy(Pfa_i, Pd_i, "CN0 = " + std::to_string(static_cast<int>(cn0_vector[i])) + " dBHz");
}
g1.set_legend();
g1.savetops("ROC");
g1.savetopdf("ROC", 18);
if (FLAGS_show_plots) g1.showonscreen(); // window output
Gnuplot g2("linespoints");
g2.cmd("set font \"Times,18\"");
g2.set_title("Receiver Operating Characteristic for GPS L1 C/A valid acquisition");
g2.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition_1C.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition_1C.max_dwells", 1)) + " \" at screen 0.12, 0.83 font \"Times,16\"");
g2.cmd("set logscale x");
g2.cmd("set yrange [0:1]");
g2.cmd("set xrange[0.0001:1]");
g2.cmd("set grid mxtics");
g2.cmd("set grid ytics");
g2.set_xlabel("Pfa");
g2.set_ylabel("Valid Pd");
g2.set_grid();
g2.cmd("show grid");
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
std::vector<float> Pd_i_correct;
std::vector<float> Pfa_i;
for (int k = 0; k < num_thresholds; k++)
{
Pd_i_correct.push_back(Pd_correct[i][k]);
Pfa_i.push_back(Pfa[i][k]);
}
g2.plot_xy(Pfa_i, Pd_i_correct, "CN0 = " + std::to_string(static_cast<int>(cn0_vector[i])) + " dBHz");
}
g2.set_legend();
g2.savetops("ROC-valid-detection");
g2.savetopdf("ROC-valid-detection", 18);
if (FLAGS_show_plots) g2.showonscreen(); // window output
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}
TEST_F(AcquisitionPerformanceTest, ROC)
{
tracking_true_obs_reader true_trk_data;
if (boost::filesystem::exists(path_str))
{
boost::filesystem::remove_all(path_str);
}
boost::system::error_code ec;
ASSERT_TRUE(boost::filesystem::create_directory(path_str, ec)) << "Could not create the " << path_str << " folder.";
unsigned int cn0_index = 0;
for (std::vector<double>::const_iterator it = cn0_vector.cbegin(); it != cn0_vector.cend(); ++it)
{
std::vector<double> meas_Pd_;
std::vector<double> meas_Pd_correct_;
std::vector<double> meas_Pfa_;
if (FLAGS_acq_test_input_file.empty()) std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl;
// Do N_iterations of the experiment
for (int pfa_iter = 0; pfa_iter < static_cast<int>(pfa_vector.size()); pfa_iter++)
{
if (FLAGS_acq_test_pfa_init > 0.0)
{
std::cout << "Setting threshold for Pfa = " << pfa_vector[pfa_iter] << std::endl;
}
else
{
std::cout << "Setting threshold to " << pfa_vector[pfa_iter] << std::endl;
}
// Configure the signal generator
if (FLAGS_acq_test_input_file.empty()) configure_generator(*it);
for (int iter = 0; iter < N_iterations; iter++)
{
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_acq_test_input_file.empty()) generate_signal();
for (unsigned k = 0; k < 2; k++)
{
if (k == 0)
{
observed_satellite = FLAGS_acq_test_PRN;
}
else
{
observed_satellite = FLAGS_acq_test_fake_PRN;
}
init();
// Configure the receiver
configure_receiver(*it, pfa_vector[pfa_iter], iter);
// Run it
run_receiver();
// count executions
std::string basename = path_str + std::string("/acquisition_") + std::to_string(*it) + "_" + std::to_string(iter) + "_" + std::to_string(pfa_vector[pfa_iter]) + "_" + gnss_synchro.System + "_1C";
int num_executions = count_executions(basename, observed_satellite);
// Read measured data
int ch = config->property("Acquisition_1C.dump_channel", 0);
arma::vec meas_timestamp_s = arma::zeros(num_executions, 1);
arma::vec meas_doppler = arma::zeros(num_executions, 1);
arma::vec positive_acq = arma::zeros(num_executions, 1);
arma::vec meas_acq_delay_chips = arma::zeros(num_executions, 1);
double coh_time_ms = config->property("Acquisition_1C.coherent_integration_time_ms", 1);
std::cout << "Num executions: " << num_executions << std::endl;
for (int execution = 1; execution <= num_executions; execution++)
{
acquisition_dump_reader acq_dump(basename, observed_satellite, config->property("Acquisition_1C.doppler_max", 0), config->property("Acquisition_1C.doppler_step", 0), config->property("GNSS-SDR.internal_fs_sps", 0) * GPS_L1_CA_CODE_PERIOD * static_cast<double>(coh_time_ms), ch, execution);
acq_dump.read_binary_acq();
if (acq_dump.positive_acq)
{
//std::cout << "Meas acq_delay_samples: " << acq_dump.acq_delay_samples << " chips: " << acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS) << std::endl;
meas_timestamp_s(execution - 1) = acq_dump.sample_counter / baseband_sampling_freq;
meas_doppler(execution - 1) = acq_dump.acq_doppler_hz;
meas_acq_delay_chips(execution - 1) = acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS);
positive_acq(execution - 1) = acq_dump.positive_acq;
}
else
{
//std::cout << "Failed acquisition." << std::endl;
meas_timestamp_s(execution - 1) = arma::datum::inf;
meas_doppler(execution - 1) = arma::datum::inf;
meas_acq_delay_chips(execution - 1) = arma::datum::inf;
positive_acq(execution - 1) = acq_dump.positive_acq;
}
}
// Read reference data
std::string true_trk_file = std::string("./gps_l1_ca_obs_prn");
true_trk_file.append(std::to_string(observed_satellite));
true_trk_file.append(".dat");
true_trk_data.close_obs_file();
true_trk_data.open_obs_file(true_trk_file);
// load the true values
long int n_true_epochs = true_trk_data.num_epochs();
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
long int epoch_counter = 0;
int num_clean_executions = 0;
