1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 04:00:34 +00:00

Updated GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING

This commit is contained in:
andres 2014-10-18 04:40:23 +02:00
parent 3b91cede64
commit 61f6e125ea
2 changed files with 442 additions and 448 deletions

View File

@ -65,42 +65,42 @@ using google::LogMessage;
galileo_volk_e1_dll_pll_veml_tracking_cc_sptr galileo_volk_e1_dll_pll_veml_tracking_cc_sptr
galileo_volk_e1_dll_pll_veml_make_tracking_cc( galileo_volk_e1_dll_pll_veml_make_tracking_cc(
long if_freq, long if_freq,
long fs_in, long fs_in,
unsigned int vector_length, unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue, boost::shared_ptr<gr::msg_queue> queue,
bool dump, bool dump,
std::string dump_filename, std::string dump_filename,
float pll_bw_hz, float pll_bw_hz,
float dll_bw_hz, float dll_bw_hz,
float early_late_space_chips, float early_late_space_chips,
float very_early_late_space_chips) float very_early_late_space_chips)
{ {
return galileo_volk_e1_dll_pll_veml_tracking_cc_sptr(new galileo_volk_e1_dll_pll_veml_tracking_cc(if_freq, return galileo_volk_e1_dll_pll_veml_tracking_cc_sptr(new galileo_volk_e1_dll_pll_veml_tracking_cc(if_freq,
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, very_early_late_space_chips)); fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, very_early_late_space_chips));
} }
void galileo_volk_e1_dll_pll_veml_tracking_cc::forecast (int noutput_items, void galileo_volk_e1_dll_pll_veml_tracking_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required) gr_vector_int &ninput_items_required)
{ {
ninput_items_required[0] = (int)d_vector_length*2; //set the required available samples in each call ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
} }
galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_cc( galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_cc(
long if_freq, long if_freq,
long fs_in, long fs_in,
unsigned int vector_length, unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue, boost::shared_ptr<gr::msg_queue> queue,
bool dump, bool dump,
std::string dump_filename, std::string dump_filename,
float pll_bw_hz, float pll_bw_hz,
float dll_bw_hz, float dll_bw_hz,
float early_late_space_chips, float early_late_space_chips,
float very_early_late_space_chips): float very_early_late_space_chips):
gr::block("galileo_volk_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::block("galileo_volk_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{ {
this->set_relative_rate(1.0/vector_length); this->set_relative_rate(1.0/vector_length);
// initialize internal vars // initialize internal vars
@ -125,49 +125,41 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip // Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)]; d_ca_code = static_cast<gr_complex*>(volk_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4) * sizeof(gr_complex), volk_get_alignment()));
/* If an array is partitioned for more than one thread to operate on, d_very_early_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
* having the sub-array boundaries unaligned to cache lines could lead d_early_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
* to performance degradation. Here we allocate memory d_prompt_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes d_late_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
*/ d_very_late_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_carr_sign = static_cast<gr_complex*>(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_very_early_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_very_late_code16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_carr_sign16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
in16=static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_very_early_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_early_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_very_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_prompt_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_early_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_late_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_prompt_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_very_late_code8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); d_carr_sign8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_very_late_code16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment()); in8=static_cast<lv_8sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_8sc_t), volk_get_alignment()));
d_carr_sign16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
in16=(lv_16sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_16sc_t),volk_get_alignment());
d_very_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_early_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_prompt_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_very_late_code8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
d_carr_sign8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
in8=(lv_8sc_t*)volk_malloc(2*d_vector_length * sizeof(lv_8sc_t),volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Very_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Very_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
//--- Initializations ------------------------------ //--- Initializations ------------------------------
// Initial code frequency basis of NCO // Initial code frequency basis of NCO
d_code_freq_chips = (double)Galileo_E1_CODE_CHIP_RATE_HZ; d_code_freq_chips = static_cast<double>(Galileo_E1_CODE_CHIP_RATE_HZ);
// Residual code phase (in chips) // Residual code phase (in chips)
d_rem_code_phase_samples = 0.0; d_rem_code_phase_samples = 0.0;
// Residual carrier phase // Residual carrier phase
@ -182,7 +174,7 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_
d_pull_in = false; d_pull_in = false;
d_last_seg = 0; d_last_seg = 0;
d_current_prn_length_samples = (int)d_vector_length; d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers // CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
@ -193,11 +185,11 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::galileo_volk_e1_dll_pll_veml_tracking_
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["E"] = std::string("Galileo"); systemName["E"] = std::string("Galileo");
*d_Very_Early=gr_complex(0,0); *d_Very_Early = gr_complex(0,0);
*d_Early=gr_complex(0,0); *d_Early = gr_complex(0,0);
*d_Prompt=gr_complex(0,0); *d_Prompt = gr_complex(0,0);
*d_Late=gr_complex(0,0); *d_Late = gr_complex(0,0);
*d_Very_Late=gr_complex(0,0); *d_Very_Late = gr_complex(0,0);
} }
void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking() void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
