1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-05-09 14:14:28 +02:00
commit 61b3f59bb8
15 changed files with 2032 additions and 1955 deletions

View File

@ -34,16 +34,15 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "configuration_interface.h" #include "configuration_interface.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "gps_sdr_signal_processing.h"
#include <gnuradio/fft/fft.h> #include <gnuradio/fft/fft.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <new> #include <new>
#define NUM_PRNs 32 #define NUM_PRNs 32
using google::LogMessage; using google::LogMessage;
@ -123,8 +122,7 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
} }
} }
//acq_parameters // acq_parameters
acq_parameters.all_fft_codes = d_all_fft_codes_; acq_parameters.all_fft_codes = d_all_fft_codes_;
// temporary buffers that we can delete // temporary buffers that we can delete
@ -132,7 +130,7 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
delete fft_if; delete fft_if;
delete[] fft_codes_padded; delete[] fft_codes_padded;
acquisition_fpga_ = pcps_make_acquisition(acq_parameters); acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
channel_ = 0; channel_ = 0;
@ -211,15 +209,20 @@ void GpsL1CaPcpsAcquisitionFpga::set_state(int state)
acquisition_fpga_->set_state(state); acquisition_fpga_->set_state(state);
} }
void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block) void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{ {
// nothing to connect if (top_block)
{ // nothing to disconnect
}
} }
void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block) void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{ {
// nothing to disconnect if (top_block)
{ // nothing to disconnect
}
} }

View File

@ -38,22 +38,22 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "pcps_acquisition_fpga.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include "pcps_acquisition_fpga.h"
using google::LogMessage; using google::LogMessage;
pcps_acquisition_fpga_sptr pcps_make_acquisition(pcpsconf_fpga_t conf_) pcps_acquisition_fpga_sptr pcps_make_acquisition_fpga(pcpsconf_fpga_t conf_)
{ {
return pcps_acquisition_fpga_sptr(new pcps_acquisition_fpga(conf_)); return pcps_acquisition_fpga_sptr(new pcps_acquisition_fpga(conf_));
} }
pcps_acquisition_fpga::pcps_acquisition_fpga(pcpsconf_fpga_t conf_) : gr::block("pcps_acquisition_fpga", pcps_acquisition_fpga::pcps_acquisition_fpga(pcpsconf_fpga_t conf_) : gr::block("pcps_acquisition_fpga",
gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0),
gr::io_signature::make(0, 0, 0)) gr::io_signature::make(0, 0, 0))
{ {
this->message_port_register_out(pmt::mp("events")); this->message_port_register_out(pmt::mp("events"));
@ -71,10 +71,8 @@ pcps_acquisition_fpga::pcps_acquisition_fpga(pcpsconf_fpga_t conf_) : gr::block(
d_channel = 0; d_channel = 0;
d_gnss_synchro = 0; d_gnss_synchro = 0;
acquisition_fpga = std::make_shared <fpga_acquisition> acquisition_fpga = std::make_shared<fpga_acquisition>(acq_parameters.device_name, d_fft_size, acq_parameters.doppler_max, acq_parameters.samples_per_ms,
(acq_parameters.device_name, d_fft_size, acq_parameters.doppler_max, acq_parameters.samples_per_ms, acq_parameters.fs_in, acq_parameters.freq, acq_parameters.sampled_ms, acq_parameters.select_queue_Fpga, acq_parameters.all_fft_codes);
acq_parameters.fs_in, acq_parameters.freq, acq_parameters.sampled_ms, acq_parameters.select_queue_Fpga, acq_parameters.all_fft_codes);
} }
@ -196,9 +194,9 @@ void pcps_acquisition_fpga::set_active(bool active)
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index; int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
acquisition_fpga->set_phase_step(doppler_index); acquisition_fpga->set_phase_step(doppler_index);
acquisition_fpga->run_acquisition(); // runs acquisition and waits until it is finished acquisition_fpga->run_acquisition(); // runs acquisition and waits until it is finished
acquisition_fpga->read_acquisition_results(&indext, &magt, acquisition_fpga->read_acquisition_results(&indext, &magt,
&initial_sample, &d_input_power); &initial_sample, &d_input_power);
d_sample_counter = initial_sample; d_sample_counter = initial_sample;
if (d_mag < magt) if (d_mag < magt)
@ -213,7 +211,7 @@ void pcps_acquisition_fpga::set_active(bool active)
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_test_statistics = (d_mag / d_input_power); //* correction_factor; d_test_statistics = (d_mag / d_input_power); //* correction_factor;
} }
// In the case of the FPGA the option of dumping the results of the acquisition to a file is not available // In the case of the FPGA the option of dumping the results of the acquisition to a file is not available

View File

@ -81,7 +81,7 @@ class pcps_acquisition_fpga;
typedef boost::shared_ptr<pcps_acquisition_fpga> pcps_acquisition_fpga_sptr; typedef boost::shared_ptr<pcps_acquisition_fpga> pcps_acquisition_fpga_sptr;
pcps_acquisition_fpga_sptr pcps_acquisition_fpga_sptr
pcps_make_acquisition(pcpsconf_fpga_t conf_); pcps_make_acquisition_fpga(pcpsconf_fpga_t conf_);
/*! /*!
* \brief This class implements a Parallel Code Phase Search Acquisition that uses the FPGA. * \brief This class implements a Parallel Code Phase Search Acquisition that uses the FPGA.
@ -94,7 +94,7 @@ class pcps_acquisition_fpga : public gr::block
private: private:
friend pcps_acquisition_fpga_sptr friend pcps_acquisition_fpga_sptr
pcps_make_acquisition(pcpsconf_fpga_t conf_); pcps_make_acquisition_fpga(pcpsconf_fpga_t conf_);
pcps_acquisition_fpga(pcpsconf_fpga_t conf_); pcps_acquisition_fpga(pcpsconf_fpga_t conf_);

