1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-25 22:43:14 +00:00

cleaned the FPGA acquisition code

This commit is contained in:
Marc Majoral 2019-02-26 18:28:14 +01:00
parent a8e425c814
commit 5e22e4c50a
12 changed files with 125 additions and 1752 deletions

View File

@ -1,12 +1,13 @@
/*!
* \file galileo_e1_pcps_ambiguous_acquisition.cc
* \file galileo_e1_pcps_ambiguous_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E1 Signals
* Galileo E1 Signals for the FPGA
* \author Marc Majoral, 2019. mmajoral(at)cttc.es
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -27,7 +28,7 @@
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#include "galileo_e1_pcps_ambiguous_acquisition_fpga.h"
#include "Galileo_E1.h"
@ -50,7 +51,6 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
in_streams_(in_streams),
out_streams_(out_streams)
{
//printf("top acq constructor start\n");
pcpsconf_fpga_t acq_parameters;
configuration_ = configuration;
@ -68,67 +68,27 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
float downsampling_factor = configuration_->property(role + ".downsampling_factor", 4.0);
acq_parameters.downsampling_factor = downsampling_factor;
//fs_in = fs_in/2.0; // downampling filter
//printf("fs_in pre downsampling = %ld\n", fs_in);
printf("fs_in pre downsampling = %ld\n", fs_in);
fs_in = fs_in/downsampling_factor;
printf("fs_in post downsampling = %ld\n", fs_in);
//printf("fs_in post downsampling = %ld\n", fs_in);
acq_parameters.fs_in = fs_in;
//if_ = configuration_->property(role + ".if", 0);
//acq_parameters.freq = if_;
// dump_ = configuration_->property(role + ".dump", false);
// acq_parameters.dump = dump_;
// blocking_ = configuration_->property(role + ".blocking", true);
// acq_parameters.blocking = blocking_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
//unsigned int sampled_ms = 4;
//acq_parameters.sampled_ms = sampled_ms;
unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 4);
acq_parameters.sampled_ms = sampled_ms;
// bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
// acq_parameters.bit_transition_flag = bit_transition_flag_;
// use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
// acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions
// max_dwells_ = configuration_->property(role + ".max_dwells", 1);
// acq_parameters.max_dwells = max_dwells_;
// dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
// acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code (4 ms) -----------------
auto code_length = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / (GALILEO_E1_CODE_CHIP_RATE_HZ / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
//acq_parameters.samples_per_code = code_length_;
//int samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001));
//acq_parameters.samples_per_ms = samples_per_ms;
//unsigned int vector_length = sampled_ms * samples_per_ms;
// if (bit_transition_flag_)
// {
// vector_length_ *= 2;
// }
//printf("fs_in = %d\n", fs_in);
//printf("GALILEO_E1_B_CODE_LENGTH_CHIPS = %f\n", GALILEO_E1_B_CODE_LENGTH_CHIPS);
//printf("GALILEO_E1_CODE_CHIP_RATE_HZ = %f\n", GALILEO_E1_CODE_CHIP_RATE_HZ);
//printf("acq adapter code_length = %d\n", code_length);
acq_parameters.code_length = code_length;
// The FPGA can only use FFT lengths that are a power of two.
float nbits = ceilf(log2f((float)code_length*2));
unsigned int nsamples_total = pow(2, nbits);
unsigned int vector_length = nsamples_total;
printf("acq adapter vector_length = %d\n", vector_length);
//printf("acq adapter nsamples_total (= vector_length) = %d\n", vector_length);
unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 0);
printf("select queue = %d\n", select_queue_Fpga);
acq_parameters.select_queue_Fpga = select_queue_Fpga;
std::string default_device_name = "/dev/uio0";
@ -138,7 +98,7 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
acq_parameters.samples_per_code = nsamples_total;
acq_parameters.excludelimit = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / GALILEO_E1_CODE_CHIP_RATE_HZ));
// compute all the GALILEO E1 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time
// compute all the GALILEO E1 PRN Codes (this is done only once in the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto* fft_if = new gr::fft::fft_complex(nsamples_total, true); // Direct FFT
auto* code = new std::complex<float>[nsamples_total]; // buffer for the local code
@ -146,20 +106,13 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
d_all_fft_codes_ = new lv_16sc_t[nsamples_total * GALILEO_E1_NUMBER_OF_CODES]; // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
//int tmp_re, tmp_im;
for (unsigned int PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++)
{
//code_ = new gr_complex[vector_length_];
bool cboc = false; // cboc is set to 0 when using the FPGA
//std::complex<float>* code = new std::complex<float>[code_length_];
if (acquire_pilot_ == true)
{
//printf("yes acquiring pilot!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1\n");
//set local signal generator to Galileo E1 pilot component (1C)
char pilot_signal[3] = "1C";
galileo_e1_code_gen_complex_sampled(code, pilot_signal,
@ -172,56 +125,22 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
cboc, PRN, fs_in, 0, false);
}
// for (unsigned int i = 0; i < sampled_ms / 4; i++)
// {
// //memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_);
// memcpy(&(d_all_fft_codes_[i * code_length_]), code, sizeof(gr_complex) * code_length_);
// }
// // debug
// char filename[25];
// FILE *fid;
// sprintf(filename,"gal_prn%d.txt", PRN);
// fid = fopen(filename, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid, "%f\n", code[kk].real());
// fprintf(fid, "%f\n", code[kk].imag());
// }
// fclose(fid);
for (int s = code_length; s < 2*code_length; s++)
{
code[s] = code[s - code_length];
//code[s] = 0;
}
// // fill in zero padding
// fill in zero padding
for (int s = 2*code_length; s < nsamples_total; s++)
{
code[s] = std::complex<float>(static_cast<float>(0,0));
//code[s] = 0;
}
memcpy(fft_if->get_inbuf(), code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
// // debug
// char filename[25];
// FILE *fid;
// sprintf(filename,"fft_gal_prn%d.txt", PRN);
// fid = fopen(filename, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid, "%f\n", fft_codes_padded[kk].real());
// fprintf(fid, "%f\n", fft_codes_padded[kk].imag());
// }
// fclose(fid);
// normalize the code
max = 0; // initialize maximum value
for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima
@ -237,109 +156,34 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
}
for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs
{
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(4096*fft_codes_padded[i].real() * (pow(2, 3) - 1) / max)),
// static_cast<int>(floor(4096*fft_codes_padded[i].imag() * (pow(2, 3) - 1) / max)));
// d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(1024*fft_codes_padded[i].real() * (pow(2, 5) - 1) / max)),
// static_cast<int>(floor(1024*fft_codes_padded[i].imag() * (pow(2, 5) - 1) / max)));
// d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(256*fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)),
// static_cast<int>(floor(256*fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max)));
// d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(16*fft_codes_padded[i].real() * (pow(2, 11) - 1) / max)),
// static_cast<int>(floor(16*fft_codes_padded[i].imag() * (pow(2, 11) - 1) / max)));
d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 9) - 1) / max)),
static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 9) - 1) / max)));
// tmp_re = static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 7) - 1) / max));
// tmp_im = static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max));
// if (tmp_re > 127)
// {
// tmp_re = 127;
// }
// if (tmp_re < -128)
// {
// tmp_re = -128;
// }
// if (tmp_im > 127)
// {
// tmp_im = 127;
// }
// if (tmp_im < -128)
// {
// tmp_im = -128;
// }
// d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(tmp_re), static_cast<int>(tmp_im));
//
}
// // debug
// char filename2[25];
// FILE *fid2;
