1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Merge branch 'next' into new_fsm

This commit is contained in:
Antonio Ramos 2018-01-10 16:27:56 +01:00
commit 5ebb060ba1
9 changed files with 1365 additions and 664 deletions

View File

@ -0,0 +1,269 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
GNSS-SDR.internal_fs_sps=20000000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
;SignalSource.filename=/home/javier/signals/L125_III1b_210s_L1_2msps.bin ; <- PUT YOUR FILE HERE
SignalSource.filename=/media/javier/SISTEMA/signals/fraunhofer/L125_III1b_210s_L1.bin
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=20000000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
InputFilter.implementation=Pass_Through
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=0
;#count: Number of available Galileo satellite channels.
Channels_1B.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel1.signal=1B
Channel2.signal=1B
Channel3.signal=1B
Channel4.signal=1B
Channel5.signal=1B
Channel6.signal=1B
Channel7.signal=1B
Channel8.signal=1B
Channel9.signal=1B
Channel10.signal=1B
Channel11.signal=1B
Channel12.signal=1B
Channel13.signal=1B
Channel14.signal=1B
Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=18
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=500
;######### GALILEO ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=../data/acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
Acquisition_1B.acquire_pilot=true
Acquisition_1B.use_CFAR_algorithm=false
;#threshold: Acquisition threshold
Acquisition_1B.threshold=21
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
Acquisition_1B.bit_transition_flag=true
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_PLL_C_Aid_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=30.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;######### TRACKING GALILEO CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_PLL_C_Aid_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=true
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
Tracking_1B.track_pilot=true
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=4.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=0.5;
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_narrow_hz=2.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_narrow_hz=0.25;
Tracking_1B.extend_correlation_symbols=4;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_narrow_chips=0.06;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_narrow_chips=0.25;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;#decimation factor
TelemetryDecoder_1C.decimation_factor=4;
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation:
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation:
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT

View File

@ -70,6 +70,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acquire_pilot_= configuration_->property(role + ".acquire_pilot", false); //will be true in future versions
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
@ -252,8 +253,18 @@ void GalileoE1PcpsAmbiguousAcquisition::set_local_code()
std::complex<float> * code = new std::complex<float>[code_length_];
if (acquire_pilot_==true)
{
//set local signal generator to Galileo E1 pilot component (1C)
char pilot_signal[3]="1C";
galileo_e1_code_gen_complex_sampled(code, pilot_signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
}else
{
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
}
for (unsigned int i = 0; i < sampled_ms_ / 4; i++)
{

View File

@ -146,6 +146,7 @@ private:
unsigned int code_length_;
bool bit_transition_flag_;
bool use_CFAR_algorithm_flag_;
bool acquire_pilot_;
unsigned int channel_;
float threshold_;
unsigned int doppler_max_;