View File

@ -1,8 +1,9 @@
/*! /*!
* \file gps_l1_ca_dll_pll_tracking.cc * \file gps_l1_ca_dll_pll_tracking.cc
* \brief Implementation of an adapter of a DLL+PLL tracking loop block * \brief Implementation of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface * for GPS L1 C/A to a TrackingInterface that uses the FPGA
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com * \author Marc Majoral, 2018, mmajoral(at)cttc.es
* Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es * Javier Arribas, 2011. jarribas(at)cttc.es
* *
* Code DLL + carrier PLL according to the algorithms described in: * Code DLL + carrier PLL according to the algorithms described in:
@ -35,65 +36,109 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "gps_l1_ca_dll_pll_tracking_fpga.h" #include "gps_l1_ca_dll_pll_tracking_fpga.h"
#include "configuration_interface.h" #include "configuration_interface.h"
#include "display.h"
#include "gnss_sdr_flags.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "gps_sdr_signal_processing.h"
#include <glog/logging.h> #include <glog/logging.h>
#define NUM_PRNs 32
using google::LogMessage; using google::LogMessage;
GpsL1CaDllPllTrackingFpga::GpsL1CaDllPllTrackingFpga( GpsL1CaDllPllTrackingFpga::GpsL1CaDllPllTrackingFpga(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
dllpllconf_fpga_t trk_param_fpga;
DLOG(INFO) << "role " << role; DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ######################## //################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
//std::string default_item_type = "gr_complex";
std::string default_item_type = "cshort";
float pll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
item_type = configuration->property(role + ".item_type", default_item_type);
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000); int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
std::string device_name; int fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
unsigned int device_base; trk_param_fpga.fs_in = fs_in;
std::string default_device_name = "/dev/uio"; bool dump = configuration->property(role + ".dump", false);
device_name = configuration->property(role + ".devicename", default_device_name); trk_param_fpga.dump = dump;
device_base = configuration->property(role + ".device_base", 1); float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
f_if = configuration->property(role + ".if", 0); trk_param_fpga.pll_bw_hz = pll_bw_hz;
dump = configuration->property(role + ".dump", false); float pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 20.0);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0); trk_param_fpga.pll_bw_narrow_hz = pll_bw_narrow_hz;
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0); float dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 2.0);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5); trk_param_fpga.dll_bw_narrow_hz = dll_bw_narrow_hz;
float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz);
trk_param_fpga.dll_bw_hz = dll_bw_hz;
float early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
trk_param_fpga.early_late_space_chips = early_late_space_chips;
float early_late_space_narrow_chips = configuration->property(role + ".early_late_space_narrow_chips", 0.5);
trk_param_fpga.early_late_space_narrow_chips = early_late_space_narrow_chips;
std::string default_dump_filename = "./track_ch"; std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename", default_dump_filename); //unused! std::string dump_filename = configuration->property(role + ".dump_filename", default_dump_filename);
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); trk_param_fpga.dump_filename = dump_filename;
if (item_type.compare("cshort") == 0) int vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
trk_param_fpga.vector_length = vector_length;
int symbols_extended_correlator = configuration->property(role + ".extend_correlation_symbols", 1);
if (symbols_extended_correlator < 1)
{ {
item_size_ = sizeof(lv_16sc_t); symbols_extended_correlator = 1;
tracking_fpga_sc = gps_l1_ca_dll_pll_make_tracking_fpga_sc( std::cout << TEXT_RED << "WARNING: GPS L1 C/A. extend_correlation_symbols must be bigger than 1. Coherent integration has been set to 1 symbol (1 ms)" << TEXT_RESET << std::endl;
f_if, fs_in, vector_length, dump, dump_filename, pll_bw_hz,
dll_bw_hz, early_late_space_chips, device_name,
device_base);
DLOG(INFO) << "tracking(" << tracking_fpga_sc->unique_id()
<< ")";
} }
else else if (symbols_extended_correlator > 20)
{ {
item_size_ = sizeof(lv_16sc_t); symbols_extended_correlator = 20;
// LOG(WARNING) << item_type_ << " unknown tracking item type"; std::cout << TEXT_RED << "WARNING: GPS L1 C/A. extend_correlation_symbols must be lower than 21. Coherent integration has been set to 20 symbols (20 ms)" << TEXT_RESET << std::endl;
LOG(WARNING) << item_type
<< " the tracking item type for the FPGA tracking test has to be cshort";
} }
trk_param_fpga.extend_correlation_symbols = symbols_extended_correlator;
bool track_pilot = configuration->property(role + ".track_pilot", false);
if (track_pilot)
{
std::cout << TEXT_RED << "WARNING: GPS L1 C/A does not have pilot signal. Data tracking has been enabled" << TEXT_RESET << std::endl;
}
if ((symbols_extended_correlator > 1) and (pll_bw_narrow_hz > pll_bw_hz or dll_bw_narrow_hz > dll_bw_hz))
{
std::cout << TEXT_RED << "WARNING: GPS L1 C/A. PLL or DLL narrow tracking bandwidth is higher than wide tracking one" << TEXT_RESET << std::endl;
}
trk_param_fpga.very_early_late_space_chips = 0.0;
trk_param_fpga.very_early_late_space_narrow_chips = 0.0;
trk_param_fpga.track_pilot = false;
trk_param_fpga.system = 'G';
char sig_[3] = "1C";
std::memcpy(trk_param_fpga.signal, sig_, 3);
int cn0_samples = configuration->property(role + ".cn0_samples", 20);
if (FLAGS_cn0_samples != 20) cn0_samples = FLAGS_cn0_samples;
trk_param_fpga.cn0_samples = cn0_samples;
int cn0_min = configuration->property(role + ".cn0_min", 25);
if (FLAGS_cn0_min != 25) cn0_min = FLAGS_cn0_min;
trk_param_fpga.cn0_min = cn0_min;
int max_lock_fail = configuration->property(role + ".max_lock_fail", 50);
if (FLAGS_max_lock_fail != 50) max_lock_fail = FLAGS_max_lock_fail;
trk_param_fpga.max_lock_fail = max_lock_fail;
double carrier_lock_th = configuration->property(role + ".carrier_lock_th", 0.85);
if (FLAGS_carrier_lock_th != 0.85) carrier_lock_th = FLAGS_carrier_lock_th;
trk_param_fpga.carrier_lock_th = carrier_lock_th;
// FPGA configuration parameters
std::string default_device_name = "/dev/uio";
std::string device_name = configuration->property(role + ".devicename", default_device_name);
trk_param_fpga.device_name = device_name;
unsigned int device_base = configuration->property(role + ".device_base", 1);
trk_param_fpga.device_base = device_base;
//################# PRE-COMPUTE ALL THE CODES #################
d_ca_codes = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment()));
for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++)
{
gps_l1_ca_code_gen_int(&d_ca_codes[(int(GPS_L1_CA_CODE_LENGTH_CHIPS)) * (PRN - 1)], PRN, 0);
}
trk_param_fpga.ca_codes = d_ca_codes;
trk_param_fpga.code_length = GPS_L1_CA_CODE_LENGTH_CHIPS;
//################# MAKE TRACKING GNURadio object ###################
tracking_fpga_sc = dll_pll_veml_make_tracking_fpga(trk_param_fpga);
channel_ = 0; channel_ = 0;
DLOG(INFO) << "tracking(" << tracking_fpga_sc->unique_id() << ")"; DLOG(INFO) << "tracking(" << tracking_fpga_sc->unique_id() << ")";
} }
@ -101,6 +146,7 @@ GpsL1CaDllPllTrackingFpga::GpsL1CaDllPllTrackingFpga(
GpsL1CaDllPllTrackingFpga::~GpsL1CaDllPllTrackingFpga() GpsL1CaDllPllTrackingFpga::~GpsL1CaDllPllTrackingFpga()
{ {
delete[] d_ca_codes;
} }
@ -131,7 +177,7 @@ void GpsL1CaDllPllTrackingFpga::connect(gr::top_block_sptr top_block)
if (top_block) if (top_block)
{ /* top_block is not null */ { /* top_block is not null */
}; };
//nothing to connect, now the tracking uses gr_sync_decimator //nothing to connect
} }
@ -140,7 +186,7 @@ void GpsL1CaDllPllTrackingFpga::disconnect(gr::top_block_sptr top_block)
if (top_block) if (top_block)
{ /* top_block is not null */ { /* top_block is not null */
}; };
//nothing to disconnect, now the tracking uses gr_sync_decimator //nothing to disconnect
} }
@ -154,9 +200,3 @@ gr::basic_block_sptr GpsL1CaDllPllTrackingFpga::get_right_block()
{ {
return tracking_fpga_sc; return tracking_fpga_sc;
} }
void GpsL1CaDllPllTrackingFpga::reset(void)
{
// tracking_fpga_sc->reset();
}

View File

@ -1,8 +1,9 @@
/*! /*!
* \file gps_l1_ca_dll_pll_tracking.h * \file gps_l1_ca_dll_pll_tracking.h
* \brief Interface of an adapter of a DLL+PLL tracking loop block * \brief Interface of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface * for GPS L1 C/A to a TrackingInterface that uses the FPGA
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com * \author Marc Majoral, 2018. mmajoral(at)cttc.es
* Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es * Javier Arribas, 2011. jarribas(at)cttc.es
* *
* Code DLL + carrier PLL according to the algorithms described in: * Code DLL + carrier PLL according to the algorithms described in:
@ -38,9 +39,8 @@
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_ #ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_ #define GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_
#include "tracking_interface.h" #include "tracking_interface.h"
#include "gps_l1_ca_dll_pll_tracking_fpga_sc.h" #include "dll_pll_veml_tracking_fpga.h"
#include <string> #include <string>
class ConfigurationInterface; class ConfigurationInterface;
@ -92,16 +92,14 @@ public:
void start_tracking() override; void start_tracking() override;
void reset(void);
private: private:
//gps_l1_ca_dll_pll_tracking_cc_sptr tracking_; dll_pll_veml_tracking_fpga_sptr tracking_fpga_sc;
gps_l1_ca_dll_pll_tracking_fpga_sc_sptr tracking_fpga_sc;
size_t item_size_; size_t item_size_;
unsigned int channel_; unsigned int channel_;
std::string role_; std::string role_;
unsigned int in_streams_; unsigned int in_streams_;
unsigned int out_streams_; unsigned int out_streams_;
int* d_ca_codes;
}; };
#endif // GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_ #endif // GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_H_

View File

@ -23,7 +23,7 @@ if(ENABLE_CUDA)
endif(ENABLE_CUDA) endif(ENABLE_CUDA)
if(ENABLE_FPGA) if(ENABLE_FPGA)
set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} gps_l1_ca_dll_pll_tracking_fpga_sc.cc) set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} dll_pll_veml_tracking_fpga.cc)
endif(ENABLE_FPGA) endif(ENABLE_FPGA)
set(TRACKING_GR_BLOCKS_SOURCES set(TRACKING_GR_BLOCKS_SOURCES

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,226 @@
/*!
* \file gps_l1_ca_dll_pll_tracking_fpga.h
* \brief Interface of a code DLL + carrier PLL tracking block
* \author Marc Majoral, 2018. marc.majoral(at)cttc.es
* Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
* Cillian O'Driscoll, 2017. cillian.odriscoll(at)gmail.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_DLL_PLL_VEML_TRACKING_FPGA_H
#define GNSS_SDR_DLL_PLL_VEML_TRACKING_FPGA_H
#include "fpga_multicorrelator.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include <gnuradio/block.h>
#include <fstream>
#include <string>
#include <map>
typedef struct
{
/* DLL/PLL tracking configuration */
double fs_in;
unsigned int vector_length;
bool dump;
std::string dump_filename;
float pll_bw_hz;
float dll_bw_hz;
float pll_bw_narrow_hz;
float dll_bw_narrow_hz;
float early_late_space_chips;
float very_early_late_space_chips;
float early_late_space_narrow_chips;
float very_early_late_space_narrow_chips;
int extend_correlation_symbols;
int cn0_samples;
int cn0_min;
int max_lock_fail;
double carrier_lock_th;
bool track_pilot;
char system;
char signal[3];
std::string device_name;
unsigned int device_base;
unsigned int code_length;
int *ca_codes;
} dllpllconf_fpga_t;
class dll_pll_veml_tracking_fpga;
typedef boost::shared_ptr<dll_pll_veml_tracking_fpga>
dll_pll_veml_tracking_fpga_sptr;
dll_pll_veml_tracking_fpga_sptr dll_pll_veml_make_tracking_fpga(dllpllconf_fpga_t conf_);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class dll_pll_veml_tracking_fpga : public gr::block
{
public:
~dll_pll_veml_tracking_fpga();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro *p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void reset(void);
private:
friend dll_pll_veml_tracking_fpga_sptr dll_pll_veml_make_tracking_fpga(dllpllconf_fpga_t conf_);
dll_pll_veml_tracking_fpga(dllpllconf_fpga_t conf_);
bool cn0_and_tracking_lock_status(double coh_integration_time_s);
bool acquire_secondary();
void run_dll_pll();
void update_tracking_vars();
void clear_tracking_vars();
void save_correlation_results();
void log_data(bool integrating);
int save_matfile();
// tracking configuration vars
dllpllconf_fpga_t trk_parameters;
bool d_veml;
bool d_cloop;
unsigned int d_channel;
Gnss_Synchro *d_acquisition_gnss_synchro;
//Signal parameters
bool d_secondary;
bool interchange_iq;
double d_signal_carrier_freq;
double d_code_period;
double d_code_chip_rate;
unsigned int d_secondary_code_length;
unsigned int d_code_length_chips;
unsigned int d_code_samples_per_chip; // All signals have 1 sample per chip code except Gal. E1 which has 2 (CBOC disabled) or 12 (CBOC enabled)
int d_symbols_per_bit;
std::string systemName;
std::string signal_type;
std::string *d_secondary_code_string;
std::string signal_pretty_name;
//tracking state machine
int d_state;
bool d_synchonizing;
//Integration period in samples
int d_correlation_length_ms;
int d_n_correlator_taps;
float *d_local_code_shift_chips;
float *d_prompt_data_shift;
std::shared_ptr<fpga_multicorrelator_8sc> multicorrelator_fpga;
gr_complex *d_correlator_outs;
gr_complex *d_Very_Early;
gr_complex *d_Early;
gr_complex *d_Prompt;
gr_complex *d_Late;
gr_complex *d_Very_Late;
bool d_enable_extended_integration;
int d_extend_correlation_symbols_count;
int d_current_symbol;
gr_complex d_VE_accu;
gr_complex d_E_accu;
gr_complex d_P_accu;
gr_complex d_L_accu;
gr_complex d_VL_accu;
gr_complex d_last_prompt;
gr_complex *d_Prompt_Data;
double d_code_phase_step_chips;
double d_carrier_phase_step_rad;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking vars
double d_carr_error_hz;
double d_carr_error_filt_hz;
double d_code_error_chips;
double d_code_error_filt_chips;
double d_K_blk_samples;
double d_code_freq_chips;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_rem_code_phase_chips;
double d_code_phase_samples;
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// PRN period in samples
int d_current_prn_length_samples;
// processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
int d_carrier_lock_fail_counter;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
std::deque<gr_complex> d_Prompt_buffer_deque;
gr_complex *d_Prompt_buffer;
// file dump
std::ofstream d_dump_file;
// extra
int d_correlation_length_samples;
int d_next_prn_length_samples;
unsigned long int d_sample_counter_next;
unsigned int d_pull_in = 0;
};
#endif //GNSS_SDR_DLL_PLL_VEML_TRACKING_FPGA_H