@ -215,13 +207,13 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
d_acquisition_gnss_synchro->Signal, d_acquisition_gnss_synchro->Signal,
false, false,
d_acquisition_gnss_synchro->PRN, d_acquisition_gnss_synchro->PRN,
2*Galileo_E1_CODE_CHIP_RATE_HZ, 2 * Galileo_E1_CODE_CHIP_RATE_HZ,
0); 0);
// Fill head and tail // Fill head and tail
d_ca_code[0] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS)]; d_ca_code[0] = d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS)];
d_ca_code[1] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 1)]; d_ca_code[1] = d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 1)];
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_ca_code[2]; d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_ca_code[2];
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 3)] = d_ca_code[3]; d_ca_code[static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 3)] = d_ca_code[3];
d_carrier_lock_fail_counter = 0; d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0; d_rem_code_phase_samples = 0.0;
@ -244,7 +236,7 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
d_enable_tracking = true; d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
} }
@ -252,7 +244,8 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
{ {
double tcode_half_chips; double tcode_half_chips;
float rem_code_phase_half_chips; float rem_code_phase_half_chips;
int code_length_half_chips = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS); int associated_chip_index;
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
double code_phase_step_chips; double code_phase_step_chips;
double code_phase_step_half_chips; double code_phase_step_half_chips;
int early_late_spc_samples; int early_late_spc_samples;
@ -260,33 +253,33 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
int epl_loop_length_samples; int epl_loop_length_samples;
// unified loop for VE, E, P, L, VL code vectors // unified loop for VE, E, P, L, VL code vectors
code_phase_step_chips = ((double)d_code_freq_chips) / ((double)d_fs_in); code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0*(double)d_code_freq_chips) / ((double)d_fs_in); code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in); rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
tcode_half_chips = -(double)rem_code_phase_half_chips; tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips); very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + very_early_late_spc_samples*2; epl_loop_length_samples = d_current_prn_length_samples + very_early_late_spc_samples * 2;
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION //HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
//volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "generic"); //volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "generic");
volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "u_sse4_1"); volk_gnsssdr_32fc_s32f_x4_update_local_code_32fc_manual(d_very_early_code, (float) d_very_early_late_spc_chips, (float) code_length_half_chips, (float) code_phase_step_half_chips, (float) tcode_half_chips, d_ca_code, epl_loop_length_samples, "u_sse4_1");
memcpy(d_early_code, &d_very_early_code[very_early_late_spc_samples - early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_early_code, &d_very_early_code[very_early_late_spc_samples - early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_prompt_code, &d_very_early_code[very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_prompt_code, &d_very_early_code[very_early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_late_code, &d_very_early_code[very_early_late_spc_samples + early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_late_code, &d_very_early_code[very_early_late_spc_samples + early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_very_late_code, &d_very_early_code[2*very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_very_late_code, &d_very_early_code[2 * very_early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
} }
void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier() void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier()
{ {
float phase_rad, phase_step_rad; float phase_rad, phase_step_rad;
// Compute the carrier phase step for the K-1 carrier doppler estimation // Compute the carrier phase step for the K-1 carrier doppler estimation
phase_step_rad = (float)GPS_TWO_PI*d_carrier_doppler_hz / (float)d_fs_in; phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
// Initialize the carrier phase with the remanent carrier phase of the K-2 loop // Initialize the carrier phase with the remanent carrier phase of the K-2 loop
phase_rad = d_rem_carr_phase_rad; phase_rad = d_rem_carr_phase_rad;
@ -313,6 +306,7 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
volk_free(d_Very_Late); volk_free(d_Very_Late);
volk_free(d_ca_code);
volk_free(d_very_early_code16); volk_free(d_very_early_code16);
volk_free(d_early_code16); volk_free(d_early_code16);
@ -330,14 +324,13 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
volk_free(d_carr_sign8); volk_free(d_carr_sign8);
volk_free(in8); volk_free(in8);
delete[] d_ca_code;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
} }
int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items, int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{ {
float carr_error_hz; float carr_error_hz;
float carr_error_filt_hz; float carr_error_filt_hz;
@ -345,279 +338,280 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
float code_error_filt_chips; float code_error_filt_chips;
if (d_enable_tracking == true) if (d_enable_tracking == true)
{
if (d_pull_in == true)
{ {
if (d_pull_in == true) /*
{ * Signal alignment (skip samples until the incoming signal is aligned with local replica)
/*
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
*/
int samples_offset;
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
}
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
// Generate local code and carrier replicas (using \hat{f}_d(k-1))
update_local_code();
update_local_carrier();
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
//Float implementation:
//volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in, d_carr_sign, d_very_early_code, d_early_code, d_prompt_code, d_late_code, d_very_late_code, d_current_prn_length_samples, "generic");
//volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in, d_carr_sign, d_very_early_code, d_early_code, d_prompt_code, d_late_code, d_very_late_code, d_current_prn_length_samples, "u_avx");
//Integer 16 bits implementation