View File

@ -127,13 +127,9 @@ pcps_acquisition_cc::pcps_acquisition_cc(
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0;
d_done = false;
d_blocking = blocking;
d_new_data_available = false;
d_worker_active = false;
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
}
@ -160,19 +156,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
{
d_dump_file.close();
}
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
volk_gnsssdr_free( d_data_buffer );
}
@ -233,9 +216,6 @@ void pcps_acquisition_cc::init()
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
}
d_new_data_available = false;
d_done = false;
d_worker_active = false;
}
@ -253,6 +233,7 @@ void pcps_acquisition_cc::set_state(int state)
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_active = true;
}
else if (d_state == 0)
{}
@ -299,7 +280,7 @@ void pcps_acquisition_cc::send_negative_acquisition()
}
int pcps_acquisition_cc::general_work(int noutput_items,
int pcps_acquisition_cc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
@ -314,11 +295,17 @@ int pcps_acquisition_cc::general_work(int noutput_items,
* 6. Declare positive or negative acquisition using a message port
*/
switch (d_state)
gr::thread::scoped_lock lk(d_setlock);
if(!d_active || d_worker_active)
{
d_sample_counter += d_fft_size * ninput_items[0];
consume_each(ninput_items[0]);
return 0;
}
switch(d_state)
{
case 0:
{
if (d_active)
{
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
@ -329,75 +316,37 @@ int pcps_acquisition_cc::general_work(int noutput_items,
d_input_power = 0.0;
d_test_statistics = 0.0;
d_state = 1;
}
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
break;
}
case 1:
{
std::unique_lock<std::mutex> lk( d_mutex );
int num_items_consumed = 1;
if( d_worker_active )
{
if( d_blocking )
{
// Should never get here:
std::string msg = "pcps_acquisition_cc: Entered general work with worker active in blocking mode, should never happen";
LOG(WARNING) << msg;
std::cout << msg << std::endl;
d_cond.wait( lk, [&]{ return !this->d_worker_active; } );
}
else
{
num_items_consumed = ninput_items[0];
d_sample_counter += d_fft_size * num_items_consumed;
}
}
else
{
// Copy the data to the core and let it know that new data is available
memcpy( d_data_buffer, input_items[0], d_fft_size * sizeof( gr_complex ) );
d_new_data_available = true;
d_cond.notify_one();
if( d_blocking )
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
if(d_blocking)
{
d_cond.wait( lk, [&]{ return !this->d_new_data_available; } );
lk.unlock();
acquisition_core(d_sample_counter);
}
else
{
gr::thread::thread d_worker(&pcps_acquisition_cc::acquisition_core, this, d_sample_counter);
d_worker_active = true;
}
consume_each(num_items_consumed);
d_sample_counter += d_fft_size;
consume_each(1);
break;
} // case 1, switch d_state
} // switch d_state
return noutput_items;
}
}
return 0;
}
void pcps_acquisition_cc::acquisition_core( void )
void pcps_acquisition_cc::acquisition_core( unsigned long int samp_count )
{
d_worker_active = false;
while( 1 )
{
std::unique_lock<std::mutex> lk( d_mutex );
d_cond.wait( lk, [&]{ return this->d_new_data_available or this->d_done; } );
d_worker_active = !d_done;
unsigned long int sample_counter = d_sample_counter; // sample counter
lk.unlock();
if( d_done )
{
break;
}
gr::thread::scoped_lock lk(d_setlock);
// initialize acquisition algorithm
int doppler;
@ -415,12 +364,13 @@ void pcps_acquisition_cc::acquisition_core( void )
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << sample_counter << ", threshold: "
<< " ,sample stamp: " << samp_count << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
if (d_use_CFAR_algorithm_flag == true)
lk.unlock();
if (d_use_CFAR_algorithm_flag)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
@ -433,8 +383,7 @@ void pcps_acquisition_cc::acquisition_core( void )
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
@ -442,8 +391,7 @@ void pcps_acquisition_cc::acquisition_core( void )
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
@ -454,7 +402,7 @@ void pcps_acquisition_cc::acquisition_core( void )
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag == true)
if (d_use_CFAR_algorithm_flag)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
@ -464,7 +412,7 @@ void pcps_acquisition_cc::acquisition_core( void )
{
d_mag = magt;
if (d_use_CFAR_algorithm_flag == false)
if (!d_use_CFAR_algorithm_flag)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
@ -483,21 +431,19 @@ void pcps_acquisition_cc::acquisition_core( void )
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator
@ -515,7 +461,7 @@ void pcps_acquisition_cc::acquisition_core( void )
d_dump_file.close();
}
}
lk.lock();
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
@ -549,41 +495,5 @@ void pcps_acquisition_cc::acquisition_core( void )
}
}
}
lk.lock();
d_worker_active = false;
d_new_data_available = false;
lk.unlock();
d_cond.notify_one();
}
}
bool pcps_acquisition_cc::start( void )
{
d_worker_active = false;
d_done = false;
// Start the worker thread and wait for it to acknowledge:
d_worker_thread = std::move( std::thread( &pcps_acquisition_cc::acquisition_core, this ) );
return gr::block::start();
}
bool pcps_acquisition_cc::stop( void )
{
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
return gr::block::stop();
}