View File

@ -1,951 +0,0 @@
/*!
* \file gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Marc Majoral, 2017. mmajoral(at)cttc.cat
* Javier Arribas, 2015. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc.h"
#include "gnss_synchro.h"
#include "gps_sdr_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GPS_L1_CA.h"
#include "gnss_sdr_flags.h"
#include "control_message_factory.h"
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <matio.h>
#include <pmt/pmt.h>
#include <glog/logging.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
using google::LogMessage;
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(
long if_freq, long fs_in, unsigned int vector_length, bool dump,
std::string dump_filename, float pll_bw_hz, float dll_bw_hz,
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
int extend_correlation_ms, float early_late_space_chips,
std::string device_name, unsigned int device_base)
{
return gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr(
new gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(if_freq, fs_in,
vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz,
pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms,
early_late_space_chips, device_name, device_base));
}
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index(
pmt::pmt_t msg)
{
DLOG(INFO) << "Extended correlation enabled for Tracking CH "
<< d_channel << ": Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
if (d_enable_extended_integration == false) //avoid re-setting preamble indicator
{
d_preamble_timestamp_s = pmt::to_double(msg);
d_enable_extended_integration = true;
d_preamble_synchronized = false;
}
}
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(
long if_freq, long fs_in, unsigned int vector_length, bool dump,
std::string dump_filename, float pll_bw_hz, float dll_bw_hz,
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
int extend_correlation_ms, float early_late_space_chips,
std::string device_name, unsigned int device_base) : gr::block("gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc",
gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
boost::bind(
&gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index,
this, _1));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_correlation_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2);
d_extend_correlation_ms = extend_correlation_ms;
// --- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_ca_code_16sc = static_cast<lv_16sc_t *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs_16sc = static_cast<lv_16sc_t *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(lv_16sc_t),
volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
// create multicorrelator class
multicorrelator_fpga_8sc = std::make_shared<fpga_multicorrelator_8sc>(d_n_correlator_taps, device_name, device_base);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carrier_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0; //(from trk to tlm)
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_code_phase_samples = 0.0;
d_enable_extended_integration = false;
d_preamble_synchronized = false;
d_rem_code_phase_integer_samples = 0;
d_code_error_chips_Ti = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_code_error_filt_chips_s = 0.0;
d_code_error_filt_chips_Ti = 0.0;
d_preamble_timestamp_s = 0.0;
d_carr_phase_error_secs_Ti = 0.0;
//set_min_output_buffer((long int)300);
}
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1.0 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
multicorrelator_fpga_8sc->set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_16sc_t(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carrier_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Tracking of GPS L1 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
d_enable_extended_integration = false;
d_preamble_synchronized = false;
// lock the channel
multicorrelator_fpga_8sc->lock_channel();
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::~gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_ca_code);
volk_gnsssdr_free(d_ca_code_16sc);
volk_gnsssdr_free(d_correlator_outs_16sc);
delete[] d_Prompt_buffer;
multicorrelator_fpga_8sc->free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_channel(unsigned int channel)
{
d_channel = channel;
multicorrelator_fpga_8sc->set_channel(d_channel);
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel "
<< d_channel << " Log file: "
<< d_dump_filename.c_str();
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "channel " << d_channel
<< " Exception opening trk dump file "
<< e->what();
}
}
}
}
int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_gnss_synchro(
Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::reset(void)
{
multicorrelator_fpga_8sc->unlock_channel();
}
int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
// samples offset
int samples_offset;
// Block input data and block output stream pointers
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars
double code_error_filt_secs_Ti = 0.0;
double CURRENT_INTEGRATION_TIME_S = 0.0;
double CORRECTED_INTEGRATION_TIME_S = 0.0;
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter += samples_offset; // count for the processed samples
d_pull_in = false;
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GPS_TWO_PI;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GPS_TWO_PI;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
//consume_each(samples_offset); // shift input to perform alignment with local replica
multicorrelator_fpga_8sc->set_initial_sample(samples_offset);
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_fpga_8sc->set_output_vectors(d_correlator_outs_16sc);
multicorrelator_fpga_8sc->Carrier_wipeoff_multicorrelator_resampler(
d_rem_carrier_phase_rad, d_carrier_phase_step_rad,
d_rem_code_phase_chips, d_code_phase_step_chips,
d_correlation_length_samples);
// ####### coherent integration extension
// keep the last symbols
d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output
d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output
d_L_history.push_back(d_correlator_outs_16sc[2]); // save late output
if (static_cast<int>(d_P_history.size()) > d_extend_correlation_ms)
{
d_E_history.pop_front();
d_P_history.pop_front();
d_L_history.pop_front();
}
bool enable_dll_pll;
if (d_enable_extended_integration == true)
{
long int symbol_diff = round(1000.0 * ((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in) - d_preamble_timestamp_s));
if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0)
{
// compute coherent integration and enable tracking loop
// perform coherent integration using correlator output history
// std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
d_correlator_outs_16sc[0] = lv_cmake(0, 0);
d_correlator_outs_16sc[1] = lv_cmake(0, 0);
d_correlator_outs_16sc[2] = lv_cmake(0, 0);
for (int n = 0; n < d_extend_correlation_ms; n++)
{
d_correlator_outs_16sc[0] += d_E_history.at(n);
d_correlator_outs_16sc[1] += d_P_history.at(n);
d_correlator_outs_16sc[2] += d_L_history.at(n);
}
if (d_preamble_synchronized == false)
{
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz, 2);
d_preamble_synchronized = true;
std::cout << "Enabled "
<< d_extend_correlation_ms
<< " [ms] extended correlator for CH "
<< d_channel << " : Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< " pll_bw = " << d_pll_bw_hz
<< " [Hz], pll_narrow_bw = "
<< d_pll_bw_narrow_hz << " [Hz]"
<< std::endl
<< " dll_bw = "
<< d_dll_bw_hz
<< " [Hz], dll_narrow_bw = "
<< d_dll_bw_narrow_hz << " [Hz]"
<< std::endl;
}
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GPS_L1_CA_CODE_PERIOD;
enable_dll_pll = true;
}
else
{
if (d_preamble_synchronized == true)
{
// continue extended coherent correlation
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
int K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GPS_TWO_PI);
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
// disable tracking loop and inform telemetry decoder
enable_dll_pll = false;
}
else
{
// perform basic (1ms) correlation
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
enable_dll_pll = true;
}
}
}
else
{
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
enable_dll_pll = true;
}
if (enable_dll_pll == true)
{
// ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti]
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag())) / GPS_TWO_PI; //prompt output
// Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
// Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
// code Doppler frequency update
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(
std::complex<float>(
d_correlator_outs_16sc[0].real(),
d_correlator_outs_16sc[0].imag()),
std::complex<float>(
d_correlator_outs_16sc[2].real(),
d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late
// Code discriminator filter
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
//################### PLL COMMANDS #################################################
//carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
//remnant carrier phase [rad]
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
//################### DLL COMMANDS #################################################
//code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
//remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()),
static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0)
{
d_carrier_lock_fail_counter--;
}
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
multicorrelator_fpga_8sc->unlock_channel();
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
if (d_preamble_synchronized == true)
{
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
}
else
{
current_synchro_data.correlation_length_ms = 1;
}
}
else
{
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; // todo: project the carrier doppler
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
}
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
}
current_synchro_data.System = {'G'};
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
}
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_VE = 0.0;
float tmp_VL = 0.0;
float tmp_float;
prompt_I = d_correlator_outs_16sc[1].real();
prompt_Q = d_correlator_outs_16sc[1].imag();
tmp_E = std::abs<float>(gr_complex(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag()));
tmp_P = std::abs<float>(gr_complex(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag()));
tmp_L = std::abs<float>(gr_complex(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag()));
try
{
// Dump correlators output
d_dump_file.write(reinterpret_cast<char *>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
tmp_float = d_acc_carrier_phase_cycles * GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier and code frequency
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// PLL commands
tmp_float = 1.0 / (d_carr_phase_error_secs_Ti * CURRENT_INTEGRATION_TIME_S);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = 1.0 / (d_code_error_filt_chips_Ti * CURRENT_INTEGRATION_TIME_S);
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// DLL commands
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_error_filt_chips_Ti;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "Exception writing trk dump file " << e->what();
}
}
//consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_correlation_length_samples; //count for the processed samples
if (d_enable_tracking)
{
return 1;
}
else
{
return 0;
}
}

