1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 12:10:34 +00:00

Updated GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING

This commit is contained in:
andres 2014-10-18 04:40:23 +02:00
parent 3b91cede64
commit 61f6e125ea
2 changed files with 442 additions and 448 deletions

View File

@ -84,7 +84,7 @@ galileo_volk_e1_dll_pll_veml_make_tracking_cc(
void galileo_volk_e1_dll_pll_veml_tracking_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = (int)d_vector_length*2; //set the required available samples in each call
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
@ -125,49 +125,41 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_
// Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)];
d_ca_code = static_cast<gr_complex*>(volk_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4) * sizeof(gr_complex), volk_get_alignment()));
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
*/
d_very_early_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_early_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_prompt_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_late_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_very_late_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_carr_sign = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_very_early_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_early_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_prompt_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_late_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_very_late_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_carr_sign16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
in16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_very_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_prompt_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_very_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_carr_sign16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
in16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_very_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_prompt_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_very_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_carr_sign8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
in8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_very_early_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_early_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_prompt_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_late_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_very_late_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_carr_sign8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
in8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
// correlator outputs (scalar)
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Very_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Prompt = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Very_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
//--- Initializations ------------------------------
// Initial code frequency basis of NCO
d_code_freq_chips = (double)Galileo_E1_CODE_CHIP_RATE_HZ;
d_code_freq_chips = static_cast<double>(Galileo_E1_CODE_CHIP_RATE_HZ);
// Residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// Residual carrier phase
@ -182,7 +174,7 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_
d_pull_in = false;
d_last_seg = 0;
d_current_prn_length_samples = (int)d_vector_length;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
@ -218,10 +210,10 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
2 * Galileo_E1_CODE_CHIP_RATE_HZ,
0);
// Fill head and tail
d_ca_code[0] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS)];
d_ca_code[1] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 1)];
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_ca_code[2];
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 3)] = d_ca_code[3];
d_ca_code[0] = d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS)];
d_ca_code[1] = d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 1)];
d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_ca_code[2];
d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 3)] = d_ca_code[3];
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
@ -252,7 +244,8 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
{
double tcode_half_chips;
float rem_code_phase_half_chips;
int code_length_half_chips = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS);
int associated_chip_index;
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
double code_phase_step_chips;
double code_phase_step_half_chips;
int early_late_spc_samples;
@ -260,11 +253,11 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
int epl_loop_length_samples;
// unified loop for VE, E, P, L, VL code vectors
code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in);
code_phase_step_half_chips = (2.0*(double)d_code_freq_chips) / ((double)d_fs_in);
code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
tcode_half_chips = -(double)rem_code_phase_half_chips;
tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
@ -286,7 +279,7 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
// Compute the carrier phase step for the K-1 carrier doppler estimation
phase_step_rad = (float)GPS_TWO_PI*d_carrier_doppler_hz / (float)d_fs_in;
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
// Initialize the carrier phase with the remanent carrier phase of the K-2 loop
phase_rad = d_rem_carr_phase_rad;
@ -313,6 +306,7 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
volk_free(d_Prompt);
volk_free(d_Late);
volk_free(d_Very_Late);
volk_free(d_ca_code);
volk_free(d_very_early_code16);
volk_free(d_early_code16);
@ -330,7 +324,6 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
volk_free(d_carr_sign8);
volk_free(in8);
delete[] d_ca_code;
delete[] d_Prompt_buffer;
}
@ -355,7 +348,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
@ -376,6 +369,8 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
update_local_code();
update_local_carrier();
// perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
//Float implementation:
@ -410,10 +405,9 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
//volk_gnsssdr_8ic_x7_cw_vepl_corr_unsafe_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
@ -434,7 +428,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
//Code phase accumulator
float code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*(float)d_fs_in; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
@ -444,10 +438,10 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / (double)d_code_freq_chips;
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * (double)d_fs_in;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * (double)d_fs_in;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
@ -493,25 +487,25 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = (double)(*d_Prompt).real();
current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag();
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
//compute remnant code phase samples BEFORE the Tracking timestamp
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter +
// (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / (double)d_fs_in;
// (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_rem_code_phase_samples) / (double)d_fs_in;
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
@ -583,35 +577,35 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
try
{
// Dump correlators output
d_dump_file.write((char*)&tmp_VE, sizeof(float));
d_dump_file.write((char*)&tmp_E, sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float));
d_dump_file.write((char*)&tmp_L, sizeof(float));
d_dump_file.write((char*)&tmp_VL, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write((char*)&prompt_I, sizeof(float));
d_dump_file.write((char*)&prompt_Q, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
d_dump_file.write((char*)&d_code_freq_chips, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
//PLL commands
d_dump_file.write((char*)&carr_error_hz, sizeof(float));
d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
//DLL commands
d_dump_file.write((char*)&code_error_chips, sizeof(float));
d_dump_file.write((char*)&code_error_filt_chips, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
// CN0 and carrier lock test
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_double=(double)(d_sample_counter+d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (std::ifstream::failure e)
{

View File

@ -16,7 +16,7 @@
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
@ -29,8 +29,8 @@
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#define GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#ifndef GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#define GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#include <fstream>
#include <queue>
@ -161,7 +161,7 @@ private:
gr_complex *d_Very_Late;
// remaining code phase and carrier phase between tracking loops
float d_rem_code_phase_samples;
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
// PLL and DLL filter library
@ -176,7 +176,7 @@ private:
Correlator d_correlator;
// tracking vars
float d_code_freq_chips;
double d_code_freq_chips;
float d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_acc_code_phase_secs;
@ -208,4 +208,4 @@ private:
std::string sys;
};
#endif //GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#endif //GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H