View File

@ -21,6 +21,7 @@
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* <li> Antonio Ramos, 2017. antonio.ramos@cttc.es
* </ul>
*
* -------------------------------------------------------------------------
@ -53,9 +54,6 @@
#include <fstream>
#include <string>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <gnuradio/block.h>
#include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h>
@ -100,7 +98,7 @@ private:
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
void acquisition_core( void );
void acquisition_core( unsigned long int samp_count );
void send_negative_acquisition();
void send_positive_acquisition();
@ -110,7 +108,6 @@ private:
int d_samples_per_code;
//unsigned int d_doppler_resolution;
float d_threshold;
std::string d_satellite_str;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_sampled_ms;
@ -138,16 +135,8 @@ private:
bool d_dump;
unsigned int d_channel;
std::string d_dump_filename;
std::thread d_worker_thread;
std::mutex d_mutex;
std::condition_variable d_cond;
bool d_done;
bool d_new_data_available;
bool d_worker_active;
bool d_blocking;
gr_complex *d_data_buffer;
public:
@ -252,15 +241,6 @@ public:
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
/*!
* Called by the flowgraph when processing is about to start.
*/
bool start( void );
/*!
* Called by the flowgraph when processing is done.
*/
bool stop( void );
};
#endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/

View File

@ -57,19 +57,31 @@ GalileoE1DllPllVemlTracking::GalileoE1DllPllVemlTracking(
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float pll_bw_narrow_hz;
float dll_bw_hz;
float dll_bw_narrow_hz;
float early_late_space_chips;
float very_early_late_space_chips;
float early_late_space_narrow_chips;
float very_early_late_space_narrow_chips;
item_type = configuration->property(role + ".item_type", default_item_type);
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 5.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 0.5);
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 2.0);
dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 0.25);
int extend_correlation_symbols;
extend_correlation_symbols = configuration->property(role + ".extend_correlation_symbols", 1);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.15);
very_early_late_space_chips = configuration->property(role + ".very_early_late_space_chips", 0.6);
early_late_space_narrow_chips = configuration->property(role + ".early_late_space_narrow_chips", 0.15);
very_early_late_space_narrow_chips = configuration->property(role + ".very_early_late_space_narrow_chips", 0.6);
bool track_pilot=configuration->property(role + ".track_pilot", false);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
@ -88,8 +100,24 @@ GalileoE1DllPllVemlTracking::GalileoE1DllPllVemlTracking(
dump_filename,
pll_bw_hz,
dll_bw_hz,
pll_bw_narrow_hz,
dll_bw_narrow_hz,
early_late_space_chips,
very_early_late_space_chips);
very_early_late_space_chips,
early_late_space_narrow_chips,
very_early_late_space_narrow_chips,
extend_correlation_symbols,
track_pilot);
// tracking_ = galileo_e1_dll_pll_veml_make_tracking_cc(
// f_if,
// fs_in,
// vector_length,
// dump,
// dump_filename,
// pll_bw_hz,
// dll_bw_hz,
// early_late_space_chips,
// very_early_late_space_chips);
}
else
{