View File

@ -1,540 +0,0 @@
/*!
* \file gps_l1_ca_dll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_pll_tracking_fpga_sc.h"
#include "control_message_factory.h"
#include "gnss_sdr_flags.h"
#include "GPS_L1_CA.h"
#include "gps_sdr_signal_processing.h"
#include "lock_detectors.h"
#include "tracking_discriminators.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
using google::LogMessage;
gps_l1_ca_dll_pll_tracking_fpga_sc_sptr
gps_l1_ca_dll_pll_make_tracking_fpga_sc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
std::string device_name,
unsigned int device_base)
{
return gps_l1_ca_dll_pll_tracking_fpga_sc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, device_name, device_base));
}
Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
std::string device_name,
unsigned int device_base) : gr::block("Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
d_correlation_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
//d_ca_code = static_cast<float*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
//d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
//d_ca_code_16sc = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(int), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
// create multicorrelator class
multicorrelator_fpga_8sc = std::make_shared<fpga_multicorrelator_8sc>(d_n_correlator_taps, device_name, device_base);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
multicorrelator_fpga_8sc->set_output_vectors(d_correlator_outs);
}
void Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
//printf("TRK : start tracking for satellite %d\n", d_acquisition_gnss_synchro->PRN);
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
//gps_l1_ca_code_gen_float(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
//gps_l1_ca_code_gen_int(d_ca_code_16sc, d_acquisition_gnss_synchro->PRN, 0);
/* for (int n = 0; n < static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS); n++)
{
d_ca_code_16sc[n] = d_ca_code[n];
} */
//multicorrelator_fpga_8sc->set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips, d_acquisition_gnss_synchro->PRN);
multicorrelator_fpga_8sc->set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_local_code_shift_chips, d_acquisition_gnss_synchro->PRN);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true; //do it in the end to avoid starting running tracking before finishing this function
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::~Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
delete[] d_Prompt_buffer;
multicorrelator_fpga_8sc->free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
unsigned absolute_samples_offset;
// process vars
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
int next_prn_length_samples = d_current_prn_length_samples;
// Block input data and block output stream pointers
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
d_pull_in = false;
multicorrelator_fpga_8sc->lock_channel();
unsigned counter_value = multicorrelator_fpga_8sc->read_sample_counter();
unsigned num_frames = ceil((counter_value - current_synchro_data.Acq_samplestamp_samples - current_synchro_data.Acq_delay_samples) / d_correlation_length_samples);
absolute_samples_offset = current_synchro_data.Acq_delay_samples + current_synchro_data.Acq_samplestamp_samples + num_frames * d_correlation_length_samples;
multicorrelator_fpga_8sc->set_initial_sample(absolute_samples_offset);
d_sample_counter = absolute_samples_offset;
current_synchro_data.Tracking_sample_counter = absolute_samples_offset;
}
else
{
// continue as from the previous point
d_sample_counter = d_sample_counter_next;
}
d_sample_counter_next = d_sample_counter + d_current_prn_length_samples;
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_fpga_8sc->Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad, d_carrier_phase_step_rad,
d_rem_code_phase_chips, d_code_phase_step_chips,
d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_TWO_PI; // prompt output
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] //early and late
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); // [chips/second]
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
next_prn_length_samples = round(K_blk_samples);
//################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
// carrier phase accumulator
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples;
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - next_prn_length_samples; // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
multicorrelator_fpga_8sc->unlock_channel();
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.System = {'G'};
current_synchro_data.correlation_length_ms = 1;
}
//assign the GNURadio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_enable_tracking == true) // in the FPGA case dump data only when tracking is enabled, otherwise the dumped data is useless
{
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
unsigned long int tmp_long;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
tmp_long = d_sample_counter + d_current_prn_length_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_long), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
// PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double));
// DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
}
d_current_prn_length_samples = next_prn_length_samples;
d_sample_counter += d_current_prn_length_samples; // count for the processed samples
if (d_enable_tracking == true)
{
return 1;
}
else
{
return 0;
}
}
void Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::set_channel(unsigned int channel)
{
d_channel = channel;
multicorrelator_fpga_8sc->set_channel(d_channel);
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}
void Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc::reset(void)
{
multicorrelator_fpga_8sc->unlock_channel();
}

View File

@ -1,188 +0,0 @@
/*!
* \file gps_l1_ca_dll_pll_tracking_cc.h
* \brief Interface of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
* Cillian O'Driscoll, 2017. cillian.odriscoll(at)gmail.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_SC_H
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_SC_H
#include "gps_sdr_signal_processing.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "fpga_multicorrelator_8sc.h"
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/block.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <fstream>
#include <map>
#include <string>
class Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc;
typedef boost::shared_ptr<Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc>
gps_l1_ca_dll_pll_tracking_fpga_sc_sptr;
gps_l1_ca_dll_pll_tracking_fpga_sc_sptr
gps_l1_ca_dll_pll_make_tracking_fpga_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
std::string device_name,
unsigned int device_base);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc : public gr::block
{
public:
~Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void reset(void);
private:
friend gps_l1_ca_dll_pll_tracking_fpga_sc_sptr
gps_l1_ca_dll_pll_make_tracking_fpga_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
std::string device_name,
unsigned int device_base);
Gps_L1_Ca_Dll_Pll_Tracking_fpga_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
std::string device_name,
unsigned int device_base);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
//float* d_ca_code;
//int* d_ca_code_16sc;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
std::shared_ptr<fpga_multicorrelator_8sc> multicorrelator_fpga_8sc;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
//PRN period in samples
int d_current_prn_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
// extra
int d_correlation_length_samples;
unsigned long int d_sample_counter_next;
double d_rem_carrier_phase_rad;
double d_K_blk_samples_previous;
int d_offset_sample_previous;
};
#endif //GNSS_SDR_GPS_L1_CA_DLL_PLL_TRACKING_FPGA_SC_H

View File

@ -46,7 +46,7 @@ set(TRACKING_LIB_SOURCES
) )
if(ENABLE_FPGA) if(ENABLE_FPGA)
SET(TRACKING_LIB_SOURCES ${TRACKING_LIB_SOURCES} fpga_multicorrelator_8sc.cc) SET(TRACKING_LIB_SOURCES ${TRACKING_LIB_SOURCES} fpga_multicorrelator.cc)
endif(ENABLE_FPGA) endif(ENABLE_FPGA)
include_directories( include_directories(

