1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 04:00:34 +00:00

Merge branch 'common_solver' of https://github.com/gnss-sdr/gnss-sdr into pvtconsumeall

This commit is contained in:
Carles Fernandez 2017-04-27 13:10:53 +02:00
commit 5fe34321f2
2 changed files with 247 additions and 168 deletions

View File

@ -1,8 +1,7 @@
/*!
* \file hybrid_observables_cc.cc
* \brief Implementation of the pseudorange computation block for Galileo E1
* \author Mara Branzanti 2013. mara.branzanti(at)gmail.com
* \author Javier Arribas 2013. jarribas(at)cttc.es
* \author Javier Arribas 2017. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
@ -39,7 +38,6 @@
#include <armadillo>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
@ -56,39 +54,43 @@ hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_f
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
T_rx_s=0.0;
T_rx_step_s=1e-3;// todo: move to gnss-sdr config
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_acc_carrier_phase_queue_rads.push_back(std::deque<double>(d_nchannels));
d_carrier_doppler_queue_hz.push_back(std::deque<double>(d_nchannels));
d_symbol_TOW_queue_s.push_back(std::deque<double>(d_nchannels));
}
{
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
}
//todo: this is a gnuradio scheduler hack.
// Migrate the queues to gnuradio set_history to see if the scheduler can handle
// the multiple output flow
d_max_noutputs=100;
this->set_min_noutput_items(100);
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
}
}
@ -98,163 +100,219 @@ hybrid_observables_cc::~hybrid_observables_cc()
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW_at_current_symbol(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
}
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
{
return (a.Tracking_sample_counter) < (b);
}
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
return ((double)a.Tracking_sample_counter/(double)a.fs) < (b);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
}
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
return (a.TOW_at_current_symbol_s) < (b);
}
int hybrid_observables_cc::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer
int n_outputs=0;
int n_consume[d_nchannels];
double past_history_s=100e-3;
Gnss_Synchro current_gnss_synchro[d_nchannels];
std::map<int,Gnss_Synchro> current_gnss_synchro_map;
std::map<int,Gnss_Synchro>::iterator gnss_synchro_iter;
if (d_nchannels != ninput_items.size())
{
LOG(WARNING) << "The Observables block is not well connected";
}
/*
* 1. Read the GNSS SYNCHRO objects from available channels
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
n_consume[i]=ninput_items[i];// full throttle
for (int j=0;j<n_consume[i];j++)
{
//Copy the telemetry decoder data to local copy
current_gnss_synchro[i] = in[i][0];
/*
* 1.2 Assume no valid pseudoranges
*/
current_gnss_synchro[i].Flag_valid_pseudorange = false;
current_gnss_synchro[i].Pseudorange_m = 0.0;
if (current_gnss_synchro[i].Flag_valid_word)
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(current_gnss_synchro[i].Channel_ID, current_gnss_synchro[i]));
//################### SAVE DOPPLER AND ACC CARRIER PHASE HISTORIC DATA FOR INTERPOLATION IN OBSERVABLE MODULE #######
d_carrier_doppler_queue_hz[i].push_back(current_gnss_synchro[i].Carrier_Doppler_hz);
d_acc_carrier_phase_queue_rads[i].push_back(current_gnss_synchro[i].Carrier_phase_rads);
// save TOW history
d_symbol_TOW_queue_s[i].push_back(current_gnss_synchro[i].TOW_at_current_symbol_s);
if (d_carrier_doppler_queue_hz[i].size() > history_deep)
{
d_carrier_doppler_queue_hz[i].pop_front();
}
if (d_acc_carrier_phase_queue_rads[i].size() > history_deep)
{
d_acc_carrier_phase_queue_rads[i].pop_front();
}
if (d_symbol_TOW_queue_s[i].size() > history_deep)
{
d_symbol_TOW_queue_s[i].pop_front();
}
}
else
{
// Clear the observables history for this channel
if (d_symbol_TOW_queue_s[i].size() > 0)
{
d_symbol_TOW_queue_s[i].clear();
d_carrier_doppler_queue_hz[i].clear();
d_acc_carrier_phase_queue_rads[i].clear();
}
}
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
}
//std::cout<<"push["<<i<<"] items "<<n_consume[i]
/// <<" latest T_rx: "<<(double)in[i][ninput_items[i]-1].Tracking_sample_counter/(double)in[i][ninput_items[i]-1].fs
// <<" [s] q size: "
// <<d_gnss_synchro_history_queue[i].size()
// <<std::endl;
}
/*
* 2. Compute RAW pseudoranges using COMMON RECEPTION TIME algorithm. Use only the valid channels (channels that are tracking a satellite)
*/
if(current_gnss_synchro_map.size() > 0)
bool channel_history_ok;
do{
channel_history_ok=true;
for (unsigned int i = 0; i < d_nchannels; i++)