View File

@ -72,11 +72,30 @@ galileo_e1_dll_pll_veml_make_tracking_cc(
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips)
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot)
{
return galileo_e1_dll_pll_veml_tracking_cc_sptr(new galileo_e1_dll_pll_veml_tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, very_early_late_space_chips));
fs_in,
vector_length,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
pll_bw_narrow_hz,
dll_bw_narrow_hz,
early_late_space_chips,
very_early_late_space_chips,
early_late_space_narrow_chips,
very_early_late_space_narrow_chips,
extend_correlation_symbols,
track_pilot));
}
@ -98,8 +117,14 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips):
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot):
gr::block("galileo_e1_dll_pll_veml_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
@ -121,16 +146,23 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
// Initialize tracking ==========================================
// Set bandwidth of code and carrier loop filters
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
d_dll_bw_hz=dll_bw_hz;
d_pll_bw_hz=pll_bw_hz;
d_dll_bw_narrow_hz=dll_bw_narrow_hz;
d_pll_bw_narrow_hz=pll_bw_narrow_hz;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
// Correlator spacing
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
d_very_early_late_spc_chips = very_early_late_space_chips; // Define very-early-late offset (in chips)
d_early_late_spc_narrow_chips = early_late_space_narrow_chips; // Define narrow early-late offset (in chips)
d_very_early_late_spc_narrow_chips = very_early_late_space_narrow_chips; // Define narrow very-early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_ca_code = static_cast<float*>(volk_gnsssdr_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
d_tracking_code = static_cast<float*>(volk_gnsssdr_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 5; // Very-Early, Early, Prompt, Late, Very-Late
@ -155,9 +187,32 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_local_code_shift_chips[4] = d_very_early_late_spc_chips;
d_correlation_length_samples = d_vector_length;
multicorrelator_cpu.init(2 * d_correlation_length_samples, d_n_correlator_taps);
d_extend_correlation_symbols=extend_correlation_symbols;
// Enable Data component prompt correlator (slave to Pilot prompt) if tracking uses Pilot signal
d_track_pilot=track_pilot;
if (d_track_pilot)
{
//extended integration control
if (d_extend_correlation_symbols>1)
{
d_enable_extended_integration=true;
}else{
d_enable_extended_integration=false;
}
//Extra correlator for the data component
d_local_code_data_shift_chips=static_cast<float*>(volk_gnsssdr_malloc(sizeof(float), volk_gnsssdr_get_alignment()));
d_local_code_data_shift_chips[0]=0.0;
correlator_data_cpu.init(2 * d_correlation_length_samples, 1);
d_Prompt_Data = static_cast<gr_complex*>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_Prompt_Data[0] = gr_complex(0,0);
d_data_code = static_cast<float*>(volk_gnsssdr_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
}else{
// Disable extended integration if data component tracking is selected
d_enable_extended_integration=false;
}
//--- Initializations ------------------------------
// Initial code frequency basis of NCO
d_code_freq_chips = static_cast<double>(Galileo_E1_CODE_CHIP_RATE_HZ);
@ -171,9 +226,6 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
@ -185,11 +237,8 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["E"] = std::string("Galileo");
*d_Very_Early = gr_complex(0,0);
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
*d_Very_Late = gr_complex(0,0);
clear_tracking_vars();
d_acquisition_gnss_synchro = 0;
d_channel = 0;
@ -197,56 +246,119 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_acc_code_phase_secs = 0.0;
d_state=0;// intial state: stanby
}
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (Galileo_E1_FREQ_HZ + d_acq_carrier_doppler_hz) / Galileo_E1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * Galileo_E1_CODE_CHIP_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = Galileo_E1_B_CODE_LENGTH_CHIPS / Galileo_E1_CODE_CHIP_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (2 samples per chip)
galileo_e1_code_gen_float_sampled(d_ca_code,
if (d_track_pilot)
{
char pilot_signal[3]="1C";
galileo_e1_code_gen_float_sampled(d_tracking_code,
pilot_signal,
false,
d_acquisition_gnss_synchro->PRN,
Galileo_E1_CODE_CHIP_RATE_HZ,
0);
galileo_e1_code_gen_float_sampled(d_data_code,
d_acquisition_gnss_synchro->Signal,
false,
d_acquisition_gnss_synchro->PRN,
2 * Galileo_E1_CODE_CHIP_RATE_HZ,
Galileo_E1_CODE_CHIP_RATE_HZ,
0);
d_Prompt_Data[0]=gr_complex(0,0); //clean data correlator output
correlator_data_cpu.set_local_code_and_taps(static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS),
d_data_code,
d_local_code_shift_chips);
}else{