View File

@ -34,8 +34,10 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "fpga_multicorrelator_8sc.h" #include "fpga_multicorrelator.h"
#include <cmath> #include <cmath>
// FPGA stuff // FPGA stuff
#include <new> #include <new>
@ -65,7 +67,7 @@
// constants // constants
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "gps_sdr_signal_processing.h" //#include "gps_sdr_signal_processing.h"
#define NUM_PRNs 32 #define NUM_PRNs 32
#define PAGE_SIZE 0x10000 #define PAGE_SIZE 0x10000
@ -73,7 +75,7 @@
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20 #define CODE_RESAMPLER_NUM_BITS_PRECISION 20
#define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION #define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION
#define pwrtwo(x) (1 << (x)) #define pwrtwo(x) (1 << (x))
#define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS #define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS
#define PHASE_CARR_NBITS 32 #define PHASE_CARR_NBITS 32
#define PHASE_CARR_NBITS_INT 1 #define PHASE_CARR_NBITS_INT 1
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT #define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
@ -84,7 +86,7 @@
int fpga_multicorrelator_8sc::read_sample_counter() int fpga_multicorrelator_8sc::read_sample_counter()
{ {
return d_map_base[7]; return d_map_base[7];
} }
void fpga_multicorrelator_8sc::set_initial_sample(int samples_offset) void fpga_multicorrelator_8sc::set_initial_sample(int samples_offset)
@ -94,14 +96,15 @@ void fpga_multicorrelator_8sc::set_initial_sample(int samples_offset)
} }
void fpga_multicorrelator_8sc::set_local_code_and_taps(int code_length_chips, void fpga_multicorrelator_8sc::set_local_code_and_taps(int code_length_chips,
float *shifts_chips, int PRN) float *shifts_chips, int PRN)
{ {
d_shifts_chips = shifts_chips; d_shifts_chips = shifts_chips;
d_code_length_chips = code_length_chips; d_code_length_chips = code_length_chips;
fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(PRN); fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(PRN);
} }
void fpga_multicorrelator_8sc::set_output_vectors(gr_complex *corr_out) void fpga_multicorrelator_8sc::set_output_vectors(gr_complex* corr_out)
{ {
d_corr_out = corr_out; d_corr_out = corr_out;
} }
@ -113,18 +116,21 @@ void fpga_multicorrelator_8sc::update_local_code(float rem_code_phase_chips)
fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(); fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga();
} }
void fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler( void fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad, float phase_step_rad, float rem_carrier_phase_in_rad, float phase_step_rad,
float rem_code_phase_chips, float code_phase_step_chips, float rem_code_phase_chips, float code_phase_step_chips,
int signal_length_samples) int signal_length_samples)
{ {
update_local_code(rem_code_phase_chips); update_local_code(rem_code_phase_chips);
d_rem_carrier_phase_in_rad = rem_carrier_phase_in_rad; d_rem_carrier_phase_in_rad = rem_carrier_phase_in_rad;
d_code_phase_step_chips = code_phase_step_chips; d_code_phase_step_chips = code_phase_step_chips;
d_phase_step_rad = phase_step_rad; d_phase_step_rad = phase_step_rad;
d_correlator_length_samples = signal_length_samples; d_correlator_length_samples = signal_length_samples;
fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(); fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga();
fpga_multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga(); fpga_multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga();
fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga(); fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga();
int irq_count; int irq_count;
ssize_t nb; ssize_t nb;
@ -137,9 +143,8 @@ void fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
fpga_multicorrelator_8sc::read_tracking_gps_results(); fpga_multicorrelator_8sc::read_tracking_gps_results();
} }
fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int n_correlators, fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int n_correlators,
std::string device_name, unsigned int device_base) std::string device_name, unsigned int device_base, int *ca_codes, unsigned int code_length)
{ {
d_n_correlators = n_correlators; d_n_correlators = n_correlators;
d_device_name = device_name; d_device_name = device_name;
@ -148,10 +153,10 @@ fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int n_correlators,
d_map_base = nullptr; d_map_base = nullptr;
// instantiate variable length vectors // instantiate variable length vectors
d_initial_index = static_cast<unsigned *>(volk_gnsssdr_malloc( d_initial_index = static_cast<unsigned*>(volk_gnsssdr_malloc(
n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment())); n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
d_initial_interp_counter = static_cast<unsigned *>(volk_gnsssdr_malloc( d_initial_interp_counter = static_cast<unsigned*>(volk_gnsssdr_malloc(
n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment())); n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
//d_local_code_in = nullptr; //d_local_code_in = nullptr;
d_shifts_chips = nullptr; d_shifts_chips = nullptr;
@ -165,21 +170,24 @@ fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int n_correlators,
d_phase_step_rad_int = 0; d_phase_step_rad_int = 0;
d_initial_sample_counter = 0; d_initial_sample_counter = 0;
d_channel = 0; d_channel = 0;
d_correlator_length_samples = 0; d_correlator_length_samples = 0,
d_code_length = code_length;
// pre-compute all the codes // pre-compute all the codes
d_ca_codes = static_cast<int *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment())); // d_ca_codes = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS*NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment()));
for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++) // for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++)
{ // {
gps_l1_ca_code_gen_int(&d_ca_codes[(int(GPS_L1_CA_CODE_LENGTH_CHIPS)) * (PRN - 1)], PRN, 0); // gps_l1_ca_code_gen_int(&d_ca_codes[(int(GPS_L1_CA_CODE_LENGTH_CHIPS)) * (PRN - 1)], PRN, 0);
} // }
d_ca_codes = ca_codes;
DLOG(INFO) << "TRACKING FPGA CLASS CREATED"; DLOG(INFO) << "TRACKING FPGA CLASS CREATED";
} }
fpga_multicorrelator_8sc::~fpga_multicorrelator_8sc() fpga_multicorrelator_8sc::~fpga_multicorrelator_8sc()
{ {
delete[] d_ca_codes; delete[] d_ca_codes;
close_device(); close_device();
} }
@ -208,7 +216,7 @@ bool fpga_multicorrelator_8sc::free()
void fpga_multicorrelator_8sc::set_channel(unsigned int channel) void fpga_multicorrelator_8sc::set_channel(unsigned int channel)
{ {
char device_io_name[MAX_LENGTH_DEVICEIO_NAME]; // driver io name char device_io_name[MAX_LENGTH_DEVICEIO_NAME]; // driver io name
d_channel = channel; d_channel = channel;
// open the device corresponding to the assigned channel // open the device corresponding to the assigned channel
@ -223,12 +231,12 @@ void fpga_multicorrelator_8sc::set_channel(unsigned int channel)
LOG(WARNING) << "Cannot open deviceio" << device_io_name; LOG(WARNING) << "Cannot open deviceio" << device_io_name;
} }
d_map_base = reinterpret_cast<volatile unsigned *>(mmap(NULL, PAGE_SIZE, d_map_base = reinterpret_cast<volatile unsigned *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_device_descriptor, 0)); PROT_READ | PROT_WRITE, MAP_SHARED, d_device_descriptor, 0));
if (d_map_base == reinterpret_cast<void *>(-1)) if (d_map_base == reinterpret_cast<void*>(-1))
{ {
LOG(WARNING) << "Cannot map the FPGA tracking module " LOG(WARNING) << "Cannot map the FPGA tracking module "
<< d_channel << "into user memory"; << d_channel << "into user memory";
} }
// sanity check : check test register // sanity check : check test register
@ -247,7 +255,7 @@ void fpga_multicorrelator_8sc::set_channel(unsigned int channel)
unsigned fpga_multicorrelator_8sc::fpga_acquisition_test_register( unsigned fpga_multicorrelator_8sc::fpga_acquisition_test_register(
unsigned writeval) unsigned writeval)
{ {
unsigned readval; unsigned readval;
// write value to test register // write value to test register
@ -272,7 +280,7 @@ void fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(int PRN)
for (k = 0; k < d_code_length_chips; k++) for (k = 0; k < d_code_length_chips; k++)
{ {
//if (d_local_code_in[k] == 1) //if (d_local_code_in[k] == 1)
if (d_ca_codes[((int(GPS_L1_CA_CODE_LENGTH_CHIPS)) * (PRN - 1)) + k] == 1) if (d_ca_codes[((int(d_code_length)) * (PRN - 1)) + k] == 1)
{ {
code_chip = 1; code_chip = 1;
} }
@ -281,9 +289,11 @@ void fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(int PRN)
code_chip = 0; code_chip = 0;
} }
// copy the local code to the FPGA memory one by one // copy the local code to the FPGA memory one by one
d_map_base[11] = LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY | code_chip | select_fpga_correlator; d_map_base[11] = LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY
| code_chip | select_fpga_correlator;
} }
select_fpga_correlator = select_fpga_correlator + LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT; select_fpga_correlator = select_fpga_correlator
+ LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT;
} }
} }
@ -296,20 +306,20 @@ void fpga_multicorrelator_8sc::fpga_compute_code_shift_parameters(void)
for (i = 0; i < d_n_correlators; i++) for (i = 0; i < d_n_correlators; i++)
{ {
temp_calculation = floor( temp_calculation = floor(
d_shifts_chips[i] - d_rem_code_phase_chips); d_shifts_chips[i] - d_rem_code_phase_chips);
if (temp_calculation < 0) if (temp_calculation < 0)
{ {
temp_calculation = temp_calculation + d_code_length_chips; // % operator does not work as in Matlab with negative numbers temp_calculation = temp_calculation + d_code_length_chips; // % operator does not work as in Matlab with negative numbers
} }
d_initial_index[i] = static_cast<unsigned>((static_cast<int>(temp_calculation)) % d_code_length_chips); d_initial_index[i] = static_cast<unsigned>( (static_cast<int>(temp_calculation)) % d_code_length_chips);
temp_calculation = fmod(d_shifts_chips[i] - d_rem_code_phase_chips, temp_calculation = fmod(d_shifts_chips[i] - d_rem_code_phase_chips,
1.0); 1.0);
if (temp_calculation < 0) if (temp_calculation < 0)
{ {
temp_calculation = temp_calculation + 1.0; // fmod operator does not work as in Matlab with negative numbers temp_calculation = temp_calculation + 1.0; // fmod operator does not work as in Matlab with negative numbers
} }
d_initial_interp_counter[i] = static_cast<unsigned>(floor(MAX_CODE_RESAMPLER_COUNTER * temp_calculation)); d_initial_interp_counter[i] = static_cast<unsigned>( floor( MAX_CODE_RESAMPLER_COUNTER * temp_calculation));
} }
} }
@ -322,7 +332,7 @@ void fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(void)
d_map_base[1 + i] = d_initial_index[i]; d_map_base[1 + i] = d_initial_index[i];
d_map_base[1 + d_n_correlators + i] = d_initial_interp_counter[i]; d_map_base[1 + d_n_correlators + i] = d_initial_interp_counter[i];
} }
d_map_base[8] = d_code_length_chips - 1; // number of samples - 1 d_map_base[8] = d_code_length_chips - 1; // number of samples - 1
} }
@ -330,27 +340,30 @@ void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
{ {
float d_rem_carrier_phase_in_rad_temp; float d_rem_carrier_phase_in_rad_temp;
d_code_phase_step_chips_num = static_cast<unsigned>(roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips)); d_code_phase_step_chips_num = static_cast<unsigned>( roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips));
if (d_rem_carrier_phase_in_rad > M_PI) if (d_rem_carrier_phase_in_rad > M_PI)
{ {
d_rem_carrier_phase_in_rad_temp = -2 * M_PI + d_rem_carrier_phase_in_rad; d_rem_carrier_phase_in_rad_temp = -2 * M_PI
+ d_rem_carrier_phase_in_rad;
} }
else if (d_rem_carrier_phase_in_rad < -M_PI) else if (d_rem_carrier_phase_in_rad < -M_PI)
{ {
d_rem_carrier_phase_in_rad_temp = 2 * M_PI + d_rem_carrier_phase_in_rad; d_rem_carrier_phase_in_rad_temp = 2 * M_PI
+ d_rem_carrier_phase_in_rad;
} }
else else
{ {
d_rem_carrier_phase_in_rad_temp = d_rem_carrier_phase_in_rad; d_rem_carrier_phase_in_rad_temp = d_rem_carrier_phase_in_rad;
} }
d_rem_carr_phase_rad_int = static_cast<int>(roundf( d_rem_carr_phase_rad_int = static_cast<int>( roundf(
(fabs(d_rem_carrier_phase_in_rad_temp) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC))); (fabs(d_rem_carrier_phase_in_rad_temp) / M_PI)
* pow(2, PHASE_CARR_NBITS_FRAC)));
if (d_rem_carrier_phase_in_rad_temp < 0) if (d_rem_carrier_phase_in_rad_temp < 0)
{ {
d_rem_carr_phase_rad_int = -d_rem_carr_phase_rad_int; d_rem_carr_phase_rad_int = -d_rem_carr_phase_rad_int;
} }
d_phase_step_rad_int = static_cast<int>(roundf( d_phase_step_rad_int = static_cast<int>( roundf(
(fabs(d_phase_step_rad) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC))); // the FPGA accepts a range for the phase step between -pi and +pi (fabs(d_phase_step_rad) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC))); // the FPGA accepts a range for the phase step between -pi and +pi
if (d_phase_step_rad < 0) if (d_phase_step_rad < 0)
{ {
@ -372,9 +385,9 @@ void fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga(void)
{ {
// enable interrupts // enable interrupts
int reenable = 1; int reenable = 1;
write(d_device_descriptor, reinterpret_cast<void *>(&reenable), sizeof(int)); write(d_device_descriptor, reinterpret_cast<void*>(&reenable), sizeof(int));
// writing 1 to reg 14 launches the tracking // writing 1 to reg 14 launches the tracking
d_map_base[14] = 1; d_map_base[14] = 1;
} }
@ -388,17 +401,17 @@ void fpga_multicorrelator_8sc::read_tracking_gps_results(void)
for (k = 0; k < d_n_correlators; k++) for (k = 0; k < d_n_correlators; k++)
{ {
readval_real = d_map_base[1 + k]; readval_real = d_map_base[1 + k];
if (readval_real >= 1048576) // 0x100000 (21 bits two's complement) if (readval_real >= 1048576) // 0x100000 (21 bits two's complement)
{ {
readval_real = -2097152 + readval_real; readval_real = -2097152 + readval_real;
} }
readval_imag = d_map_base[1 + d_n_correlators + k]; readval_imag = d_map_base[1 + d_n_correlators + k];
if (readval_imag >= 1048576) // 0x100000 (21 bits two's complement) if (readval_imag >= 1048576) // 0x100000 (21 bits two's complement)
{ {
readval_imag = -2097152 + readval_imag; readval_imag = -2097152 + readval_imag;
} }
d_corr_out[k] = gr_complex(readval_real, readval_imag); d_corr_out[k] = gr_complex(readval_real,readval_imag);
} }
} }
@ -406,18 +419,17 @@ void fpga_multicorrelator_8sc::read_tracking_gps_results(void)
void fpga_multicorrelator_8sc::unlock_channel(void) void fpga_multicorrelator_8sc::unlock_channel(void)
{ {
// unlock the channel to let the next samples go through // unlock the channel to let the next samples go through
d_map_base[12] = 1; // unlock the channel d_map_base[12] = 1; // unlock the channel
} }
void fpga_multicorrelator_8sc::close_device() void fpga_multicorrelator_8sc::close_device()
{ {
unsigned *aux = const_cast<unsigned *>(d_map_base); unsigned * aux = const_cast<unsigned*>(d_map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1) if (munmap(static_cast<void*>(aux), PAGE_SIZE) == -1)
{ {
printf("Failed to unmap memory uio\n"); printf("Failed to unmap memory uio\n");
} }
/* else /* else
{ {
printf("memory uio unmapped\n"); printf("memory uio unmapped\n");
} */ } */
@ -428,20 +440,19 @@ void fpga_multicorrelator_8sc::close_device()
void fpga_multicorrelator_8sc::lock_channel(void) void fpga_multicorrelator_8sc::lock_channel(void)
{ {
// lock the channel for processing // lock the channel for processing
d_map_base[12] = 0; // lock the channel d_map_base[12] = 0; // lock the channel
} }
void fpga_multicorrelator_8sc::read_sample_counters(int *sample_counter, int *secondary_sample_counter, int *counter_corr_0_in, int *counter_corr_0_out) void fpga_multicorrelator_8sc::read_sample_counters(int *sample_counter, int *secondary_sample_counter, int *counter_corr_0_in, int *counter_corr_0_out)
{ {
*sample_counter = d_map_base[11]; *sample_counter = d_map_base[11];
*secondary_sample_counter = d_map_base[8]; *secondary_sample_counter = d_map_base[8];
*counter_corr_0_in = d_map_base[10]; *counter_corr_0_in = d_map_base[10];
*counter_corr_0_out = d_map_base[9]; *counter_corr_0_out = d_map_base[9];
}
}
void fpga_multicorrelator_8sc::reset_multicorrelator(void) void fpga_multicorrelator_8sc::reset_multicorrelator(void)
{ {
d_map_base[14] = 2; // writing a 2 to d_map_base[14] resets the multicorrelator d_map_base[14] = 2; // writing a 2 to d_map_base[14] resets the multicorrelator
} }