while (true_trk_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_trk_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_trk_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_trk_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_trk_data.tow;
epoch_counter++;
//std::cout << "True PRN_Delay chips = " << GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips << " at " << true_trk_data.signal_timestamp_s << std::endl;
}
// Process results
arma::vec clean_doppler_estimation_error;
arma::vec clean_delay_estimation_error;
if (epoch_counter > 2)
{
arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1);
arma::vec true_interpolated_prn_delay_chips = arma::zeros(num_executions, 1);
interp1(true_timestamp_s, true_Doppler_Hz, meas_timestamp_s, true_interpolated_doppler);
interp1(true_timestamp_s, true_prn_delay_chips, meas_timestamp_s, true_interpolated_prn_delay_chips);
arma::vec doppler_estimation_error = true_interpolated_doppler - meas_doppler;
arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD)); // compensate 1 sample delay
// Cut measurements without reference
for (int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{
num_clean_executions++;
}
}
clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1);
clean_delay_estimation_error = arma::zeros(num_clean_executions, 1);
num_clean_executions = 0;
for (int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{
clean_doppler_estimation_error(num_clean_executions) = doppler_estimation_error(i);
clean_delay_estimation_error(num_clean_executions) = delay_estimation_error(i);
num_clean_executions++;
}
}
/* std::cout << "Doppler estimation error [Hz]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << doppler_estimation_error(i) << " ";
}
std::cout << std::endl;
std::cout << "Delay estimation error [chips]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << delay_estimation_error(i) << " ";
}
std::cout << std::endl; */
}
if (k == 0)
{
double detected = arma::accu(positive_acq);
double computed_Pd = detected / static_cast<double>(num_executions);
if (num_executions > 0)
{
meas_Pd_.push_back(computed_Pd);
}
else
{
meas_Pd_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLACK << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? computed_Pd : 0.0) << TEXT_RESET << std::endl;
}
if (num_clean_executions > 0)
{
arma::vec correct_acq = arma::zeros(num_executions, 1);
double correctly_detected = 0.0;
for (int i = 0; i < num_clean_executions - 1; i++)
{
if (abs(clean_delay_estimation_error(i)) < 0.5 and abs(clean_doppler_estimation_error(i)) < static_cast<float>(config->property("Acquisition_1C.doppler_step", 1)) / 2.0)
{
correctly_detected = correctly_detected + 1.0;
}
}
double computed_Pd_correct = correctly_detected / static_cast<double>(num_clean_executions);
meas_Pd_correct_.push_back(computed_Pd_correct);
std::cout << TEXT_BOLD_BLACK << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << computed_Pd_correct << TEXT_RESET << std::endl;
}
else
{
//std::cout << "No reference data has been found. Maybe a non-present satellite?" << num_executions << std::endl;
if (k == 1)
{
double wrongly_detected = arma::accu(positive_acq);
double computed_Pfa = wrongly_detected / static_cast<double>(num_executions);
if (num_executions > 0)
{
meas_Pfa_.push_back(computed_Pfa);
}
else
{
meas_Pfa_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLACK << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? computed_Pfa : 0.0) << TEXT_RESET << std::endl;
}
}
true_trk_data.restart();
}
}
true_trk_data.close_obs_file();
float sum_pd = static_cast<float>(std::accumulate(meas_Pd_.begin(), meas_Pd_.end(), 0.0));
float sum_pd_correct = static_cast<float>(std::accumulate(meas_Pd_correct_.begin(), meas_Pd_correct_.end(), 0.0));
float sum_pfa = static_cast<float>(std::accumulate(meas_Pfa_.begin(), meas_Pfa_.end(), 0.0));
if (meas_Pd_.size() > 0 and meas_Pfa_.size() > 0)
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
if (meas_Pd_.size() > 0)
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
}
else
{
Pd[cn0_index][pfa_iter] = 0.0;
}
if (meas_Pfa_.size() > 0)
{
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
Pfa[cn0_index][pfa_iter] = 0.0;
}
}
if (meas_Pd_correct_.size() > 0)
{
Pd_correct[cn0_index][pfa_iter] = sum_pd_correct / static_cast<float>(meas_Pd_correct_.size());
}
else
{
Pd_correct[cn0_index][pfa_iter] = 0.0;
}
meas_Pd_.clear();
meas_Pfa_.clear();
meas_Pd_correct_.clear();
}
cn0_index++;
}
// Compute results
unsigned int aux_index = 0;
for (std::vector<double>::const_iterator it = cn0_vector.cbegin(); it != cn0_vector.cend(); ++it)
{
std::cout << "Results for CN0 = " << *it << " dBHz:" << std::endl;
std::cout << "Pd = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pd[aux_index][pfa_iter] << " ";
}
std::cout << std::endl;
std::cout << "Pd_correct = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pd_correct[aux_index][pfa_iter] << " ";
}
std::cout << std::endl;
std::cout << "Pfa = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pfa[aux_index][pfa_iter] << " ";
}
std::cout << std::endl;
aux_index++;
}
plot_results();
}