/*volk_gnsssdr_32fc_convert_16ic(d_very_early_code16, d_very_early_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_early_code16, d_early_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_prompt_code16, d_prompt_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_late_code16, d_late_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_very_late_code16, d_very_late_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(in16, in, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_carr_sign16, d_carr_sign, d_current_prn_length_samples);
volk_gnsssdr_16ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in16, d_carr_sign16, d_very_early_code16, d_early_code16, d_prompt_code16, d_late_code16, d_very_late_code16, d_current_prn_length_samples);*/
//Integer 8 bits implementation
volk_gnsssdr_32fc_convert_8ic_manual(d_very_early_code8, d_very_early_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_early_code8, d_early_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_prompt_code8, d_prompt_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_late_code8, d_late_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_very_late_code8, d_very_late_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_carr_sign8, d_carr_sign, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_s32f_convert_8ic_manual(in8, in, 4, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_8ic_x7_cw_vepl_corr_safe_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples, "u_sse4_1");
//volk_gnsssdr_8ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples);
//volk_gnsssdr_8ic_x7_cw_vepl_corr_unsafe_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*(float)d_fs_in; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / (double)d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * (double)d_fs_in;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * (double)d_fs_in;
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E1_B_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
if (d_queue != gr::msg_queue::sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = (double)(*d_Prompt).real();
current_synchro_data.Prompt_Q = (double)(*d_Prompt).imag();
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
//compute remnant code phase samples BEFORE the Tracking timestamp
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter +
// (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / (double)d_fs_in;
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_rem_code_phase_samples) / (double)d_fs_in;
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = (double)d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/ */
// stream to collect cout calls to improve thread safety int samples_offset;
std::stringstream tmp_str_stream; float acq_trk_shif_correction_samples;
if (floor(d_sample_counter / d_fs_in) != d_last_seg) int acq_to_trk_delay_samples;
{ acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
d_last_seg = floor(d_sample_counter / d_fs_in); acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
if (d_channel == 0) d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
{ d_pull_in = false;
// debug: Second counter in channel 0 consume_each(samples_offset); //shift input to perform alignment with local replica
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; return 1;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", Doppler=" << d_carrier_doppler_hz << " [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
LOG(INFO) << tmp_str_stream.rdbuf() << std::flush;
//if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
} }
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
// Generate local code and carrier replicas (using \hat{f}_d(k-1))
update_local_code();
update_local_carrier();
// perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
//Float implementation:
//volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in, d_carr_sign, d_very_early_code, d_early_code, d_prompt_code, d_late_code, d_very_late_code, d_current_prn_length_samples, "generic");
//volk_gnsssdr_32fc_x7_cw_vepl_corr_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in, d_carr_sign, d_very_early_code, d_early_code, d_prompt_code, d_late_code, d_very_late_code, d_current_prn_length_samples, "u_avx");
//Integer 16 bits implementation
/*volk_gnsssdr_32fc_convert_16ic(d_very_early_code16, d_very_early_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_early_code16, d_early_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_prompt_code16, d_prompt_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_late_code16, d_late_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_very_late_code16, d_very_late_code, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(in16, in, d_current_prn_length_samples);
volk_gnsssdr_32fc_convert_16ic(d_carr_sign16, d_carr_sign, d_current_prn_length_samples);
volk_gnsssdr_16ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in16, d_carr_sign16, d_very_early_code16, d_early_code16, d_prompt_code16, d_late_code16, d_very_late_code16, d_current_prn_length_samples);*/
//Integer 8 bits implementation
volk_gnsssdr_32fc_convert_8ic_manual(d_very_early_code8, d_very_early_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_early_code8, d_early_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_prompt_code8, d_prompt_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_late_code8, d_late_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_very_late_code8, d_very_late_code, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_convert_8ic_manual(d_carr_sign8, d_carr_sign, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_32fc_s32f_convert_8ic_manual(in8, in, 4, d_current_prn_length_samples,"u_sse2");
volk_gnsssdr_8ic_x7_cw_vepl_corr_safe_32fc_x5_manual(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples, "u_sse4_1");
//volk_gnsssdr_8ic_x7_cw_vepl_corr_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples);
//volk_gnsssdr_8ic_x7_cw_vepl_corr_unsafe_32fc_x5(d_Very_Early, d_Early, d_Prompt, d_Late, d_Very_Late, in8, d_carr_sign8, d_very_early_code8, d_early_code8, d_prompt_code8, d_late_code8, d_very_late_code8, d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E1_B_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
if (d_queue != gr::msg_queue::sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
//compute remnant code phase samples BEFORE the Tracking timestamp
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter +
// (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", Doppler=" << d_carrier_doppler_hz << " [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
LOG(INFO) << tmp_str_stream.rdbuf() << std::flush;
//if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else else
{ {
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled) // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
/*! /*!