View File

@ -49,46 +49,46 @@ class fpga_multicorrelator_8sc
{ {
public: public:
fpga_multicorrelator_8sc(int n_correlators, std::string device_name, fpga_multicorrelator_8sc(int n_correlators, std::string device_name,
unsigned int device_base); unsigned int device_base, int *ca_codes, unsigned int code_length);
~fpga_multicorrelator_8sc(); ~fpga_multicorrelator_8sc();
//bool set_output_vectors(gr_complex* corr_out); //bool set_output_vectors(gr_complex* corr_out);
void set_output_vectors(gr_complex *corr_out); void set_output_vectors(gr_complex* corr_out);
// bool set_local_code_and_taps( // bool set_local_code_and_taps(
// int code_length_chips, const int* local_code_in, // int code_length_chips, const int* local_code_in,
// float *shifts_chips, int PRN); // float *shifts_chips, int PRN);
//bool set_local_code_and_taps( //bool set_local_code_and_taps(
void set_local_code_and_taps( void set_local_code_and_taps(
int code_length_chips, int code_length_chips,
float *shifts_chips, int PRN); float *shifts_chips, int PRN);
//bool set_output_vectors(lv_16sc_t* corr_out); //bool set_output_vectors(lv_16sc_t* corr_out);
void update_local_code(float rem_code_phase_chips); void update_local_code(float rem_code_phase_chips);
//bool Carrier_wipeoff_multicorrelator_resampler( //bool Carrier_wipeoff_multicorrelator_resampler(
void Carrier_wipeoff_multicorrelator_resampler( void Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad, float phase_step_rad, float rem_carrier_phase_in_rad, float phase_step_rad,
float rem_code_phase_chips, float code_phase_step_chips, float rem_code_phase_chips, float code_phase_step_chips,
int signal_length_samples); int signal_length_samples);bool free();
bool free();
void set_channel(unsigned int channel); void set_channel(unsigned int channel);
void set_initial_sample(int samples_offset); void set_initial_sample(int samples_offset);
int read_sample_counter(); int read_sample_counter();
void lock_channel(void); void lock_channel(void);
void unlock_channel(void); void unlock_channel(void);
void read_sample_counters(int *sample_counter, int *secondary_sample_counter, int *counter_corr_0_in, int *counter_corr_0_out); // debug void read_sample_counters(int *sample_counter, int *secondary_sample_counter, int *counter_corr_0_in, int *counter_corr_0_out); // debug
private: private:
//const int *d_local_code_in; //const int *d_local_code_in;
gr_complex *d_corr_out; gr_complex * d_corr_out;
float *d_shifts_chips; float *d_shifts_chips;
int d_code_length_chips; int d_code_length_chips;
int d_n_correlators; int d_n_correlators;
// data related to the hardware module and the driver // data related to the hardware module and the driver
int d_device_descriptor; // driver descriptor int d_device_descriptor; // driver descriptor
volatile unsigned *d_map_base; // driver memory map volatile unsigned *d_map_base; // driver memory map
// configuration data received from the interface // configuration data received from the interface
unsigned int d_channel; // channel number unsigned int d_channel; // channel number
unsigned d_ncorrelators; // number of correlators unsigned d_ncorrelators; // number of correlators
unsigned d_correlator_length_samples; unsigned d_correlator_length_samples;
float d_rem_code_phase_chips; float d_rem_code_phase_chips;
float d_code_phase_step_chips; float d_code_phase_step_chips;
@ -107,7 +107,10 @@ private:
std::string d_device_name; std::string d_device_name;
unsigned int d_device_base; unsigned int d_device_base;
int *d_ca_codes;
int* d_ca_codes;
unsigned int d_code_length; // nominal number of chips
// private functions // private functions
unsigned fpga_acquisition_test_register(unsigned writeval); unsigned fpga_acquisition_test_register(unsigned writeval);
@ -118,8 +121,11 @@ private:
void fpga_configure_signal_parameters_in_fpga(void); void fpga_configure_signal_parameters_in_fpga(void);
void fpga_launch_multicorrelator_fpga(void); void fpga_launch_multicorrelator_fpga(void);
void read_tracking_gps_results(void); void read_tracking_gps_results(void);
void reset_multicorrelator(void); void reset_multicorrelator(void);
void close_device(void); void close_device(void);
// debug
//unsigned int first_time = 1;
}; };
#endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */ #endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */

View File

@ -36,8 +36,8 @@
#include <iostream> #include <iostream>
#include <unistd.h> #include <unistd.h>
#include <armadillo> #include <armadillo>
#include <boost/thread.hpp> // to test the FPGA we have to create a simultaneous task to send the samples using the DMA and stop the test #include <boost/thread.hpp>// to test the FPGA we have to create a simultaneous task to send the samples using the DMA and stop the test
#include <stdio.h> // FPGA read input file #include <stdio.h>// FPGA read input file
#include <gnuradio/top_block.h> #include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h> #include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h> #include <gnuradio/analog/sig_source_waveform.h>
@ -61,17 +61,17 @@
#include "signal_generator_flags.h" #include "signal_generator_flags.h"
#include "interleaved_byte_to_complex_short.h" #include "interleaved_byte_to_complex_short.h"
#define DMA_TRACK_TRANSFER_SIZE 2046 // DMA transfer size for tracking #define DMA_TRACK_TRANSFER_SIZE 2046 // DMA transfer size for tracking
#define MIN_SAMPLES_REMAINING 20000 // number of remaining samples in the DMA that causes the CPU to stop the flowgraph (it has to be a bit alrger than 2x max packet size) #define MIN_SAMPLES_REMAINING 20000 // number of remaining samples in the DMA that causes the CPU to stop the flowgraph (it has to be a bit alrger than 2x max packet size)
#define FIVE_SECONDS 5000000 // five seconds in microseconds #define FIVE_SECONDS 5000000 // five seconds in microseconds
void send_tracking_gps_input_samples(FILE *rx_signal_file, void send_tracking_gps_input_samples(FILE *rx_signal_file,
int num_remaining_samples, gr::top_block_sptr top_block) int num_remaining_samples, gr::top_block_sptr top_block)
{ {
int num_samples_transferred = 0; // number of samples that have been transferred to the DMA so far int num_samples_transferred = 0; // number of samples that have been transferred to the DMA so far
static int flowgraph_stopped = 0; // flag to indicate if the flowgraph is stopped already static int flowgraph_stopped = 0; // flag to indicate if the flowgraph is stopped already
char *buffer_DMA; // temporary buffer to store the samples to be sent to the DMA char *buffer_DMA; // temporary buffer to store the samples to be sent to the DMA
int dma_descr; // DMA descriptor int dma_descr; // DMA descriptor
dma_descr = open("/dev/loop_tx", O_WRONLY); dma_descr = open("/dev/loop_tx", O_WRONLY);
if (dma_descr < 0) if (dma_descr < 0)
{ {
@ -79,7 +79,7 @@ void send_tracking_gps_input_samples(FILE *rx_signal_file,
exit(1); exit(1);
} }
buffer_DMA = (char *)malloc(DMA_TRACK_TRANSFER_SIZE); buffer_DMA = (char *) malloc(DMA_TRACK_TRANSFER_SIZE);
if (!buffer_DMA) if (!buffer_DMA)
{ {
fprintf(stderr, "Memory error!"); fprintf(stderr, "Memory error!");
@ -98,7 +98,8 @@ void send_tracking_gps_input_samples(FILE *rx_signal_file,
} }
if (num_remaining_samples > DMA_TRACK_TRANSFER_SIZE) if (num_remaining_samples > DMA_TRACK_TRANSFER_SIZE)
{ {
fread(buffer_DMA, DMA_TRACK_TRANSFER_SIZE, 1, rx_signal_file);
fread(buffer_DMA, DMA_TRACK_TRANSFER_SIZE, 1,rx_signal_file);
assert(DMA_TRACK_TRANSFER_SIZE == write(dma_descr, &buffer_DMA[0], DMA_TRACK_TRANSFER_SIZE)); assert(DMA_TRACK_TRANSFER_SIZE == write(dma_descr, &buffer_DMA[0], DMA_TRACK_TRANSFER_SIZE));
num_remaining_samples = num_remaining_samples - DMA_TRACK_TRANSFER_SIZE; num_remaining_samples = num_remaining_samples - DMA_TRACK_TRANSFER_SIZE;
@ -120,11 +121,11 @@ void send_tracking_gps_input_samples(FILE *rx_signal_file,
// thread that sends the samples to the FPGA // thread that sends the samples to the FPGA
void thread(gr::top_block_sptr top_block, const char *file_name) void thread(gr::top_block_sptr top_block, const char * file_name)
{ {
// file descriptor // file descriptor
FILE *rx_signal_file; // file descriptor FILE *rx_signal_file; // file descriptor
int file_length; // length of the file containing the received samples int file_length; // length of the file containing the received samples
rx_signal_file = fopen(file_name, "rb"); rx_signal_file = fopen(file_name, "rb");
if (!rx_signal_file) if (!rx_signal_file)
@ -136,7 +137,7 @@ void thread(gr::top_block_sptr top_block, const char *file_name)
file_length = ftell(rx_signal_file); file_length = ftell(rx_signal_file);
fseek(rx_signal_file, 0, SEEK_SET); fseek(rx_signal_file, 0, SEEK_SET);
usleep(FIVE_SECONDS); // wait for some time to give time to the other thread to program the device usleep(FIVE_SECONDS); // wait for some time to give time to the other thread to program the device
//send_tracking_gps_input_samples(dma_descr, rx_signal_file, file_length); //send_tracking_gps_input_samples(dma_descr, rx_signal_file, file_length);
send_tracking_gps_input_samples(rx_signal_file, file_length, top_block); send_tracking_gps_input_samples(rx_signal_file, file_length, top_block);
@ -162,14 +163,14 @@ private:
public: public:
int rx_message; int rx_message;
~GpsL1CADllPllTrackingTestFpga_msg_rx(); //!< Default destructor ~GpsL1CADllPllTrackingTestFpga_msg_rx(); //!< Default destructor
}; };
GpsL1CADllPllTrackingTestFpga_msg_rx_sptr GpsL1CADllPllTrackingTestFpga_msg_rx_make() GpsL1CADllPllTrackingTestFpga_msg_rx_sptr GpsL1CADllPllTrackingTestFpga_msg_rx_make()
{ {
return GpsL1CADllPllTrackingTestFpga_msg_rx_sptr( return GpsL1CADllPllTrackingTestFpga_msg_rx_sptr(
new GpsL1CADllPllTrackingTestFpga_msg_rx()); new GpsL1CADllPllTrackingTestFpga_msg_rx());
} }
@ -180,7 +181,7 @@ void GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
long int message = pmt::to_long(msg); long int message = pmt::to_long(msg);
rx_message = message; rx_message = message;
} }
catch (boost::bad_any_cast &e) catch (boost::bad_any_cast& e)
{ {
LOG(WARNING) << "msg_handler_telemetry Bad any cast!"; LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0; rx_message = 0;
@ -188,22 +189,22 @@ void GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
} }
GpsL1CADllPllTrackingTestFpga_msg_rx::GpsL1CADllPllTrackingTestFpga_msg_rx() : gr::block("GpsL1CADllPllTrackingTestFpga_msg_rx", GpsL1CADllPllTrackingTestFpga_msg_rx::GpsL1CADllPllTrackingTestFpga_msg_rx() :
gr::io_signature::make(0, 0, 0), gr::block("GpsL1CADllPllTrackingTestFpga_msg_rx",
gr::io_signature::make(0, 0, 0)) gr::io_signature::make(0, 0, 0),
gr::io_signature::make(0, 0, 0))
{ {
this->message_port_register_in(pmt::mp("events")); this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), this->set_msg_handler(pmt::mp("events"),
boost::bind( boost::bind(
&GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events, &GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events,
this, _1)); this, _1));
rx_message = 0; rx_message = 0;
} }
GpsL1CADllPllTrackingTestFpga_msg_rx::~GpsL1CADllPllTrackingTestFpga_msg_rx() GpsL1CADllPllTrackingTestFpga_msg_rx::~GpsL1CADllPllTrackingTestFpga_msg_rx()
{ {}
}
// ########################################################### // ###########################################################
@ -225,12 +226,12 @@ public:
int configure_generator(); int configure_generator();
int generate_signal(); int generate_signal();
void check_results_doppler(arma::vec &true_time_s, arma::vec &true_value, void check_results_doppler(arma::vec & true_time_s, arma::vec & true_value,
arma::vec &meas_time_s, arma::vec &meas_value); arma::vec & meas_time_s, arma::vec & meas_value);
void check_results_acc_carrier_phase(arma::vec &true_time_s, void check_results_acc_carrier_phase(arma::vec & true_time_s,
arma::vec &true_value, arma::vec &meas_time_s, arma::vec &meas_value); arma::vec & true_value, arma::vec & meas_time_s, arma::vec & meas_value);
void check_results_codephase(arma::vec &true_time_s, arma::vec &true_value, void check_results_codephase(arma::vec & true_time_s, arma::vec & true_value,
arma::vec &meas_time_s, arma::vec &meas_value); arma::vec & meas_time_s, arma::vec & meas_value);
GpsL1CADllPllTrackingTestFpga() GpsL1CADllPllTrackingTestFpga()
{ {
@ -262,15 +263,16 @@ int GpsL1CADllPllTrackingTestFpga::configure_generator()
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file; p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty()) if (FLAGS_dynamic_position.empty())
{ {
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10); p2 = std::string("-static_position=") + FLAGS_static_position
+ std::string(",") + std::to_string(FLAGS_duration * 10);
} }
else else
{ {
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position); p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
} }
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps] p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
return 0; return 0;
} }
@ -279,8 +281,8 @@ int GpsL1CADllPllTrackingTestFpga::generate_signal()
{ {
int child_status; int child_status;
char *const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], char * const parmList[] = { &generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0],
&p4[0], &p5[0], NULL}; &p4[0], &p5[0], NULL };
int pid; int pid;
if ((pid = fork()) == -1) if ((pid = fork()) == -1)
@ -308,12 +310,12 @@ void GpsL1CADllPllTrackingTestFpga::configure_receiver()
gnss_synchro.PRN = FLAGS_test_satellite_PRN; gnss_synchro.PRN = FLAGS_test_satellite_PRN;
config->set_property("GNSS-SDR.internal_fs_sps", config->set_property("GNSS-SDR.internal_fs_sps",
std::to_string(baseband_sampling_freq)); std::to_string(baseband_sampling_freq));
// Set Tracking // Set Tracking
//config->set_property("Tracking_1C.implementation", //config->set_property("Tracking_1C.implementation",
// "GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga"); // "GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga");
config->set_property("Tracking_1C.implementation", config->set_property("Tracking_1C.implementation",
"GPS_L1_CA_DLL_PLL_Tracking_Fpga"); "GPS_L1_CA_DLL_PLL_Tracking_Fpga");
config->set_property("Tracking_1C.item_type", "cshort"); config->set_property("Tracking_1C.item_type", "cshort");
config->set_property("Tracking_1C.if", "0"); config->set_property("Tracking_1C.if", "0");
config->set_property("Tracking_1C.dump", "true"); config->set_property("Tracking_1C.dump", "true");