// sprintf(filename2,"fft_gal_prn%d_norm.txt", PRN);
// fid2 = fopen(filename2, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].real());
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].imag());
// }
// fclose(fid2);
}
// for (unsigned int PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++)
// {
// // debug
// char filename2[25];
// FILE *fid2;
// sprintf(filename2,"fft_gal_prn%d_norm_last.txt", PRN);
// fid2 = fopen(filename2, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].real());
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].imag());
// }
// fclose(fid2);
// }
//acq_parameters
acq_parameters.all_fft_codes = d_all_fft_codes_;
// reference for the FPGA FFT-IFFT attenuation factor
acq_parameters.total_block_exp = configuration_->property(role + ".total_block_exp", 14);
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
channel_ = 0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can delete
delete[] code;
delete fft_if;
delete[] fft_codes_padded;
acq_parameters.total_block_exp = 12;
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
// stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
// DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
// if (item_type_.compare("cbyte") == 0)
// {
// cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
// float_to_complex_ = gr::blocks::float_to_complex::make();
// }
channel_ = 0;
//threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
//printf("top acq constructor end\n");
}
GalileoE1PcpsAmbiguousAcquisitionFpga::~GalileoE1PcpsAmbiguousAcquisitionFpga()
{
//printf("top acq destructor start\n");
//delete[] code_;
delete[] d_all_fft_codes_;
//printf("top acq destructor end\n");
}
@ -352,266 +196,88 @@ void GalileoE1PcpsAmbiguousAcquisitionFpga::stop_acquisition()
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_channel(unsigned int channel)
{
//printf("top acq set channel start\n");
channel_ = channel;
acquisition_fpga_->set_channel(channel_);
//printf("top acq set channel end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_threshold(float threshold)
{
//printf("top acq set threshold start\n");
// the .pfa parameter and the threshold calculation is only used for the CFAR algorithm.
// We don't use the CFAR algorithm in the FPGA. Therefore the threshold is set as such.
// float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
//
// if (pfa == 0.0) pfa = configuration_->property(role_ + ".pfa", 0.0);
//
// if (pfa == 0.0)
// {
// threshold_ = threshold;
// }
// else
// {
// threshold_ = calculate_threshold(pfa);
// }
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold;
acquisition_fpga_->set_threshold(threshold);
// acquisition_fpga_->set_threshold(threshold_);
//printf("top acq set threshold end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
{
//printf("top acq set doppler max start\n");
doppler_max_ = doppler_max;
acquisition_fpga_->set_doppler_max(doppler_max_);
//printf("top acq set doppler max end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
{
//printf("top acq set doppler step start\n");
doppler_step_ = doppler_step;
acquisition_fpga_->set_doppler_step(doppler_step_);
//printf("top acq set doppler step end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
//printf("top acq set gnss synchro start\n");
gnss_synchro_ = gnss_synchro;
acquisition_fpga_->set_gnss_synchro(gnss_synchro_);
//printf("top acq set gnss synchro end\n");
}
signed int GalileoE1PcpsAmbiguousAcquisitionFpga::mag()
{
// printf("top acq mag start\n");
return acquisition_fpga_->mag();
//printf("top acq mag end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::init()
{
// printf("top acq init start\n");
acquisition_fpga_->init();
// printf("top acq init end\n");
//set_local_code();
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_local_code()
{
// printf("top acq set local code start\n");
// bool cboc = configuration_->property(
// "Acquisition" + boost::lexical_cast<std::string>(channel_) + ".cboc", false);
//
// std::complex<float>* code = new std::complex<float>[code_length_];
//
// if (acquire_pilot_ == true)
// {
// //set local signal generator to Galileo E1 pilot component (1C)
// char pilot_signal[3] = "1C";
// galileo_e1_code_gen_complex_sampled(code, pilot_signal,
// cboc, gnss_synchro_->PRN, fs_in_, 0, false);
// }
// else
// {
// galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
// cboc, gnss_synchro_->PRN, fs_in_, 0, false);
// }
//
//
// for (unsigned int i = 0; i < sampled_ms_ / 4; i++)
// {
// memcpy(&(code_[i * code_length_]), code, sizeof(gr_complex) * code_length_);
// }
//acquisition_fpga_->set_local_code(code_);
acquisition_fpga_->set_local_code();
// delete[] code;
// printf("top acq set local code end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::reset()
{
// printf("top acq reset start\n");
// This command starts the acquisition process
acquisition_fpga_->set_active(true);
// printf("top acq reset end\n");
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_state(int state)
{
// printf("top acq set state start\n");
acquisition_fpga_->set_state(state);
// printf("top acq set state end\n");
}
//float GalileoE1PcpsAmbiguousAcquisitionFpga::calculate_threshold(float pfa)
//{
// unsigned int frequency_bins = 0;
// for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
// {
// frequency_bins++;
// }
//
// DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
//
// unsigned int ncells = vector_length_ * frequency_bins;
// double exponent = 1 / static_cast<double>(ncells);
// double val = pow(1.0 - pfa, exponent);
// double lambda = double(vector_length_);
// boost::math::exponential_distribution<double> mydist(lambda);
// float threshold = static_cast<float>(quantile(mydist, val));
//
// return threshold;
//}
// this function is only used for the unit tests
void GalileoE1PcpsAmbiguousAcquisitionFpga::set_single_doppler_flag(unsigned int single_doppler_flag)
{
acquisition_fpga_->set_single_doppler_flag(single_doppler_flag);
}
// this function is only used for the unit tests
void GalileoE1PcpsAmbiguousAcquisitionFpga::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor)
{
acquisition_fpga_->read_acquisition_results(max_index, max_magnitude, second_magnitude,
initial_sample, doppler_index, total_fft_scaling_factor);
}
// this function is only used for the unit tests
void GalileoE1PcpsAmbiguousAcquisitionFpga::reset_acquisition(void)
{
acquisition_fpga_->reset_acquisition();
}
// this function is only used for the unit tests
//void GalileoE1PcpsAmbiguousAcquisitionFpga::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
//{
// acquisition_fpga_->read_fpga_total_scale_factor(total_scale_factor, fw_scale_factor);
//}
void GalileoE1PcpsAmbiguousAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
// printf("top acq connect\n");
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
// top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
// top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to connect
}
void GalileoE1PcpsAmbiguousAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// // Since a byte-based acq implementation is not available,
// // we just convert cshorts to gr_complex
// top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
// top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
// top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to disconnect
// printf("top acq disconnect\n");
}
gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisitionFpga::get_left_block()
{
// printf("top acq get left block start\n");
// if (item_type_.compare("gr_complex") == 0)
// {
// return stream_to_vector_;
// }
// else if (item_type_.compare("cshort") == 0)
// {
// return stream_to_vector_;
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// return cbyte_to_float_x2_;
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
return nullptr;
// }
// printf("top acq get left block end\n");
}
gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisitionFpga::get_right_block()
{
// printf("top acq get right block start\n");
return acquisition_fpga_;
// printf("top acq get right block end\n");
}