galileo_e1_code_gen_float_sampled(d_tracking_code,
d_acquisition_gnss_synchro->Signal,
false,
d_acquisition_gnss_synchro->PRN,
Galileo_E1_CODE_CHIP_RATE_HZ,
0);
}
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(2 * Galileo_E1_B_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS), d_tracking_code, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0,0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_acc_code_phase_secs = 0.0;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_current_prn_length_samples = d_vector_length;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
sys = sys_.substr(0,1);
// DEBUG OUTPUT
std::cout << "Tracking of Galileo E1 signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
// enable tracking pull-in
d_state=1;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
@ -279,7 +391,14 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
volk_gnsssdr_free(d_tracking_code);
if (d_track_pilot)
{
volk_gnsssdr_free(d_Prompt_Data);
volk_gnsssdr_free(d_data_code);
volk_gnsssdr_free(d_local_code_data_shift_chips);
correlator_data_cpu.free();
}
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
@ -289,114 +408,62 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
}
}
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
bool galileo_e1_dll_pll_veml_tracking_cc::acquire_secondary()
{
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
if (d_enable_tracking == true)
//******* preamble correlation ********
int corr_value=0;
for (unsigned int i = 0; i < Galileo_E1_C_SECONDARY_CODE_LENGTH; i++)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
if (d_pull_in == true)
if (d_Prompt_buffer_deque.at(i).real() < 0) // symbols clipping
{
/*
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
*/
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - std::fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
if (Galileo_E1_C_SECONDARY_CODE.at(i) == '0')
{
corr_value++;
}
else
{
corr_value--;
}
}
else
{
if (Galileo_E1_C_SECONDARY_CODE.at(i) == '0')
{
corr_value--;
}
else
{
corr_value++;
}
}
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
double carr_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
double code_phase_step_half_chips = (2.0 * d_code_freq_chips) / (static_cast<double>(d_fs_in));
double rem_code_phase_half_chips = d_rem_code_phase_samples * (2.0*d_code_freq_chips / d_fs_in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_half_chips,
code_phase_step_half_chips,
d_correlation_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GALILEO_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation-
d_acc_carrier_phase_rad -= GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
if (abs(corr_value) == Galileo_E1_C_SECONDARY_CODE_LENGTH)
{
return true;
}else
{
return false;
}
}
bool galileo_e1_dll_pll_veml_tracking_cc::cn0_and_tracking_lock_status()
{
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_Prompt_buffer[d_cn0_estimation_counter] = d_P_accu;
d_cn0_estimation_counter++;
return true;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E1_B_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
@ -412,43 +479,86 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attri
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3));//3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
return false;
}else{
return true;
}
}
}
// correlation requires:
// - updated remnant carrier phase in radians (rem_carr_phase_rad)
// - updated remnant code phase in samples (d_rem_code_phase_samples)
// - d_code_freq_chips
// - d_carrier_doppler_hz
void galileo_e1_dll_pll_veml_tracking_cc::do_correlation_step(const gr_complex* input_samples)
{
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,input_samples);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_correlation_length_samples);
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = Galileo_E1_CODE_PERIOD_MS;
}
else
// DATA CORRELATOR (if tracking tracks the pilot signal)
if (d_track_pilot)
{
correlator_data_cpu.set_input_output_vectors(d_Prompt_Data,input_samples);
correlator_data_cpu.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_correlation_length_samples);
}
}
void galileo_e1_dll_pll_veml_tracking_cc::run_dll_pll(bool disable_costas_loop)
{
// ################## PLL ##########################################################
// PLL discriminator
if (disable_costas_loop==true)
{
//Secondary code acquired. No symbols transition should be present in the signal
d_carr_error_hz = pll_four_quadrant_atan(d_P_accu) / GALILEO_TWO_PI;
}else{
// Costas loop discriminator, insensitive to 180 deg phase transitions
d_carr_error_hz = pll_cloop_two_quadrant_atan(d_P_accu) / GALILEO_TWO_PI;
}
// Carrier discriminator filter
d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(d_carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + d_carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