* \todo The stop timer has to be moved to the signal source! * \todo The stop timer has to be moved to the signal source!
*/ */
// stream to collect cout calls to improve thread safety // stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream; std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg) if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{ {
d_last_seg = floor(d_sample_counter / d_fs_in); d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0) if (d_channel == 0)
{ {
// debug: Second counter in channel 0 // debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush; std::cout << tmp_str_stream.rdbuf() << std::flush;
} }
} }
*d_Early = gr_complex(0,0); *d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0); *d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0); *d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
*out[0] = *d_acquisition_gnss_synchro; *out[0] = *d_acquisition_gnss_synchro;
} }
if(d_dump) if(d_dump)
{ {
// Dump results to file // Dump results to file
float prompt_I; float prompt_I;
float prompt_Q; float prompt_Q;
float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL; float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL;
float tmp_float; float tmp_float;
double tmp_double; double tmp_double;
prompt_I = (*d_Prompt).real(); prompt_I = (*d_Prompt).real();
prompt_Q = (*d_Prompt).imag(); prompt_Q = (*d_Prompt).imag();
tmp_VE = std::abs<float>(*d_Very_Early); tmp_VE = std::abs<float>(*d_Very_Early);
tmp_E = std::abs<float>(*d_Early); tmp_E = std::abs<float>(*d_Early);
tmp_P = std::abs<float>(*d_Prompt); tmp_P = std::abs<float>(*d_Prompt);
tmp_L = std::abs<float>(*d_Late); tmp_L = std::abs<float>(*d_Late);
tmp_VL = std::abs<float>(*d_Very_Late); tmp_VL = std::abs<float>(*d_Very_Late);
try try
{ {
// Dump correlators output // Dump correlators output
d_dump_file.write((char*)&tmp_VE, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_VE), sizeof(float));
d_dump_file.write((char*)&tmp_E, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write((char*)&tmp_L, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
d_dump_file.write((char*)&tmp_VL, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols) // PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write((char*)&prompt_I, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write((char*)&prompt_Q, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp // PRN start sample stamp
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int)); d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase // accumulated carrier phase
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency // carrier and code frequency
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write((char*)&d_code_freq_chips, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
//PLL commands //PLL commands
d_dump_file.write((char*)&carr_error_hz, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
//DLL commands //DLL commands
d_dump_file.write((char*)&code_error_chips, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write((char*)&code_error_filt_chips, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
// CN0 and carrier lock test // CN0 and carrier lock test
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
// AUX vars (for debug purposes) // AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples; tmp_float = d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float)); d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double=(double)(d_sample_counter+d_current_prn_length_samples); tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double)); d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what() << std::endl;
}
} }
catch (std::ifstream::failure e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what() << std::endl;
}
}
consume_each(d_current_prn_length_samples); // this is required for gr_block derivates consume_each(d_current_prn_length_samples); // this is required for gr_block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples d_sample_counter += d_current_prn_length_samples; //count for the processed samples
//std::cout<<"Galileo tracking output at sample "<<d_sample_counter<<std::endl; //std::cout<<"Galileo tracking output at sample "<<d_sample_counter<<std::endl;
@ -632,23 +626,23 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::set_channel(unsigned int channel)
LOG(INFO) << "Tracking Channel set to " << d_channel; LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG ################# // ############# ENABLE DATA FILE LOG #################
if (d_dump == true) if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{ {
if (d_dump_file.is_open() == false) try
{ {
try d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
{ d_dump_filename.append(".dat");
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel)); d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_filename.append(".dat"); d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); }
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); catch (std::ifstream::failure e)
} {
catch (std::ifstream::failure e) LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
{ }
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
}
}
} }
}
} }

View File

@ -16,7 +16,7 @@
* GNSS-SDR is free software: you can redistribute it and/or modify * GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
* at your option) any later version. * (at your option) any later version.