View File

@ -1,12 +1,13 @@
/*!
* \file galileo_e1_pcps_ambiguous_acquisition.h
* \file galileo_e1_pcps_ambiguous_acquisition_fpga.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E1 Signals
* \author Marc Majoral, 2019. mmajoral(at)cttc.es
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -27,7 +28,7 @@
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#ifndef GNSS_SDR_GALILEO_E1_PCPS_AMBIGUOUS_ACQUISITION_FPGA_H_
#define GNSS_SDR_GALILEO_E1_PCPS_AMBIGUOUS_ACQUISITION_FPGA_H_
@ -60,7 +61,6 @@ public:
inline std::string role() override
{
// printf("top acq role\n");
return role_;
}
@ -69,13 +69,11 @@ public:
*/
inline std::string implementation() override
{
// printf("top acq implementation\n");
return "Galileo_E1_PCPS_Ambiguous_Acquisition_Fpga";
}
size_t item_size() override
{
// printf("top acq item size\n");
size_t item_size = sizeof(lv_16sc_t);
return item_size;
}
@ -137,27 +135,6 @@ public:
*/
void set_state(int state) override;
/*!
* \brief This function is only used in the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief This function is only used in the unit tests
*/
void read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor);
/*!
* \brief This function is only used in the unit tests
*/
void reset_acquisition(void);
/*!
* \brief This function is only used in the unit tests
*/
//void read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor);
/*!
* \brief Stop running acquisition
*/
@ -167,37 +144,25 @@ public:
private:
ConfigurationInterface* configuration_;
//pcps_acquisition_sptr acquisition_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
// size_t item_size_;
// std::string item_type_;
//unsigned int vector_length_;
//unsigned int code_length_;
bool bit_transition_flag_;
bool use_CFAR_algorithm_flag_;
bool acquire_pilot_;
unsigned int channel_;
//float threshold_;
unsigned int doppler_max_;
unsigned int doppler_step_;
//unsigned int sampled_ms_;
unsigned int max_dwells_;
//long fs_in_;
//long if_;
bool dump_;
bool blocking_;
std::string dump_filename_;
//std::complex<float>* code_;
Gnss_Synchro* gnss_synchro_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
//float calculate_threshold(float pfa);
// extra for the FPGA
lv_16sc_t* d_all_fft_codes_; // memory that contains all the code ffts
};

