mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 12:10:34 +00:00
Make code more readable
This commit is contained in:
parent
1dda344e46
commit
648956ea65
@ -127,34 +127,29 @@ gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<gr_complex*>(volk_gnsssdr_malloc(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
d_ca_code = static_cast<gr_complex*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
|
||||
d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(
|
||||
d_n_correlator_taps * sizeof(lv_16sc_t),
|
||||
d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(lv_16sc_t),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
|
||||
}
|
||||
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(
|
||||
d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
// create multicorrelator class
|
||||
multicorrelator_fpga_8sc = std::make_shared < fpga_multicorrelator_8sc
|
||||
> (d_n_correlator_taps, device_name, device_base);
|
||||
multicorrelator_fpga_8sc = std::make_shared <fpga_multicorrelator_8sc>(d_n_correlator_taps, device_name, device_base);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
@ -217,55 +212,41 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter)
|
||||
- static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking ="
|
||||
<< acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
||||
// Doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz)
|
||||
/ GPS_L1_FREQ_HZ;
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
T_chip_mod_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_correlation_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
/ GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod(
|
||||
(d_acq_code_phase_samples
|
||||
+ T_prn_diff_seconds * N_prn_diff
|
||||
* static_cast<double>(d_fs_in)),
|
||||
T_prn_true_samples);
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples
|
||||
+ corrected_acq_phase_samples;
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples
|
||||
- corrected_acq_phase_samples;
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator
|
||||
@ -273,12 +254,9 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
||||
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code,
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
multicorrelator_fpga_8sc->set_local_code_and_taps(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc,
|
||||
d_local_code_shift_chips);
|
||||
multicorrelator_fpga_8sc->set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0, 0);
|
||||
@ -320,15 +298,30 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::~gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc()
|
||||
{
|
||||
if (d_dump_file.is_open())
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.close();
|
||||
|
||||
}
|
||||
catch(const std::exception & ex)
|
||||
{
|
||||
LOG(WARNING)<< "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
try
|
||||
{
|
||||
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||
volk_gnsssdr_free(d_ca_code);
|
||||
volk_gnsssdr_free(d_ca_code_16sc);
|
||||
volk_gnsssdr_free(d_correlator_outs_16sc);
|
||||
|
||||
delete[] d_Prompt_buffer;
|
||||
multicorrelator_fpga_8sc->free();
|
||||
}
|
||||
catch(const std::exception & ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -360,39 +353,27 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
{
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter
|
||||
- d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples =
|
||||
d_correlation_length_samples
|
||||
- fmod(
|
||||
static_cast<double>(acq_to_trk_delay_samples),
|
||||
static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(
|
||||
d_acq_code_phase_samples
|
||||
+ acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + samples_offset;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod( static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
|
||||
d_sample_counter += samples_offset; // count for the processed samples
|
||||
d_pull_in = false;
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad
|
||||
* samples_offset / GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_phase_rads =
|
||||
d_acc_carrier_phase_cycles * GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz;
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
//consume_each(samples_offset); // shift input to perform alignment with local replica
|
||||
multicorrelator_fpga_8sc->set_initial_sample(
|
||||
samples_offset);
|
||||
multicorrelator_fpga_8sc->set_initial_sample(samples_offset);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
multicorrelator_fpga_8sc->set_output_vectors(
|
||||
d_correlator_outs_16sc);
|
||||
multicorrelator_fpga_8sc->set_output_vectors(d_correlator_outs_16sc);
|
||||
|
||||
multicorrelator_fpga_8sc->Carrier_wipeoff_multicorrelator_resampler(
|
||||
d_rem_carrier_phase_rad, d_carrier_phase_step_rad,
|
||||
d_rem_code_phase_chips, d_code_phase_step_chips,
|
||||
@ -414,14 +395,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
bool enable_dll_pll;
|
||||
if (d_enable_extended_integration == true)
|
||||
{
|
||||
long int symbol_diff = round(
|
||||
1000.0
|
||||
* ((static_cast<double>(d_sample_counter)
|
||||
+ d_rem_code_phase_samples)
|
||||
/ static_cast<double>(d_fs_in)
|
||||
- d_preamble_timestamp_s));
|
||||
if (symbol_diff > 0
|
||||
and symbol_diff % d_extend_correlation_ms == 0)
|
||||
long int symbol_diff = round(1000.0 * ((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in) - d_preamble_timestamp_s));
|
||||
if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0)
|
||||
{
|
||||
// compute coherent integration and enable tracking loop
|
||||
// perform coherent integration using correlator output history
|
||||
@ -431,27 +406,21 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
d_correlator_outs_16sc[2] = lv_cmake(0, 0);
|
||||
for (int n = 0; n < d_extend_correlation_ms; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[0] += d_E_history.at(