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_iter = max_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), Hybrid_pairCompare_gnss_synchro_d_TOW_at_current_symbol);
double d_TOW_reference = gnss_synchro_iter->second.TOW_at_current_symbol_s;
double d_ref_PRN_phase_samples = gnss_synchro_iter->second.Code_phase_samples;
//std::cout<<"OBS SV REF SAT: "<<gnss_synchro_iter->second.PRN<<std::endl;
unsigned long int d_ref_PRN_sample_counter = gnss_synchro_iter->second.Tracking_sample_counter;
if (d_gnss_synchro_history_queue[i].size()<history_deep)
{
channel_history_ok=false;
}
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
int delta_sample_counter;
double delta_sample_counter_s;
double delta_PRN_phase_s;
}
if (channel_history_ok==true)
{
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
//1. If the RX time is not set, set the Rx time
if (T_rx_s==0)
{
//0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front()));
}
gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(),
gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs;
T_rx_s +=past_history_s; //increase T_rx to have a minimum past history to interpolate
}
//2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map;//container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; //container for the previous observable values to interpolate
//shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
d_gnss_synchro_history_queue[i].end(),
T_rx_s,
Hybrid_valueCompare_gnss_synchro_receiver_time);
if (gnss_synchro_deque_iter!=d_gnss_synchro_history_queue[i].end())
{
if (gnss_synchro_deque_iter->Flag_valid_word==true)
{
double T_rx_channel=(double)gnss_synchro_deque_iter->Tracking_sample_counter/(double)gnss_synchro_deque_iter->fs;
double delta_T_rx_s=T_rx_channel-T_rx_s;
//check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s*1000.0<(double)gnss_synchro_deque_iter->correlation_length_ms)
{
//record the word structure in a map for pseudorange computation
//save the previous observable
int distance=std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
if (distance>0)
{
double T_rx_channel_prev=(double)d_gnss_synchro_history_queue[i].at(distance-1).Tracking_sample_counter/(double)gnss_synchro_deque_iter->fs;
double delta_T_rx_s_prev=T_rx_channel_prev-T_rx_s;
if (fabs(delta_T_rx_s_prev)<fabs(delta_T_rx_s))
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
}else{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
}
}else{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
}
}else{
//std::cout<<"ch["<<i<<"] delta_T_rx:"<<delta_T_rx_s*1000.0<<std::endl;
}
}
}
}
if(!realigned_gnss_synchro_map.empty())
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
realigned_gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_PRN_phase_samples = gnss_synchro_map_iter->second.Code_phase_samples;
//std::cout<<"OBS SV REF SAT: "<<gnss_synchro_map_iter->second.PRN<<std::endl;
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double delta_T_rx_s;
double delta_PRN_phase_s;
//std::cout<<"T_rx_s: "<<T_rx_s<<std::endl;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
{
delta_sample_counter = (gnss_synchro_iter->second.Tracking_sample_counter - d_ref_PRN_sample_counter);
delta_sample_counter_s=(double)delta_sample_counter/(double)gnss_synchro_iter->second.fs;
delta_PRN_phase_s = (gnss_synchro_iter->second.Code_phase_samples - d_ref_PRN_phase_samples)/(double)gnss_synchro_iter->second.fs;
delta_T_rx_s = ((double)gnss_synchro_map_iter->second.Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs - T_rx_s);
delta_PRN_phase_s = (gnss_synchro_map_iter->second.Code_phase_samples - d_ref_PRN_phase_samples)/(double)gnss_synchro_map_iter->second.fs;
//compute the pseudorange (no rx time offset correction)
traveltime_ms = (d_TOW_reference - gnss_synchro_iter->second.TOW_at_current_symbol_s) * 1000.0
+ delta_sample_counter_s*1000.0 + delta_PRN_phase_s*1000.0
+ GPS_STARTOFFSET_ms;
traveltime_ms = (d_TOW_reference - gnss_synchro_map_iter->second.TOW_at_current_symbol_s) * 1000.0
+ delta_T_rx_s*1000.0 + delta_PRN_phase_s*1000.0
+ GPS_STARTOFFSET_ms;
//convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
//std::cout<<"["<<gnss_synchro_iter->second.PRN<<"] delta_rx_t: "<<delta_rx_time_ms
// <<" [ms] delta_TOW_ms: "<<(d_TOW_reference - gnss_synchro_iter->second.d_TOW_at_current_symbol) * 1000.0
// <<" Pr: "<<pseudorange_m<<" [m]"
// <<std::endl;
// update the pseudorange object
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].RX_time = d_TOW_reference + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = d_TOW_reference + GPS_STARTOFFSET_ms / 1000.0;
if (d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].size() >= history_deep)
{
arma::vec symbol_TOW_vec_s;
arma::vec dopper_vec_hz;