d_code_error_chips = dll_nc_vemlp_normalized(d_VE_accu, d_E_accu, d_L_accu, d_VL_accu); //[chips/Ti]
// Code discriminator filter
d_code_error_filt_chips = d_code_loop_filter.get_code_nco(d_code_error_chips); //[chips/second]
}
void galileo_e1_dll_pll_veml_tracking_cc::clear_tracking_vars()
{
*d_Very_Early = gr_complex(0,0);
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
current_synchro_data.Tracking_sample_counter = d_sample_counter;
}
//assign the GNURadio block output data
current_synchro_data.System = {'E'};
std::string str_aux = "1B";
const char * str = str_aux.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(current_synchro_data.Signal), str, 3);
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
*d_Very_Late= gr_complex(0,0);
d_carr_error_hz =0.0;
d_carr_error_filt_hz =0.0;
d_code_error_chips =0.0;
d_code_error_filt_chips =0.0;
d_current_symbol=0;
}
void galileo_e1_dll_pll_veml_tracking_cc::log_data()
{
if(d_dump)
{
// Dump results to file
@ -457,13 +567,15 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attri
float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL;
float tmp_float;
double tmp_double;
prompt_I = (*d_Prompt).real();
prompt_Q = (*d_Prompt).imag();
tmp_VE = std::abs<float>(*d_Very_Early);
tmp_E = std::abs<float>(*d_Early);
tmp_P = std::abs<float>(*d_Prompt);
tmp_L = std::abs<float>(*d_Late);
tmp_VL = std::abs<float>(*d_Very_Late);
prompt_I = static_cast<double>(d_P_accu.real());
prompt_Q = static_cast<double>(d_P_accu.imag());
tmp_VE = std::abs<float>(d_VE_accu);
tmp_E = std::abs<float>(d_E_accu);
tmp_P = std::abs<float>(d_P_accu);
tmp_L = std::abs<float>(d_L_accu);
tmp_VL = std::abs<float>(d_VL_accu);
try
{
@ -487,14 +599,14 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attri
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//PLL commands
tmp_float = carr_error_hz;
tmp_float = d_carr_error_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = carr_error_filt_hz;
tmp_float = d_carr_error_filt_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//DLL commands
tmp_float = code_error_chips;
tmp_float = d_code_error_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = code_error_filt_chips;
tmp_float = d_code_error_filt_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
@ -515,10 +627,336 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attri
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
}
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
switch(d_state)
{
case 0: //standby - bypass
{
current_synchro_data.Tracking_sample_counter = d_sample_counter;
break;
}
case 1: // pull-in
{
/*
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
*/
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - std::fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
consume_each(samples_offset); //shift input to perform alignment with local replica
d_state=2; //next state is the symbol synchronization
return 0;
}
case 2: // wide tracking and symbol synchronization
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
//Current NCO and code generator parameters
d_carrier_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
d_rem_code_phase_chips = d_rem_code_phase_samples * d_code_freq_chips / d_fs_in;
// perform a correlation step
do_correlation_step(in);
// save single correlation step variables
d_VE_accu=*d_Very_Early;
d_E_accu=*d_Early;
d_P_accu=*d_Prompt;
d_L_accu=*d_Late;
d_VL_accu=*d_Very_Late;
//check lock status
if (cn0_and_tracking_lock_status()==false)
{
clear_tracking_vars();
d_state=0; //loss-of-lock detected
}else{
//perform DLL/PLL tracking loop computations
run_dll_pll(false);
// ################## PLL COMMANDS #################################################
//carrier phase accumulator for (K) Doppler estimation-
d_acc_carrier_phase_rad -= GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## DLL COMMANDS #################################################
//Code error from DLL
double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
// ########### Output the tracking results to Telemetry block ##########
if (d_track_pilot)
{
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt_Data).imag());
}else{
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
}
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = Galileo_E1_CODE_PERIOD_MS;
//enable write dump file this cycle (valid DLL/PLL cycle)
log_data();
//std::cout<<(d_Prompt->real()>0);
if (d_enable_extended_integration)
{
// ####### SECONDARY CODE LOCK #####
d_Prompt_buffer_deque.push_back(*d_Prompt);
if (d_Prompt_buffer_deque.size()==Galileo_E1_C_SECONDARY_CODE_LENGTH)
{
if (acquire_secondary()==true)
{
d_extend_correlation_symbols_count=0;
//reset extended correlator
d_VE_accu=gr_complex(0,0);
d_E_accu=gr_complex(0,0);
d_P_accu=gr_complex(0,0);
d_L_accu=gr_complex(0,0);
d_VL_accu=gr_complex(0,0);
d_Prompt_buffer_deque.clear();
d_current_symbol=0;