* *
* GNSS-SDR is distributed in the hope that it will be useful, * GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
@ -29,8 +29,8 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#ifndef GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H #ifndef GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#define GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H #define GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H
#include <fstream> #include <fstream>
#include <queue> #include <queue>
@ -52,15 +52,15 @@ typedef boost::shared_ptr<galileo_volk_e1_dll_pll_veml_tracking_cc> galileo_volk
galileo_volk_e1_dll_pll_veml_tracking_cc_sptr galileo_volk_e1_dll_pll_veml_tracking_cc_sptr
galileo_volk_e1_dll_pll_veml_make_tracking_cc(long if_freq, galileo_volk_e1_dll_pll_veml_make_tracking_cc(long if_freq,
long fs_in, unsigned long fs_in, unsigned
int vector_length, int vector_length,
boost::shared_ptr<gr::msg_queue> queue, boost::shared_ptr<gr::msg_queue> queue,
bool dump, bool dump,
std::string dump_filename, std::string dump_filename,
float pll_bw_hz, float pll_bw_hz,
float dll_bw_hz, float dll_bw_hz,
float early_late_space_chips, float early_late_space_chips,
float very_early_late_space_chips); float very_early_late_space_chips);
/*! /*!
* \brief This class implements a code DLL + carrier PLL VEML (Very Early * \brief This class implements a code DLL + carrier PLL VEML (Very Early
@ -83,32 +83,32 @@ public:
* Birkhauser, 2007 * Birkhauser, 2007
*/ */
int general_work (int noutput_items, gr_vector_int &ninput_items, int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast (int noutput_items, gr_vector_int &ninput_items_required); void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private: private:
friend galileo_volk_e1_dll_pll_veml_tracking_cc_sptr friend galileo_volk_e1_dll_pll_veml_tracking_cc_sptr
galileo_volk_e1_dll_pll_veml_make_tracking_cc(long if_freq, galileo_volk_e1_dll_pll_veml_make_tracking_cc(long if_freq,
long fs_in, unsigned long fs_in, unsigned
int vector_length, int vector_length,
boost::shared_ptr<gr::msg_queue> queue, boost::shared_ptr<gr::msg_queue> queue,
bool dump, bool dump,
std::string dump_filename, std::string dump_filename,
float pll_bw_hz, float pll_bw_hz,
float dll_bw_hz, float dll_bw_hz,
float early_late_space_chips, float early_late_space_chips,
float very_early_late_space_chips); float very_early_late_space_chips);
galileo_volk_e1_dll_pll_veml_tracking_cc(long if_freq, galileo_volk_e1_dll_pll_veml_tracking_cc(long if_freq,
long fs_in, unsigned long fs_in, unsigned
int vector_length, int vector_length,
boost::shared_ptr<gr::msg_queue> queue, boost::shared_ptr<gr::msg_queue> queue,
bool dump, bool dump,
std::string dump_filename, std::string dump_filename,
float pll_bw_hz, float pll_bw_hz,
float dll_bw_hz, float dll_bw_hz,
float early_late_space_chips, float early_late_space_chips,
float very_early_late_space_chips); float very_early_late_space_chips);
void update_local_code(); void update_local_code();
@ -161,7 +161,7 @@ private:
gr_complex *d_Very_Late; gr_complex *d_Very_Late;
// remaining code phase and carrier phase between tracking loops // remaining code phase and carrier phase between tracking loops
float d_rem_code_phase_samples; double d_rem_code_phase_samples;
float d_rem_carr_phase_rad; float d_rem_carr_phase_rad;
// PLL and DLL filter library // PLL and DLL filter library
@ -176,7 +176,7 @@ private:
Correlator d_correlator; Correlator d_correlator;
// tracking vars // tracking vars
float d_code_freq_chips; double d_code_freq_chips;
float d_carrier_doppler_hz; float d_carrier_doppler_hz;
double d_acc_carrier_phase_rad; double d_acc_carrier_phase_rad;
double d_acc_code_phase_secs; double d_acc_code_phase_secs;
@ -208,4 +208,4 @@ private:
std::string sys; std::string sys;
}; };
#endif //GNSS_SDR_GALILEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H #endif //GNSS_SDR_GALIELEO_VOLK_E1_DLL_PLL_VEML_TRACKING_CC_H