View File

@ -1,11 +1,12 @@
/*!
* \file galileo_e5a_pcps_acquisition.cc
* \file galileo_e5a_pcps_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5a data and pilot Signals
* Galileo E5a data and pilot Signals for the FPGA
* \author Marc Majoral, 2019. mmajoral(at)cttc.es
* \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -26,7 +27,7 @@
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#include "galileo_e5a_pcps_acquisition_fpga.h"
#include "Galileo_E5a.h"
@ -48,48 +49,27 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
in_streams_(in_streams),
out_streams_(out_streams)
{
//printf("creating the E5A acquisition");
pcpsconf_fpga_t acq_parameters;
configuration_ = configuration;
//std::string default_item_type = "cshort";
std::string default_dump_filename = "../data/acquisition.dat";
DLOG(INFO) << "Role " << role;
//item_type_ = configuration_->property(role + ".item_type", default_item_type);
int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000);
int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
float downsampling_factor = configuration_->property(role + ".downsampling_factor", 1.0);
acq_parameters.downsampling_factor = downsampling_factor;
printf("downsampling_factor = %f\n", downsampling_factor);
fs_in = fs_in/downsampling_factor;
acq_parameters.fs_in = fs_in;
//acq_parameters.freq = 0;
//dump_ = configuration_->property(role + ".dump", false);
//acq_parameters.dump = dump_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1);
acq_parameters.sampled_ms = sampled_ms;
//max_dwells_ = configuration_->property(role + ".max_dwells", 1);
//acq_parameters.max_dwells = max_dwells_;
//dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
//acq_parameters.dump_filename = dump_filename_;
//bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
//acq_parameters.bit_transition_flag = bit_transition_flag_;
//use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false);
//acq_parameters.use_CFAR_algorithm_flag = use_CFAR_;
//blocking_ = configuration_->property(role + ".blocking", true);
//acq_parameters.blocking = blocking_;
//--- Find number of samples per spreading code (1ms)-------------------------
acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
acq_iq_ = configuration_->property(role + ".acquire_iq", false);
@ -100,15 +80,12 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
auto code_length = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / GALILEO_E5A_CODE_CHIP_RATE_HZ * static_cast<double>(GALILEO_E5A_CODE_LENGTH_CHIPS)));
acq_parameters.code_length = code_length;
// The FPGA can only use FFT lengths that are a power of two.
float nbits = ceilf(log2f((float)code_length*2));
unsigned int nsamples_total = pow(2, nbits);
unsigned int vector_length = nsamples_total;
printf("code_length = %d\n", code_length);
printf("vector_length = %d\n", vector_length);
unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 1);
printf("select queue = %d\n", select_queue_Fpga);
//printf("acq adapter select_queue_Fpga = %d\n", select_queue_Fpga);
acq_parameters.select_queue_Fpga = select_queue_Fpga;
std::string default_device_name = "/dev/uio0";
std::string device_name = configuration_->property(role + ".devicename", default_device_name);
@ -116,12 +93,9 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
acq_parameters.samples_per_ms = nsamples_total / sampled_ms;
acq_parameters.samples_per_code = nsamples_total;
acq_parameters.excludelimit = static_cast<unsigned int>(ceil((1.0 / GALILEO_E5A_CODE_CHIP_RATE_HZ) * static_cast<float>(acq_parameters.fs_in)));
//vector_length_ = code_length_ * sampled_ms_;
// compute all the GALILEO E5 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time
// compute all the GALILEO E5 PRN Codes (this is done only once in the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto* fft_if = new gr::fft::fft_complex(nsamples_total, true); // Direct FFT
auto* code = new std::complex<float>[nsamples_total]; // buffer for the local code
@ -129,27 +103,20 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
d_all_fft_codes_ = new lv_16sc_t[nsamples_total * GALILEO_E5A_NUMBER_OF_CODES]; // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
//printf("creating the E5A acquisition CONT");
//printf("nsamples_total = %d\n", nsamples_total);
for (unsigned int PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++)
{
// gr_complex* code = new gr_complex[code_length_];
char signal_[3];
if (acq_iq_)
{
//printf("aaaaaaaaaaaaa\n");
strcpy(signal_, "5X");
}
else if (acq_pilot_)
{
//printf("bbbbbbbbbbbbb\n");
strcpy(signal_, "5Q");
}
else
{
//printf("cccccccccccc\n");
strcpy(signal_, "5I");
}
@ -159,14 +126,12 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
for (int s = code_length; s < 2*code_length; s++)
{
code[s] = code[s - code_length];
//code[s] = 0;
}
// fill in zero padding
for (int s = 2*code_length; s < nsamples_total; s++)
{
code[s] = std::complex<float>(0.0, 0.0);
//code[s] = 0;
}
memcpy(fft_if->get_inbuf(), code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer
@ -189,63 +154,32 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
{
d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 9) - 1) / max)),
static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 9) - 1) / max)));
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t((2^3)*static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 6) - 1) / max)),
// (2^3)*static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 6) - 1) / max)));
}
}
acq_parameters.all_fft_codes = d_all_fft_codes_;
// reference for the FPGA FFT-IFFT attenuation factor
acq_parameters.total_block_exp = configuration_->property(role + ".total_block_exp", 14);
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
channel_ = 0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can delete
delete[] code;
delete fft_if;
delete[] fft_codes_padded;
//code_ = new gr_complex[vector_length_];
// if (item_type_.compare("gr_complex") == 0)
// {
// item_size_ = sizeof(gr_complex);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// item_size_ = sizeof(lv_16sc_t);
// }
// else
// {
// item_size_ = sizeof(gr_complex);
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
//acq_parameters.it_size = item_size_;
//acq_parameters.samples_per_code = code_length_;
//acq_parameters.samples_per_ms = code_length_;
//acq_parameters.sampled_ms = sampled_ms_;
//acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
//acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
//acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
//acquisition_ = pcps_make_acquisition(acq_parameters);
//acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
//DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
acq_parameters.total_block_exp = 10;
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
//stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
channel_ = 0;
//threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
//printf("creating the E5A acquisition end");
}
GalileoE5aPcpsAcquisitionFpga::~GalileoE5aPcpsAcquisitionFpga()
{
//delete[] code_;
delete[] d_all_fft_codes_;
}
@ -260,33 +194,13 @@ void GalileoE5aPcpsAcquisitionFpga::stop_acquisition()
void GalileoE5aPcpsAcquisitionFpga::set_channel(unsigned int channel)
{
channel_ = channel;
//acquisition_->set_channel(channel_);
acquisition_fpga_->set_channel(channel_);
}
void GalileoE5aPcpsAcquisitionFpga::set_threshold(float threshold)
{
// float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
//
// if (pfa == 0.0)
// {
// pfa = configuration_->property(role_ + ".pfa", 0.0);
// }
//
// if (pfa == 0.0)
// {
// threshold_ = threshold;
// }
//
// else
// {
// threshold_ = calculate_threshold(pfa);
// }
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold;
//acquisition_->set_threshold(threshold_);
acquisition_fpga_->set_threshold(threshold);
}
@ -294,7 +208,6 @@ void GalileoE5aPcpsAcquisitionFpga::set_threshold(float threshold)
void GalileoE5aPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
//acquisition_->set_doppler_max(doppler_max_);
acquisition_fpga_->set_doppler_max(doppler_max_);
}
@ -302,7 +215,6 @@ void GalileoE5aPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
void GalileoE5aPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
//acquisition_->set_doppler_step(doppler_step_);
acquisition_fpga_->set_doppler_step(doppler_step_);
}
@ -310,157 +222,57 @@ void GalileoE5aPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
void GalileoE5aPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
//acquisition_->set_gnss_synchro(gnss_synchro_);
acquisition_fpga_->set_gnss_synchro(gnss_synchro_);
}
signed int GalileoE5aPcpsAcquisitionFpga::mag()
{
//return acquisition_->mag();
return acquisition_fpga_->mag();
}
void GalileoE5aPcpsAcquisitionFpga::init()
{
//acquisition_->init();
acquisition_fpga_->init();
}
void GalileoE5aPcpsAcquisitionFpga::set_local_code()
{
// gr_complex* code = new gr_complex[code_length_];
// char signal_[3];
//
// if (acq_iq_)
// {
// strcpy(signal_, "5X");
// }
// else if (acq_pilot_)
// {
// strcpy(signal_, "5Q");
// }
// else
// {
// strcpy(signal_, "5I");
// }
//
// galileo_e5_a_code_gen_complex_sampled(code, signal_, gnss_synchro_->PRN, fs_in_, 0);
//
// for (unsigned int i = 0; i < sampled_ms_; i++)
// {
// memcpy(code_ + (i * code_length_), code, sizeof(gr_complex) * code_length_);
// }
//acquisition_->set_local_code(code_);
acquisition_fpga_->set_local_code();
// delete[] code;
}
void GalileoE5aPcpsAcquisitionFpga::reset()
{
//acquisition_->set_active(true);
acquisition_fpga_->set_active(true);
}
//float GalileoE5aPcpsAcquisitionFpga::calculate_threshold(float pfa)
//{
// unsigned int frequency_bins = 0;
// for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
// {
// frequency_bins++;
// }
// DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
// unsigned int ncells = vector_length_ * frequency_bins;
// double exponent = 1 / static_cast<double>(ncells);
// double val = pow(1.0 - pfa, exponent);
// double lambda = double(vector_length_);
// boost::math::exponential_distribution<double> mydist(lambda);
// float threshold = static_cast<float>(quantile(mydist, val));
//
// return threshold;
//}
void GalileoE5aPcpsAcquisitionFpga::set_state(int state)
{
//acquisition_->set_state(state);
acquisition_fpga_->set_state(state);
}
// this function is only used for the unit tests
void GalileoE5aPcpsAcquisitionFpga::set_single_doppler_flag(unsigned int single_doppler_flag)
{
acquisition_fpga_->set_single_doppler_flag(single_doppler_flag);
}
// this function is only used for the unit tests
void GalileoE5aPcpsAcquisitionFpga::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor)
{
acquisition_fpga_->read_acquisition_results(max_index, max_magnitude, second_magnitude,
initial_sample, doppler_index, total_fft_scaling_factor);
}
// this function is only used for the unit tests
void GalileoE5aPcpsAcquisitionFpga::reset_acquisition(void)
{
acquisition_fpga_->reset_acquisition();
}
// this function is only used for the unit tests
//void GalileoE5aPcpsAcquisitionFpga::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
//{
// acquisition_fpga_->read_fpga_total_scale_factor(total_scale_factor, fw_scale_factor);
//}
void GalileoE5aPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to connect
}
void GalileoE5aPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to connect
}
gr::basic_block_sptr GalileoE5aPcpsAcquisitionFpga::get_left_block()
{
//return stream_to_vector_;
return nullptr;
}
gr::basic_block_sptr GalileoE5aPcpsAcquisitionFpga::get_right_block()
{
//return acquisition_;
return acquisition_fpga_;
}