|
||||
n);
|
||||
d_correlator_outs_16sc[1] += d_P_history.at(
|
||||
n);
|
||||
d_correlator_outs_16sc[2] += d_L_history.at(
|
||||
n);
|
||||
d_correlator_outs_16sc[0] += d_E_history.at(n);
|
||||
d_correlator_outs_16sc[1] += d_P_history.at(n);
|
||||
d_correlator_outs_16sc[2] += d_L_history.at(n);
|
||||
}
|
||||
|
||||
if (d_preamble_synchronized == false)
|
||||
{
|
||||
d_code_loop_filter.set_DLL_BW(
|
||||
d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_params(10.0,
|
||||
d_pll_bw_narrow_hz, 2);
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz, 2);
|
||||
d_preamble_synchronized = true;
|
||||
std::cout << "Enabled "
|
||||
<< d_extend_correlation_ms
|
||||
<< " [ms] extended correlator for CH "
|
||||
<< d_channel << " : Satellite "
|
||||
<< Gnss_Satellite(systemName[sys],
|
||||
d_acquisition_gnss_synchro->PRN)
|
||||
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< " pll_bw = " << d_pll_bw_hz
|
||||
<< " [Hz], pll_narrow_bw = "
|
||||
<< d_pll_bw_narrow_hz << " [Hz]"
|
||||
@ -462,9 +431,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
<< std::endl;
|
||||
}
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_extend_correlation_ms)
|
||||
* GPS_L1_CA_CODE_PERIOD;
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GPS_L1_CA_CODE_PERIOD;
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
else
|
||||
@ -473,49 +440,25 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
{
|
||||
// continue extended coherent correlation
|
||||
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
|
||||
double T_chip_seconds = 1.0
|
||||
/ d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds
|
||||
* GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
double T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
int K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples = K_prn_samples
|
||||
- T_prn_samples;
|
||||
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||
|
||||
d_rem_code_phase_samples =
|
||||
d_rem_code_phase_samples
|
||||
- K_T_prn_error_samples;
|
||||
d_rem_code_phase_integer_samples = round(
|
||||
d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples
|
||||
+ d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples =
|
||||
d_rem_code_phase_samples
|
||||
- d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
|
||||
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||
// code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
// remnant code phase [chips]
|
||||
d_rem_code_phase_chips =
|
||||
d_rem_code_phase_samples
|
||||
* (d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in));
|
||||
d_rem_carrier_phase_rad =
|
||||
fmod(
|
||||
d_rem_carrier_phase_rad
|
||||
+ d_carrier_phase_step_rad
|
||||
* static_cast<double>(d_correlation_length_samples),
|
||||
GPS_TWO_PI);
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GPS_TWO_PI);
|
||||
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S =
|
||||
(static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in));
|
||||
d_acc_carrier_phase_cycles -=
|
||||
d_carrier_phase_step_rad
|
||||
* d_correlation_length_samples
|
||||
/ GPS_TWO_PI;
|
||||
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
|
||||
|
||||
// disable tracking loop and inform telemetry decoder
|
||||
enable_dll_pll = false;
|
||||
@ -524,9 +467,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
{
|
||||
// perform basic (1ms) correlation
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
}
|
||||
@ -534,9 +475,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
else
|
||||
{
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
|
||||
@ -544,26 +483,16 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
{
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(
|
||||
std::complex<float>(
|
||||
d_correlator_outs_16sc[1].real(),
|
||||
d_correlator_outs_16sc[1].imag()))
|
||||
/ GPS_TWO_PI; //prompt output
|
||||
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag())) / GPS_TWO_PI; //prompt output
|
||||
|
||||
// Carrier discriminator filter
|
||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||
// Input [s/Ti] -> output [Hz]
|
||||
d_carrier_doppler_hz =
|
||||
d_carrier_loop_filter.get_carrier_error(0.0,
|
||||
d_carr_phase_error_secs_Ti,
|
||||
CURRENT_INTEGRATION_TIME_S);
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz
|
||||
* CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
// code Doppler frequency update
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ
|
||||
+ ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ)
|
||||
/ GPS_L1_FREQ_HZ);
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
@ -575,70 +504,44 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
d_correlator_outs_16sc[2].real(),
|
||||
d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late
|
||||
// Code discriminator filter
|
||||
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(
|
||||
d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
|
||||
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s
|
||||
* CURRENT_INTEGRATION_TIME_S;
|
||||
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti
|
||||
/ d_code_freq_chips; // [s/Ti]
|
||||
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
|
||||
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
|
||||
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
double T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds
|
||||
* GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
double K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples = K_prn_samples
|
||||
- T_prn_samples;
|
||||
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples
|
||||
- K_T_prn_error_samples
|
||||
+ code_error_filt_secs_Ti
|
||||
* static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
|
||||
d_rem_code_phase_integer_samples = round(
|
||||
d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples
|
||||
+ d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples
|
||||
- d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
|
||||
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples+ d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad
|
||||
* d_correlation_length_samples / GPS_TWO_PI;
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S =
|
||||
(static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in));
|
||||
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(
|
||||
d_rem_carrier_phase_rad
|
||||
+ GPS_TWO_PI * d_carrier_doppler_hz
|
||||
* CORRECTED_INTEGRATION_TIME_S,
|
||||
GPS_TWO_PI);
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips =
|
||||
d_rem_code_phase_samples
|
||||
* (d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in));
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] =
|
||||
lv_cmake(
|
||||
static_cast<float>(d_correlator_outs_16sc[1].real()),
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()),
|
||||
static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
@ -646,15 +549,11 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer,
|
||||
CN0_ESTIMATION_SAMPLES, d_fs_in,
|
||||
GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(
|
||||
d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test
|
||||
< d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
@ -665,39 +564,28 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
d_carrier_lock_fail_counter--;
|
||||
}
|
||||
}
|
||||
if (d_carrier_lock_fail_counter
|
||||
> MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel "
|
||||
<< d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel "
|
||||
<< d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"),
|
||||
pmt::from_long(3)); //3 -> loss of lock
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
multicorrelator_fpga_8sc->unlock_channel();
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples =
|
||||
d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI
|
||||
* d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz;
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
if (d_preamble_synchronized == true)
|
||||
{
|
||||
current_synchro_data.correlation_length_ms =
|
||||
d_extend_correlation_ms;
|
||||
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -706,18 +594,12 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
}
|
||||
else
|
||||
{
|
||||
current_synchro_data.Prompt_I =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples =
|
||||
d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI
|
||||
* d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz; // todo: project the carrier doppler
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; // todo: project the carrier doppler
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
}
|
||||
}
|
||||
@ -728,13 +610,13 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
|
||||
}
|
||||
|
||||
current_synchro_data.System =
|
||||
{ 'G'};
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter
|
||||
+ d_correlation_length_samples;
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
}
|
||||
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
@ -744,84 +626,49 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
double tmp_double;
|
||||
prompt_I = d_correlator_outs_16sc[1].real();
|
||||
prompt_Q = d_correlator_outs_16sc[1].imag();
|
||||
tmp_E = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[0].real(),
|
||||
d_correlator_outs_16sc[0].imag()));
|
||||
tmp_P = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[1].real(),
|
||||
d_correlator_outs_16sc[1].imag()));
|
||||
tmp_L = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[2].real(),
|
||||
d_correlator_outs_16sc[2].imag()));
|
||||
tmp_E = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag()));
|
||||
tmp_P = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag()));
|
||||
tmp_L = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag()));
|
||||
try
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_L),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_sample_counter),
|
||||
sizeof(unsigned long int));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_acc_carrier_phase_cycles),
|
||||
sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_cycles), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_doppler_hz),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_freq_chips),
|
||||
sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_doppler_hz),
|
||||
sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_error_chips_Ti),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_error_filt_chips_Ti),
|
||||
sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips_Ti), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_lock_test),
|
||||
sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_code_error_chips_Ti
|
||||
* CURRENT_INTEGRATION_TIME_S;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double),
|
||||
sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter
|
||||
+ d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double),
|
||||
sizeof(double));
|
||||
tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file "
|
||||
<< e->what();
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e->what();
|
||||
}
|
||||
}
|
||||
|
||||
@ -844,15 +691,10 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_channel(unsigned int channel)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(
|
||||
boost::lexical_cast<std::string>(
|
||||
d_channel));
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions(
|
||||
std::ifstream::failbit
|
||||
| std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(),
|
||||
std::ios::out | std::ios::binary);
|
||||
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel "
|
||||
<< d_channel << " Log file: "
|
||||
<< d_dump_filename.c_str();
|
||||
|
Loading…
Reference in New Issue
Block a user