View File

@ -210,7 +210,7 @@ void GpsL1CaPcpsAcquisitionTest::plot_grid()
g1.savetops("GPS_L1_acq_grid");
g1.savetopdf("GPS_L1_acq_grid");
g1.showonscreen();
if (FLAGS_show_plots) g1.showonscreen();
}
catch (const GnuplotException &ge)
{

View File

@ -213,7 +213,7 @@ void GpsL2MPcpsAcquisitionTest::plot_grid()
g1.savetops("GPS_L2CM_acq_grid");
g1.savetopdf("GPS_L2CM_acq_grid");
g1.showonscreen();
if (FLAGS_show_plots) g1.showonscreen();
}
catch (const GnuplotException &ge)
{

View File

@ -293,7 +293,7 @@ void GpsL1CATelemetryDecoderTest::check_results(arma::vec& true_time_s,
//2. RMSE
//arma::vec err = meas_value - true_value_interp + 0.001;
arma::vec err = meas_value - true_value_interp - 0.001;
arma::vec err = meas_value - true_value_interp; // - 0.001;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));

View File

@ -482,7 +482,7 @@ TEST_F(GpsL1CADllPllTrackingPullInTest, ValidationOfResults)
if (FLAGS_plot_detail_level >= 2)
{
Gnuplot g1("linespoints");
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
@ -496,7 +496,7 @@ TEST_F(GpsL1CADllPllTrackingPullInTest, ValidationOfResults)
//g1.savetopdf("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)), 18);
Gnuplot g2("points");
g2.showonscreen(); // window output
if (FLAGS_show_plots) g2.showonscreen(); // window output
g2.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz Constellation " + "PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
@ -519,7 +519,7 @@ TEST_F(GpsL1CADllPllTrackingPullInTest, ValidationOfResults)
g3.set_legend();
//g3.savetops("CN0_output");
//g3.savetopdf("CN0_output", 18);
g3.showonscreen(); // window output
if (FLAGS_show_plots) g3.showonscreen(); // window output
}
}
catch (const GnuplotException& ge)
@ -568,6 +568,6 @@ TEST_F(GpsL1CADllPllTrackingPullInTest, ValidationOfResults)
g4.set_legend();
g4.savetops("trk_pull_in_grid_" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))));
g4.savetopdf("trk_pull_in_grid_" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))), 12);
g4.showonscreen(); // window output
if (FLAGS_show_plots) g4.showonscreen(); // window output
}
}

View File

@ -795,7 +795,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
Gnuplot g1("linespoints");
g1.showonscreen(); // window output
if (FLAGS_show_plots) g1.showonscreen(); // window output
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
@ -809,7 +809,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
g1.savetopdf("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)), 18);
}
Gnuplot g2("points");
g2.showonscreen(); // window output
if (FLAGS_show_plots) g2.showonscreen(); // window output
g2.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
@ -840,7 +840,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
g3.set_legend();
g3.savetops("CN0_output");
g3.savetopdf("CN0_output", 18);
g3.showonscreen(); // window output
if (FLAGS_show_plots) g3.showonscreen(); // window output
}
//PLOT ERROR FIGURES (only if it is used the signal generator)
@ -849,7 +849,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
if (FLAGS_plot_detail_level >= 1)
{
Gnuplot g5("points");
g5.showonscreen(); // window output
if (FLAGS_show_plots) g5.showonscreen(); // window output
g5.set_title("Code delay error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5.set_grid();
g5.set_xlabel("Time [s]");
@ -874,7 +874,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
Gnuplot g6("points");
g6.showonscreen(); // window output
if (FLAGS_show_plots) g6.showonscreen(); // window output
g6.set_title("Accumulated carrier phase error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g6.set_grid();
g6.set_xlabel("Time [s]");
@ -898,7 +898,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
g6.savetopdf("Carrier_phase_error_output", 18);
Gnuplot g4("points");
g4.showonscreen(); // window output
if (FLAGS_show_plots) g4.showonscreen(); // window output
g4.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values_sweep_copy.at(config_idx).size(); current_cn0_idx++)
@ -942,7 +942,7 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
//plot metrics
Gnuplot g7("linespoints");
g7.showonscreen(); // window output
if (FLAGS_show_plots) g7.showonscreen(); // window output
g7.set_title("Doppler error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g7.set_grid();
g7.set_xlabel("CN0 [dB-Hz]");