View File

@ -1,11 +1,12 @@
/*!
* \file galileo_e5a_pcps_acquisition.h
* \file galileo_e5a_pcps_acquisition_fpga.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5a data and pilot Signals
* Galileo E5a data and pilot Signals for the FPGA
* \author Marc Majoral, 2019. mmajoral(at)cttc.es
* \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -129,32 +130,18 @@ public:
* \brief This function is only used in the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief This function is only used in the unit tests
*/
void read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor);
/*!
* \brief This function is only used in the unit tests
*/
void reset_acquisition(void);
/*!
* \brief This function is only used in the unit tests
*/
//void read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor);
/*!
* \brief Stop running acquisition
*/
void stop_acquisition() override;
/*!
* \brief Sets the resampler latency to account it in the acquisition code delay estimation
*/
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
//float calculate_threshold(float pfa);
ConfigurationInterface* configuration_;
@ -189,16 +176,10 @@ private:
float threshold_;
/*
std::complex<float>* codeI_;
std::complex<float>* codeQ_;
*/
gr_complex* code_;
Gnss_Synchro* gnss_synchro_;
// extra for the FPGA
lv_16sc_t* d_all_fft_codes_; // memory that contains all the code ffts
};
#endif /* GALILEO_E5A_PCPS_ACQUISITION_FPGA_H_ */

View File

@ -1,9 +1,9 @@
/*!
* \file gps_l1_ca_pcps_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an FPGA AcquisitionInterface
* for GPS L1 C/A signals
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface
* for GPS L1 C/A signals for the FPGA
* \authors <ul>
* <li> Marc Majoral, 2018. mmajoral(at)cttc.es
* <li> Marc Majoral, 2019. mmajoral(at)cttc.es
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena(at)gmail.com
@ -11,7 +11,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -32,7 +32,7 @@
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "GPS_L1_CA.h"
@ -67,18 +67,11 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
float downsampling_factor = configuration_->property(role + ".downsampling_factor", 4.0);
printf("downsampling_factor = %f\n", downsampling_factor);
acq_parameters.downsampling_factor = downsampling_factor;
//fs_in = fs_in/2.0; // downampling filter
//printf("fs_in pre downsampling = %ld\n", fs_in);
fs_in = fs_in/downsampling_factor;
//printf("fs_in post downsampling = %ld\n", fs_in);
//printf("####### DEBUG Acq: fs_in = %d\n", fs_in);
acq_parameters.fs_in = fs_in;
//acq_parameters.samples_per_code = static_cast<unsigned int>(ceil(GPS_L1_CA_CHIP_PERIOD * static_cast<float>(acq_parameters.fs_in)));
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
@ -86,24 +79,19 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
acq_parameters.sampled_ms = sampled_ms;
auto code_length = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
acq_parameters.code_length = code_length;
//printf("acq adapter code_length = %d\n", code_length);
// The FPGA can only use FFT lengths that are a power of two.
float nbits = ceilf(log2f((float)code_length*2));
unsigned int nsamples_total = pow(2, nbits);
unsigned int vector_length = nsamples_total;
//printf("acq adapter vector_length = %d\n", vector_length);
unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 0);
//printf("select queue = %d\n", select_queue_Fpga);
acq_parameters.select_queue_Fpga = select_queue_Fpga;
std::string default_device_name = "/dev/uio0";
std::string device_name = configuration_->property(role + ".devicename", default_device_name);
//printf("acq adapter device name = %s\n", device_name.c_str());
acq_parameters.device_name = device_name;
acq_parameters.samples_per_ms = nsamples_total / sampled_ms;
//printf("acq adapter samples_per_ms = %d\n", nsamples_total / sampled_ms);
acq_parameters.samples_per_code = nsamples_total;
acq_parameters.excludelimit = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / GPS_L1_CA_CODE_RATE_HZ));
//printf("excludelimit = %d\n", (int) acq_parameters.excludelimit);
// compute all the GPS L1 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto* fft_if = new gr::fft::fft_complex(vector_length, true); // Direct FFT
@ -119,14 +107,12 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
for (int s = code_length; s < 2*code_length; s++)
{
code[s] = code[s - code_length];
//code[s] = 0;
}
// fill in zero padding
for (int s = 2*code_length; s < nsamples_total; s++)
{
code[s] = std::complex<float>(0.0, 0.0);
//code[s] = 0;
}
int offset = 0;
@ -134,19 +120,6 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
// // debug
// char filename[25];
// FILE *fid;
// sprintf(filename,"fft_gps_prn%d.txt", PRN);
// fid = fopen(filename, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid, "%f\n", fft_codes_padded[kk].real());
// fprintf(fid, "%f\n", fft_codes_padded[kk].imag());
// }
// fclose(fid);
max = 0; // initialize maximum value
for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima
{
@ -161,39 +134,17 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
}
for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs
{
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(256*fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)),
// static_cast<int>(floor(256*fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max)));
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(16*floor(fft_codes_padded[i].real() * (pow(2, 11) - 1) / max)),
// static_cast<int>(16*floor(fft_codes_padded[i].imag() * (pow(2, 11) - 1) / max)));
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 15) - 1) / max)),
// static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 15) - 1) / max)));
d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 9) - 1) / max)),
static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 9) - 1) / max)));
}
//// // debug
// char filename2[25];
// FILE *fid2;
// sprintf(filename2,"fft_gps_prn%d_norm_new.txt", PRN);
// fid2 = fopen(filename2, "w");
// for (unsigned int kk=0;kk< nsamples_total; kk++)
// {
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].real());
// fprintf(fid2, "%d\n", d_all_fft_codes_[kk + nsamples_total * (PRN - 1)].imag());
// }
// fclose(fid2);
}
//acq_parameters
acq_parameters.all_fft_codes = d_all_fft_codes_;
// temporary buffers that we can delete
delete[] code;
delete fft_if;
delete[] fft_codes_padded;
acq_parameters.total_block_exp = 14;
// reference for the FPGA FFT-IFFT attenuation factor
acq_parameters.total_block_exp = configuration_->property(role + ".total_block_exp", 14);
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
@ -201,6 +152,12 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
channel_ = 0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can delete
delete[] code;
delete fft_if;
delete[] fft_codes_padded;
}
@ -226,8 +183,6 @@ void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel)
void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold)
{
// the .pfa parameter and the threshold calculation is only used for the CFAR algorithm.
// We don't use the CFAR algorithm in the FPGA. Therefore the threshold is set as such.
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold;
acquisition_fpga_->set_threshold(threshold);
}
@ -274,9 +229,8 @@ void GpsL1CaPcpsAcquisitionFpga::set_local_code()
void GpsL1CaPcpsAcquisitionFpga::reset()
{
//printf("######### acq RESET called\n");
// this function starts the acquisition process
acquisition_fpga_->set_active(true);
//printf("acq reset end dddsss\n");
}
@ -286,33 +240,6 @@ void GpsL1CaPcpsAcquisitionFpga::set_state(int state)
}
// this function is only used for the unit tests
void GpsL1CaPcpsAcquisitionFpga::set_single_doppler_flag(unsigned int single_doppler_flag)
{
acquisition_fpga_->set_single_doppler_flag(single_doppler_flag);
}
// this function is only used for the unit tests
void GpsL1CaPcpsAcquisitionFpga::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor)
{
acquisition_fpga_->read_acquisition_results(max_index, max_magnitude, second_magnitude,
initial_sample, doppler_index, total_fft_scaling_factor);
}
// this function is only used for the unit tests
void GpsL1CaPcpsAcquisitionFpga::reset_acquisition(void)
{
acquisition_fpga_->reset_acquisition();
}
// this function is only used for the unit tests
//void GpsL1CaPcpsAcquisitionFpga::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
//{
// acquisition_fpga_->read_fpga_total_scale_factor(total_scale_factor, fw_scale_factor);
//}
void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
// nothing to connect