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz);
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = - d_very_early_late_spc_narrow_chips;
d_local_code_shift_chips[1] = - d_early_late_spc_narrow_chips;
d_local_code_shift_chips[2] = 0.0;
d_local_code_shift_chips[3] = d_early_late_spc_narrow_chips;
d_local_code_shift_chips[4] = d_very_early_late_spc_narrow_chips;
LOG(INFO) << "Enabled " << d_extend_correlation_symbols << " [symbols] extended correlator for CH "
<< d_channel
<< " : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
std::cout<< "Enabled " << d_extend_correlation_symbols << " [symbols] extended correlator for CH "
<< d_channel
<< " : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)<<std::endl;
//std::cout << " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl;
//std::cout << " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl;
// UPDATE INTEGRATION TIME
double new_correlation_time_s=static_cast<double>(d_extend_correlation_symbols) * Galileo_E1_CODE_PERIOD;
d_carrier_loop_filter.set_pdi(new_correlation_time_s);
d_code_loop_filter.set_pdi(new_correlation_time_s);
d_state=3; // next state is the extended correlator integrator
}
d_Prompt_buffer_deque.pop_front();
}
}
}
break;
}
case 3: // coherent integration (correlation time extension)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
//Current NCO and code generator parameters
d_carrier_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
d_rem_code_phase_chips = d_rem_code_phase_samples * d_code_freq_chips / d_fs_in;
// perform a correlation step
do_correlation_step(in);
//correct the integration sign using the current symbol of the secondary code
if (Galileo_E1_C_SECONDARY_CODE.at(d_current_symbol) == '0')
{
d_VE_accu+=*d_Very_Early;
d_E_accu+=*d_Early;
d_P_accu+=*d_Prompt;
d_L_accu+=*d_Late;
d_VL_accu+=*d_Very_Late;
}else{
d_VE_accu-=*d_Very_Early;
d_E_accu-=*d_Early;
d_P_accu-=*d_Prompt;
d_L_accu-=*d_Late;
d_VL_accu-=*d_Very_Late;
}
d_current_symbol++;
//secondary code roll-up
d_current_symbol=d_current_symbol%Galileo_E1_C_SECONDARY_CODE_LENGTH;
// PLL/DLL not enabled, we are in the middle of a coherent integration
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
// ################## PLL ##########################################################
//carrier phase accumulator for (K) Doppler estimation-
d_acc_carrier_phase_rad -= GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples;
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt_Data).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = Galileo_E1_CODE_PERIOD_MS;
d_extend_correlation_symbols_count++;
if (d_extend_correlation_symbols_count>=(d_extend_correlation_symbols-1))
{
d_extend_correlation_symbols_count=0;
d_state=4;
}
break;
}
case 4: // narrow tracking
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// perform a correlation step
do_correlation_step(in);
//correct the integration using the current symbol
if (Galileo_E1_C_SECONDARY_CODE.at(d_current_symbol) == '0')
{
d_VE_accu+=*d_Very_Early;
d_E_accu+=*d_Early;
d_P_accu+=*d_Prompt;
d_L_accu+=*d_Late;
d_VL_accu+=*d_Very_Late;
}else{
d_VE_accu-=*d_Very_Early;
d_E_accu-=*d_Early;
d_P_accu-=*d_Prompt;
d_L_accu-=*d_Late;
d_VL_accu-=*d_Very_Late;
}
d_current_symbol++;
//secondary code roll-up
d_current_symbol=d_current_symbol%Galileo_E1_C_SECONDARY_CODE_LENGTH;
//check lock status
if (cn0_and_tracking_lock_status()==false)
{
clear_tracking_vars();
d_state=0; //loss-of-lock detected
}else{
run_dll_pll(true);//Costas loop disabled, use four quadrant atan
// ################## PLL ##########################################################
//carrier phase accumulator for (K) Doppler estimation-
d_acc_carrier_phase_rad -= GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## DLL ##########################################################
//Code phase accumulator
double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt_Data).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = Galileo_E1_CODE_PERIOD_MS;
//enable write dump file this cycle (valid DLL/PLL cycle)
log_data();
//reset extended correlator
d_VE_accu=gr_complex(0,0);
d_E_accu=gr_complex(0,0);
d_P_accu=gr_complex(0,0);
d_L_accu=gr_complex(0,0);
d_VL_accu=gr_complex(0,0);
d_state=3; //new coherent integration (correlation time extension) cycle
}
}
}
//assign the GNURadio block output data
// current_synchro_data.System = {'E'};
// std::string str_aux = "1B";
// const char * str = str_aux.c_str(); // get a C style null terminated string
// std::memcpy(static_cast<void*>(current_synchro_data.Signal), str, 3);
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
consume_each(d_current_prn_length_samples); // this is required for gr_block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
if (current_synchro_data.Flag_valid_symbol_output)
{
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}else{
return 0;
}
}