arma::vec dopper_vec_interp_hz;
arma::vec acc_phase_vec_rads;
arma::vec acc_phase_vec_interp_rads;
arma::vec desired_symbol_TOW(1);
// compute interpolated observation values for Doppler and Accumulate carrier phase
symbol_TOW_vec_s = arma::vec(std::vector<double>(d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].begin(), d_symbol_TOW_queue_s[gnss_synchro_iter->second.Channel_ID].end()));
acc_phase_vec_rads = arma::vec(std::vector<double>(d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].begin(), d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].end()));
dopper_vec_hz = arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
// compute interpolated observation values for Doppler and Accumulate carrier phase
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
int element_key=gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs=adjacent_gnss_synchro_map.at(element_key);
double adj_delta_T_rx_s=((double)adj_obs.Tracking_sample_counter/(double)adj_obs.fs - T_rx_s);
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads+adj_delta_T_rx_s
*(gnss_synchro_map_iter->second.Carrier_phase_rads-adj_obs.Carrier_phase_rads)/(delta_T_rx_s-adj_delta_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz+adj_delta_T_rx_s
*(gnss_synchro_map_iter->second.Carrier_Doppler_hz-adj_obs.Carrier_Doppler_hz)/(delta_T_rx_s-adj_delta_T_rx_s);
desired_symbol_TOW[0] = symbol_TOW_vec_s[history_deep - 1] + delta_sample_counter_s+delta_PRN_phase_s;
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
// Curve fitting to quadratic function
arma::mat A = arma::ones<arma::mat> (history_deep, 2);
A.col(1) = symbol_TOW_vec_s;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
//debug
// double delta_T_rx_s_previous=((double)adjacent_gnss_synchro_map.at(gnss_synchro_map_iter->second.Channel_ID).Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs - T_rx_s);
// std::cout<<"["<<gnss_synchro_map_iter->second.PRN<<"] delta_rx_t: "<<delta_T_rx_s*1000.0
// <<" [ms] (prev: "<<delta_T_rx_s_previous*1000.0<<") delta_TOW_ms: "<<(d_TOW_reference - gnss_synchro_map_iter->second.TOW_at_current_symbol_s) * 1000.0
// <<" Pr: "<<pseudorange_m<<" [m]"
// <<" Doppler estim: "<<gnss_synchro_map_iter->second.Carrier_Doppler_hz
// <<" Doppler inter: "<<Carrier_Doppler_lin_hz
// <<std::endl;
arma::mat coef_acc_phase(1,3);
arma::mat pinv_A = arma::pinv(A.t() * A) * A.t();
coef_acc_phase = pinv_A * acc_phase_vec_rads;
arma::mat coef_doppler(1,3);
coef_doppler = pinv_A * dopper_vec_hz;
arma::vec acc_phase_lin;
arma::vec carrier_doppler_lin;
acc_phase_lin = coef_acc_phase[0] + coef_acc_phase[1] * desired_symbol_TOW[0];
carrier_doppler_lin = coef_doppler[0] + coef_doppler[1] * desired_symbol_TOW[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_phase_rads = acc_phase_lin[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_Doppler_hz = carrier_doppler_lin[0];
}
}
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
//std::cout<<std::endl;
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
@ -269,21 +327,41 @@ int hybrid_observables_cc::general_work (int noutput_items,
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
consume_each(1); //one by one
for (unsigned int i = 0; i < d_nchannels; i++)
{
*out[i] = current_gnss_synchro[i];
for (unsigned int i = 0; i < d_nchannels; i++)
{
out[i][n_outputs] = current_gnss_synchro[i];
}
n_outputs++;
}
//Move RX time
T_rx_s=T_rx_s+T_rx_step_s;
//pop old elements from queue
for (unsigned int i=0; i<d_nchannels;i++)
{
while (d_gnss_synchro_history_queue[i].front().Tracking_sample_counter/(double)d_gnss_synchro_history_queue[i].front().fs<(T_rx_s-past_history_s))
{
d_gnss_synchro_history_queue[i].pop_front();
}
}
}
if (noutput_items == 0)
{
LOG(WARNING) << "noutput_items = 0";
}
return 1;
}while(channel_history_ok==true && d_max_noutputs>n_outputs);
//Multi-rate consume!
for (unsigned int i=0; i<d_nchannels;i++)
{
consume(i,n_consume[i]); //which input, how many items
}
//std::cout<<"OBS noutput_items: "<<noutput_items<<std::endl;
return n_outputs;
}

View File

@ -36,6 +36,7 @@
#include <fstream>
#include <string>
#include <gnuradio/block.h>
#include "gnss_synchro.h"
class hybrid_observables_cc;
@ -61,11 +62,11 @@ private:
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
//Tracking observable history
std::vector<std::deque<double>> d_acc_carrier_phase_queue_rads;
std::vector<std::deque<double>> d_carrier_doppler_queue_hz;
std::vector<std::deque<double>> d_symbol_TOW_queue_s;
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
// class private vars
double T_rx_s;
double T_rx_step_s;
int d_max_noutputs;
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;