View File

@ -1,9 +1,9 @@
/*!
* \file gps_l1_ca_pcps_acquisition_fpga.h
* \brief Adapts a PCPS acquisition block that uses the FPGA to
* an AcquisitionInterface for GPS L1 C/A signals
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface
* for GPS L1 C/A signals for the FPGA
* \authors <ul>
* <li> Marc Majoral, 2018. mmajoral(at)cttc.es
* <li> Marc Majoral, 2019. mmajoral(at)cttc.es
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena(at)gmail.com
@ -11,7 +11,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -32,7 +32,7 @@
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
@ -135,26 +135,6 @@ public:
*/
void set_state(int state) override;
/*!
* \brief This function is only used in the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief This function is only used in the unit tests
*/
void read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor);
/*!
* \brief This function is only used in the unit tests
*/
void reset_acquisition(void);
/*!
* \brief This function is only used in the unit tests
*/
//void read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor);
/*!
* \brief Stop running acquisition
*/

View File

@ -1,14 +1,15 @@
/*!
* \file gps_l5i pcps_acquisition.cc
* \file gps_l5i pcps_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an Acquisition Interface for
* GPS L5i signals
* GPS L5i signals for the FPGA
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.es
* <li> Javier Arribas, 2017. jarribas(at)cttc.es
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -52,16 +53,12 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
in_streams_(in_streams),
out_streams_(out_streams)
{
//printf("L5 ACQ CLASS CREATED\n");
pcpsconf_fpga_t acq_parameters;
configuration_ = configuration;
//std::string default_item_type = "cshort";
std::string default_dump_filename = "./data/acquisition.dat";
LOG(INFO) << "role " << role;
//item_type_ = configuration_->property(role + ".item_type", default_item_type);
int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
@ -72,29 +69,12 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
acq_parameters.fs_in = fs_in;
//if_ = configuration_->property(role + ".if", 0);
//acq_parameters.freq = if_;
//dump_ = configuration_->property(role + ".dump", false);
//acq_parameters.dump = dump_;
//blocking_ = configuration_->property(role + ".blocking", true);
//acq_parameters.blocking = blocking_;
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
//acq_parameters.sampled_ms = 1;
unsigned int sampled_ms = configuration_->property(role + ".coherent_integration_time_ms", 1);
acq_parameters.sampled_ms = sampled_ms;
//printf("L5 ACQ CLASS MID 0\n");
//bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
//acq_parameters.bit_transition_flag = bit_transition_flag_;
//use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
//acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
//max_dwells_ = configuration_->property(role + ".max_dwells", 1);
//acq_parameters.max_dwells = max_dwells_;
//dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
//acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code -------------------------
auto code_length = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / (GPS_L5I_CODE_RATE_HZ / static_cast<double>(GPS_L5I_CODE_LENGTH_CHIPS))));
acq_parameters.code_length = code_length;
@ -103,10 +83,6 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
unsigned int nsamples_total = pow(2, nbits);
unsigned int vector_length = nsamples_total;
unsigned int select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 1);
printf("code_length = %d\n", (int) code_length);
printf("vector length = %d\n", (int) vector_length);
printf("select queue = %d\n", select_queue_Fpga);
printf("sampled_ms = %d\n", sampled_ms);
acq_parameters.select_queue_Fpga = select_queue_Fpga;
std::string default_device_name = "/dev/uio0";
std::string device_name = configuration_->property(role + ".devicename", default_device_name);
@ -114,40 +90,29 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
acq_parameters.samples_per_ms = nsamples_total/sampled_ms;
acq_parameters.samples_per_code = nsamples_total;
//acq_parameters.excludelimit = static_cast<unsigned int>(std::round(static_cast<double>(fs_in) / GPS_L5i_CODE_RATE_HZ));
acq_parameters.excludelimit = static_cast<unsigned int>(ceil((1.0 / GPS_L5I_CODE_RATE_HZ) * static_cast<float>(acq_parameters.fs_in)));
//printf("L5 ACQ CLASS MID 01\n");
// compute all the GPS L5 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
gr::fft::fft_complex* fft_if = new gr::fft::fft_complex(nsamples_total, true); // Direct FFT
//printf("L5 ACQ CLASS MID 02\n");
std::complex<float>* code = new gr_complex[nsamples_total];
//printf("L5 ACQ CLASS MID 03\n");
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
//printf("L5 ACQ CLASS MID 04\n");
d_all_fft_codes_ = new lv_16sc_t[nsamples_total * NUM_PRNs]; // memory containing all the possible fft codes for PRN 0 to 32
//printf("L5 ACQ CLASS MID 1 vector_length = %d\n", vector_length);
float max; // temporary maxima search
for (unsigned int PRN = 1; PRN <= NUM_PRNs; PRN++)
{
//printf("L5 ACQ CLASS processing PRN = %d\n", PRN);
gps_l5i_code_gen_complex_sampled(code, PRN, fs_in);
//printf("L5 ACQ CLASS processing PRN = %d (cont) \n", PRN);
// fill in zero padding
for (int s = code_length; s < 2*code_length; s++)
{
code[s] = code[s - code_length];
//code[s] = 0;
}
for (int s = 2*code_length; s < nsamples_total; s++)
{
// fill in zero padding
code[s] = std::complex<float>(static_cast<float>(0,0));
//code[s] = 0;
}
memcpy(fft_if->get_inbuf(), code, sizeof(gr_complex) * nsamples_total); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
@ -167,76 +132,29 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
}
for (unsigned int i = 0; i < nsamples_total; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs
{
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(256*fft_codes_padded[i].real() * (pow(2, 7) - 1) / max)),
// static_cast<int>(floor(256*fft_codes_padded[i].imag() * (pow(2, 7) - 1) / max)));
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(16*floor(fft_codes_padded[i].real() * (pow(2, 11) - 1) / max)),
// static_cast<int>(16*floor(fft_codes_padded[i].imag() * (pow(2, 11) - 1) / max)));
//d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 15) - 1) / max)),
// static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 15) - 1) / max)));
d_all_fft_codes_[i + nsamples_total * (PRN - 1)] = lv_16sc_t(static_cast<int>(floor(fft_codes_padded[i].real() * (pow(2, 9) - 1) / max)),
static_cast<int>(floor(fft_codes_padded[i].imag() * (pow(2, 9) - 1) / max)));
}
}
//printf("L5 ACQ CLASS MID 2\n");
//acq_parameters
acq_parameters.all_fft_codes = d_all_fft_codes_;
// reference for the FPGA FFT-IFFT attenuation factor
acq_parameters.total_block_exp = configuration_->property(role + ".total_block_exp", 14);