View File

@ -53,8 +53,14 @@ galileo_e1_dll_pll_veml_make_tracking_cc(long if_freq,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips);
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot);
/*!
* \brief This class implements a code DLL + carrier PLL VEML (Very Early
@ -88,8 +94,14 @@ private:
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips);
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot);
galileo_e1_dll_pll_veml_tracking_cc(long if_freq,
long fs_in, unsigned
@ -98,12 +110,25 @@ private:
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips);
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot);
bool cn0_and_tracking_lock_status();
void do_correlation_step(const gr_complex* input_samples);
void run_dll_pll(bool disable_costas_loop);
void update_local_code();
void update_local_carrier();
bool acquire_secondary();
void clear_tracking_vars();
void log_data();
// tracking configuration vars
unsigned int d_vector_length;
@ -114,16 +139,29 @@ private:
long d_if_freq;
long d_fs_in;
//tracking state machine
int d_state;
//Integration period in samples
int d_correlation_length_samples;
int d_n_correlator_taps;
double d_early_late_spc_chips;
double d_very_early_late_spc_chips;
float* d_ca_code;
double d_early_late_spc_narrow_chips;
double d_very_early_late_spc_narrow_chips;
float* d_tracking_code;
float* d_data_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator_real_codes multicorrelator_cpu;
//todo: currently the multicorrelator does not support adding extra correlator
//with different local code, thus we need extra multicorrelator instance.
//Implement this functionality inside multicorrelator class
//as an enhancement to increase the performance
float* d_local_code_data_shift_chips;
cpu_multicorrelator_real_codes correlator_data_cpu; //for data channel
gr_complex *d_Very_Early;
gr_complex *d_Early;
@ -131,6 +169,22 @@ private:
gr_complex *d_Late;
gr_complex *d_Very_Late;
int d_extend_correlation_symbols;
int d_extend_correlation_symbols_count;
bool d_enable_extended_integration;
int d_current_symbol;
gr_complex d_VE_accu;
gr_complex d_E_accu;
gr_complex d_P_accu;
gr_complex d_L_accu;
gr_complex d_VL_accu;
bool d_track_pilot;
gr_complex *d_Prompt_Data;
double d_code_phase_step_chips;
double d_carrier_phase_step_rad;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_carr_phase_rad;
@ -143,11 +197,24 @@ private:
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking parameters
float d_dll_bw_hz;
float d_pll_bw_hz;
float d_dll_bw_narrow_hz;
float d_pll_bw_narrow_hz;
// tracking vars
double d_carr_error_hz;
double d_carr_error_filt_hz;
double d_code_error_chips;
double d_code_error_filt_chips;
double d_K_blk_samples;
double d_code_freq_chips;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_acc_code_phase_secs;
double d_rem_code_phase_chips;
double d_code_phase_samples;
//PRN period in samples
int d_current_prn_length_samples;
@ -158,16 +225,13 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
std::deque<gr_complex> d_Prompt_buffer_deque;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;

View File

@ -57,7 +57,7 @@ const double Galileo_E1_SUB_CARRIER_A_RATE_HZ = 1.023e6; //!< Galileo E1 sub-car
const double Galileo_E1_SUB_CARRIER_B_RATE_HZ = 6.138e6; //!< Galileo E1 sub-carrier 'b' rate [Hz]
const double Galileo_E1_B_CODE_LENGTH_CHIPS = 4092.0; //!< Galileo E1-B code length [chips]
const double Galileo_E1_B_SYMBOL_RATE_BPS = 250.0; //!< Galileo E1-B symbol rate [bits/second]
const double Galileo_E1_C_SECONDARY_CODE_LENGTH = 25.0; //!< Galileo E1-C secondary code length [chips]
const int Galileo_E1_C_SECONDARY_CODE_LENGTH = 25; //!< Galileo E1-C secondary code length [chips]
const int Galileo_E1_NUMBER_OF_CODES = 50;
const double GALILEO_STARTOFFSET_ms = 68.802; //[ms] Initial sign. travel time (this cannot go here)