@ -326,8 +328,8 @@ void GpsL1CADllPllTrackingTestFpga::configure_receiver()
} }
void GpsL1CADllPllTrackingTestFpga::check_results_doppler(arma::vec &true_time_s, void GpsL1CADllPllTrackingTestFpga::check_results_doppler(arma::vec & true_time_s,
arma::vec &true_value, arma::vec &meas_time_s, arma::vec &meas_value) arma::vec & true_value, arma::vec & meas_time_s, arma::vec & meas_value)
{ {
//1. True value interpolation to match the measurement times //1. True value interpolation to match the measurement times
arma::vec true_value_interp; arma::vec true_value_interp;
@ -360,13 +362,13 @@ void GpsL1CADllPllTrackingTestFpga::check_results_doppler(arma::vec &true_time_s
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var) << ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
<< " (max,min)=" << max_error << "," << min_error << " [Hz]" << " (max,min)=" << max_error << "," << min_error << " [Hz]"
<< std::endl; << std::endl;
std::cout.precision(ss); std::cout.precision (ss);
} }
void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase( void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase(
arma::vec &true_time_s, arma::vec &true_value, arma::vec &meas_time_s, arma::vec & true_time_s, arma::vec & true_value, arma::vec & meas_time_s,
arma::vec &meas_value) arma::vec & meas_value)
{ {
//1. True value interpolation to match the measurement times //1. True value interpolation to match the measurement times
arma::vec true_value_interp; arma::vec true_value_interp;
@ -399,13 +401,13 @@ void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase(
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var) << ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
<< " (max,min)=" << max_error << "," << min_error << " [Hz]" << " (max,min)=" << max_error << "," << min_error << " [Hz]"
<< std::endl; << std::endl;
std::cout.precision(ss); std::cout.precision (ss);
} }
void GpsL1CADllPllTrackingTestFpga::check_results_codephase( void GpsL1CADllPllTrackingTestFpga::check_results_codephase(
arma::vec &true_time_s, arma::vec &true_value, arma::vec &meas_time_s, arma::vec & true_time_s, arma::vec & true_value, arma::vec & meas_time_s,
arma::vec &meas_value) arma::vec & meas_value)
{ {
//1. True value interpolation to match the measurement times //1. True value interpolation to match the measurement times
arma::vec true_value_interp; arma::vec true_value_interp;
@ -437,7 +439,7 @@ void GpsL1CADllPllTrackingTestFpga::check_results_codephase(
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var) << ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
<< " (max,min)=" << max_error << "," << min_error << " [Chips]" << " (max,min)=" << max_error << "," << min_error << " [Chips]"
<< std::endl; << std::endl;
std::cout.precision(ss); std::cout.precision (ss);
} }
@ -461,29 +463,27 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
true_obs_file.append(std::to_string(test_satellite_PRN)); true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat"); true_obs_file.append(".dat");
ASSERT_NO_THROW( ASSERT_NO_THROW(
{
if (true_obs_data.open_obs_file(true_obs_file) == false)
{ {
throw std::exception(); if (true_obs_data.open_obs_file(true_obs_file) == false)
}; {
}) throw std::exception();
<< "Failure opening true observables file"; };
}) << "Failure opening true observables file";
top_block = gr::make_top_block("Tracking test"); top_block = gr::make_top_block("Tracking test");
//std::shared_ptr<GpsL1CaDllPllCAidTrackingFpga> tracking = std::make_shared<GpsL1CaDllPllCAidTrackingFpga> (config.get(), "Tracking_1C", 1, 1); //std::shared_ptr<GpsL1CaDllPllCAidTrackingFpga> tracking = std::make_shared<GpsL1CaDllPllCAidTrackingFpga> (config.get(), "Tracking_1C", 1, 1);
std::shared_ptr<GpsL1CaDllPllTrackingFpga> tracking = std::make_shared<GpsL1CaDllPllTrackingFpga>(config.get(), "Tracking_1C", 1, 1); std::shared_ptr<GpsL1CaDllPllTrackingFpga> tracking = std::make_shared<GpsL1CaDllPllTrackingFpga> (config.get(), "Tracking_1C", 1, 1);
boost::shared_ptr<GpsL1CADllPllTrackingTestFpga_msg_rx> msg_rx = GpsL1CADllPllTrackingTestFpga_msg_rx_make(); boost::shared_ptr<GpsL1CADllPllTrackingTestFpga_msg_rx> msg_rx = GpsL1CADllPllTrackingTestFpga_msg_rx_make();
// load acquisition data based on the first epoch of the true observations // load acquisition data based on the first epoch of the true observations
ASSERT_NO_THROW( ASSERT_NO_THROW(
{
if (true_obs_data.read_binary_obs() == false)
{ {
throw std::exception(); if (true_obs_data.read_binary_obs() == false)
}; {
}) throw std::exception();
<< "Failure reading true observables file"; };
}) << "Failure reading true observables file";
//restart the epoch counter //restart the epoch counter
true_obs_data.restart(); true_obs_data.restart();
@ -492,54 +492,52 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
<< " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips
<< std::endl; << std::endl;
gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD; gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS
- true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS)
* baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD;
gnss_synchro.Acq_doppler_hz = true_obs_data.doppler_l1_hz; gnss_synchro.Acq_doppler_hz = true_obs_data.doppler_l1_hz;
gnss_synchro.Acq_samplestamp_samples = 0; gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW( ASSERT_NO_THROW(
{ {
tracking->set_channel(gnss_synchro.Channel_ID); tracking->set_channel(gnss_synchro.Channel_ID);
}) }) << "Failure setting channel.";
<< "Failure setting channel.";
ASSERT_NO_THROW( ASSERT_NO_THROW(
{ {
tracking->set_gnss_synchro(&gnss_synchro); tracking->set_gnss_synchro(&gnss_synchro);
}) }) << "Failure setting gnss_synchro.";
<< "Failure setting gnss_synchro.";
ASSERT_NO_THROW( ASSERT_NO_THROW(
{ {
tracking->connect(top_block); tracking->connect(top_block);
}) }) << "Failure connecting tracking to the top_block.";
<< "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( ASSERT_NO_THROW(
{ {
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro)); gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(tracking->get_right_block(), 0, sink, 0); top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) }) << "Failure connecting the blocks of tracking test.";
<< "Failure connecting the blocks of tracking test.";
tracking->start_tracking(); tracking->start_tracking();
// assemble again the file name in a null terminated string (not available by default in the main program flow) // assemble again the file name in a null terminated string (not available by default in the main program flow)
std::string file = "./" + filename_raw_data; std::string file = "./" + filename_raw_data;
const char *file_name = file.c_str(); const char * file_name = file.c_str();
// start thread that sends the DMA samples to the FPGA // start thread that sends the DMA samples to the FPGA
boost::thread t{thread, top_block, file_name}; boost::thread t
{ thread, top_block, file_name };
EXPECT_NO_THROW( EXPECT_NO_THROW(
{ {
start = std::chrono::system_clock::now(); start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait top_block->run(); // Start threads and wait
tracking->reset(); // unlock the channel //tracking->reset();// unlock the channel
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();
elapsed_seconds = end - start; elapsed_seconds = end - start;
}) }) << "Failure running the top_block.";
<< "Failure running the top_block.";
// wait until child thread terminates // wait until child thread terminates
t.join(); t.join();
@ -569,13 +567,12 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
//load the measured values //load the measured values
tracking_dump_reader trk_dump; tracking_dump_reader trk_dump;
ASSERT_NO_THROW( ASSERT_NO_THROW(
{
if (trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")) == false)
{ {
throw std::exception(); if (trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")) == false)
}; {
}) throw std::exception();
<< "Failure opening tracking dump file"; };
}) << "Failure opening tracking dump file";
nepoch = trk_dump.num_epochs(); nepoch = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl; std::cout << "Measured observation epochs=" << nepoch << std::endl;
@ -588,11 +585,14 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
epoch_counter = 0; epoch_counter = 0;
while (trk_dump.read_binary_obs()) while (trk_dump.read_binary_obs())
{ {
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq); trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count)
/ static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI; trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz; trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3); double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS
* (fmod( (static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1)
/ static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips; trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++; epoch_counter++;
@ -600,7 +600,7 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
//Align initial measurements and cut the tracking pull-in transitory //Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0; double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first"); arma::uvec initial_meas_point = arma::find( trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1); trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1); trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
@ -610,8 +610,8 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz); check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips); check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
check_results_acc_carrier_phase(true_timestamp_s, check_results_acc_carrier_phase(true_timestamp_s,
true_acc_carrier_phase_cycles, trk_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s,
trk_acc_carrier_phase_cycles); trk_acc_carrier_phase_cycles);
std::cout << "Signal tracking completed in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl; std::cout << "Signal tracking completed in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
} }