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
channel_ = 0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can delete
delete[] code;
delete fft_if;
delete[] fft_codes_padded;
// vector_length_ = code_length_;
//
// if (bit_transition_flag_)
// {
// vector_length_ *= 2;
// }
//
// code_ = new gr_complex[vector_length_];
//
// if (item_type_.compare("cshort") == 0)
// {
// item_size_ = sizeof(lv_16sc_t);
// }
// else
// {
// item_size_ = sizeof(gr_complex);
// }
// acq_parameters.samples_per_code = code_length_;
// acq_parameters.samples_per_ms = code_length_;
// acq_parameters.it_size = item_size_;
//acq_parameters.sampled_ms = 1;
// acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
// acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
// acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
// acquisition_fpga_ = pcps_make_acquisition(acq_parameters);
// DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
acq_parameters.total_block_exp = 10;
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_fpga_->unique_id() << ")";
// stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
// DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
//
// if (item_type_.compare("cbyte") == 0)
// {
// cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
// float_to_complex_ = gr::blocks::float_to_complex::make();
// }
channel_ = 0;
// threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
//printf("L5 ACQ CLASS FINISHED\n");
}
@ -263,25 +181,6 @@ void GpsL5iPcpsAcquisitionFpga::set_channel(unsigned int channel)
void GpsL5iPcpsAcquisitionFpga::set_threshold(float threshold)
{
// float pfa = configuration_->property(role_ + std::to_string(channel_) + ".pfa", 0.0);
//
// if (pfa == 0.0)
// {
// pfa = configuration_->property(role_ + ".pfa", 0.0);
// }
// if (pfa == 0.0)
// {
// threshold_ = threshold;
// }
// else
// {
// threshold_ = calculate_threshold(pfa);
// }
// DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
// the .pfa parameter and the threshold calculation is only used for the CFAR algorithm.
// We don't use the CFAR algorithm in the FPGA. Therefore the threshold is set as such.
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold;
acquisition_fpga_->set_threshold(threshold);
}
@ -293,7 +192,6 @@ void GpsL5iPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
acquisition_fpga_->set_doppler_max(doppler_max_);
}
// Be aware that Doppler step should be set to 2/(3T) Hz, where T is the coherent integration time (GPS L2 period is 0.02s)
// Doppler bin minimum size= 33 Hz
void GpsL5iPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
@ -337,126 +235,20 @@ void GpsL5iPcpsAcquisitionFpga::set_state(int state)
acquisition_fpga_->set_state(state);
}
//float GpsL5iPcpsAcquisitionFpga::calculate_threshold(float pfa)
//{
// //Calculate the threshold
// unsigned int frequency_bins = 0;
// for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
// {
// frequency_bins++;
// }
// DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
// unsigned int ncells = vector_length_ * frequency_bins;
// double exponent = 1.0 / static_cast<double>(ncells);
// double val = pow(1.0 - pfa, exponent);
// double lambda = double(vector_length_);
// boost::math::exponential_distribution<double> mydist(lambda);
// float threshold = static_cast<float>(quantile(mydist, val));
//
// return threshold;
//}
// this function is only used for the unit tests
void GpsL5iPcpsAcquisitionFpga::set_single_doppler_flag(unsigned int single_doppler_flag)
{
acquisition_fpga_->set_single_doppler_flag(single_doppler_flag);
}
// this function is only used for the unit tests
void GpsL5iPcpsAcquisitionFpga::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor)
{
acquisition_fpga_->read_acquisition_results(max_index, max_magnitude, second_magnitude,
initial_sample, doppler_index, total_fft_scaling_factor);
}
// this function is only used for the unit tests
void GpsL5iPcpsAcquisitionFpga::reset_acquisition(void)
{
acquisition_fpga_->reset_acquisition();
}
// this function is only used for the unit tests
//void GpsL5iPcpsAcquisitionFpga::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
//{
// acquisition_fpga_->read_fpga_total_scale_factor(total_scale_factor, fw_scale_factor);
//}
void GpsL5iPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
// top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
// top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
// top_block->connect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to connect
}
void GpsL5iPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{
// if (item_type_.compare("gr_complex") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cshort") == 0)
// {
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// // Since a byte-based acq implementation is not available,
// // we just convert cshorts to gr_complex
// top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
// top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
// top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
// top_block->disconnect(stream_to_vector_, 0, acquisition_fpga_, 0);
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// }
// nothing to disconnect
}
gr::basic_block_sptr GpsL5iPcpsAcquisitionFpga::get_left_block()
{
// if (item_type_.compare("gr_complex") == 0)
// {
// return stream_to_vector_;
// }
// else if (item_type_.compare("cshort") == 0)
// {
// return stream_to_vector_;
// }
// else if (item_type_.compare("cbyte") == 0)
// {
// return cbyte_to_float_x2_;
// }
// else
// {
// LOG(WARNING) << item_type_ << " unknown acquisition item type";
// return nullptr;
// }
return nullptr;
}

View File

@ -1,14 +1,15 @@
/*!
* \file GPS_L5i_PCPS_Acquisition.h
* \file GPS_L5i_PCPS_Acquisition_fpga.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* GPS L5i signals
* GPS L5i signals for the FPGA
* \authors <ul>
* <li> Marc Majoral, 2019. mmajoral(at)cttc.es
* <li> Javier Arribas, 2017. jarribas(at)cttc.es
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -135,27 +136,6 @@ public:
*/
void set_state(int state) override;
/*!
* \brief This function is only used in the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief This function is only used in the unit tests
*/
void read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor);
/*!
* \brief This function is only used in the unit tests
*/
void reset_acquisition(void);
/*!
* \brief This function is only used in the unit tests
*/
//void read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor);
/*!
* \brief Stop running acquisition
*/
@ -165,7 +145,6 @@ public:
private:
ConfigurationInterface* configuration_;
//pcps_acquisition_sptr acquisition_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
@ -182,7 +161,6 @@ private:
unsigned int doppler_step_;
unsigned int max_dwells_;
int64_t fs_in_;
//long if_;
bool dump_;
bool blocking_;
std::string dump_filename_;

View File

@ -1,12 +1,8 @@
/*!
* \file pcps_acquisition_fpga.cc
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA
*
* Note: The CFAR algorithm is not implemented in the FPGA.
* Note 2: The bit transition flag is not implemented in the FPGA
*
* \brief This class implements a Parallel Code Phase Search Acquisition for the FPGA
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* <li> Marc Majoral, 2019. mmajoral(at)cttc.es
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
@ -15,7 +11,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -33,10 +29,10 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#include "pcps_acquisition_fpga.h"
@ -60,14 +56,12 @@ pcps_acquisition_fpga::pcps_acquisition_fpga(pcpsconf_fpga_t conf_) : gr::block(
gr::io_signature::make(0, 0, 0),
gr::io_signature::make(0, 0, 0))
{
// printf("acq constructor start\n");
this->message_port_register_out(pmt::mp("events"));
acq_parameters = std::move(conf_);
d_sample_counter = 0ULL; // SAMPLE COUNTER
d_active = false;
d_state = 0;
//d_fft_size = acq_parameters.sampled_ms * acq_parameters.samples_per_ms;
d_fft_size = acq_parameters.samples_per_code;
d_mag = 0;
d_input_power = 0.0;
@ -77,58 +71,32 @@ pcps_acquisition_fpga::pcps_acquisition_fpga(pcpsconf_fpga_t conf_) : gr::block(
d_test_statistics = 0.0;
d_channel = 0U;
d_gnss_synchro = nullptr;
d_single_doppler_flag = false;
d_downsampling_factor = acq_parameters.downsampling_factor;
//printf("CONSTRUCTOR downsampling_factor = %d\n", (int) d_downsampling_factor);
d_select_queue_Fpga = acq_parameters.select_queue_Fpga;
//printf("zzzz acq_parameters.code_length = %d\n", acq_parameters.code_length);
//printf("zzzz acq_parameters.samples_per_ms = %d\n", acq_parameters.samples_per_ms);
//printf("zzzz d_fft_size = %d\n", d_fft_size);
// this one works we don't know why
// acquisition_fpga = std::make_shared <fpga_acquisition>
// (acq_parameters.device_name, acq_parameters.code_length, acq_parameters.doppler_max, acq_parameters.samples_per_ms,
// acq_parameters.fs_in, acq_parameters.freq, acq_parameters.sampled_ms, acq_parameters.select_queue_Fpga, acq_parameters.all_fft_codes);
d_total_block_exp = acq_parameters.total_block_exp;
// this one is the one it should be but it doesn't work
acquisition_fpga = std::make_shared<fpga_acquisition>(acq_parameters.device_name, acq_parameters.code_length, acq_parameters.doppler_max, d_fft_size,
acq_parameters.fs_in, acq_parameters.sampled_ms, acq_parameters.select_queue_Fpga, acq_parameters.all_fft_codes, acq_parameters.excludelimit);
// acquisition_fpga = std::make_shared <fpga_acquisition>
// (acq_parameters.device_name, acq_parameters.samples_per_code, acq_parameters.doppler_max, acq_parameters.samples_per_code,
// acq_parameters.fs_in, acq_parameters.freq, acq_parameters.sampled_ms, acq_parameters.select_queue_Fpga, acq_parameters.all_fft_codes);
// debug
//debug_d_max_absolute = 0.0;
//debug_d_input_power_absolute = 0.0;
// printf("acq constructor end\n");
}
pcps_acquisition_fpga::~pcps_acquisition_fpga()
{
// printf("acq destructor start\n");
acquisition_fpga->free();
// printf("acq destructor end\n");
}
void pcps_acquisition_fpga::set_local_code()
{
// printf("acq set local code start\n");
acquisition_fpga->set_local_code(d_gnss_synchro->PRN);
// printf("acq set local code end\n");
}
void pcps_acquisition_fpga::init()
{
// printf("acq init start\n");
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
@ -139,32 +107,20 @@ void pcps_acquisition_fpga::init()
d_mag = 0.0;
d_input_power = 0.0;
if (d_single_doppler_flag == 1)
{
d_num_doppler_bins = 1;
}
else
{
d_num_doppler_bins = static_cast<uint32_t>(std::ceil(static_cast<double>(static_cast<int32_t>(acq_parameters.doppler_max) - static_cast<int32_t>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step))) + 1;
}
//printf("acq gnuradioblock doppler_max = %lu\n", (unsigned long) static_cast<int32_t>(acq_parameters.doppler_max));
//printf("acq gnuradioblock doppler_step = %lu\n", (unsigned long) d_doppler_step);
//printf("acq gnuradioblock d_num_doppler_bins = %lu\n", (unsigned long) d_num_doppler_bins);
acquisition_fpga->init();
// printf("acq init end\n");
d_num_doppler_bins = static_cast<uint32_t>(std::ceil(static_cast<double>(static_cast<int32_t>(acq_parameters.doppler_max) - static_cast<int32_t>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step))) + 1;
acquisition_fpga->init();
}
void pcps_acquisition_fpga::set_state(int32_t state)
{
// printf("acq set state start\n");
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
//d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
@ -177,14 +133,12 @@ void pcps_acquisition_fpga::set_state(int32_t state)
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
// printf("acq set state end\n");
}
void pcps_acquisition_fpga::send_positive_acquisition()
{
// printf("acq send positive acquisition start\n");
// 6.1- Declare positive acquisition using a message port
// Declare positive acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "positive acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
@ -196,17 +150,13 @@ void pcps_acquisition_fpga::send_positive_acquisition()
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
//printf("acq sending positive acquisition\n");
this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
// printf("acq send positive acquisition end\n");
}
void pcps_acquisition_fpga::send_negative_acquisition()
{
// printf("acq send negative acquisition start\n");
// 6.2- Declare negative acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
// Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter
@ -217,16 +167,13 @@ void pcps_acquisition_fpga::send_negative_acquisition()
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
//printf("acq sending negative acquisition\n");
this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
// printf("acq send negative acquisition end\n");
}
void pcps_acquisition_fpga::set_active(bool active)
{
// printf("acq set active start\n");
d_active = active;
// initialize acquisition algorithm
@ -234,7 +181,6 @@ void pcps_acquisition_fpga::set_active(bool active)
float firstpeak = 0.0;
float secondpeak = 0.0;
uint32_t total_block_exp;
//float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;
@ -255,136 +201,22 @@ void pcps_acquisition_fpga::set_active(bool active)
float temp_d_input_power;
// debug
//acquisition_fpga->block_samples();
// while(1)
//{
//printf("######### acq ENTERING SET ACTIVE\n");
// run loop in hw
//printf("LAUNCH ACQ\n");
//printf("acq lib d_num_doppler_bins = %d\n", d_num_doppler_bins);
//printf("writing config for channel %d -----------------------------------------\n", (int) d_channel);
//printf("d_downsampling_factor = %f\n", d_downsampling_factor);
//printf("acq_parameters.code_length = %d\n", (int) acq_parameters.code_length);
// debug
// if (acq_parameters.code_length == 12500)
// {
// acquisition_fpga->configure_acquisition_debug();
// acquisition_fpga->set_doppler_sweep(d_num_doppler_bins);
// acquisition_fpga->write_local_code();
// acquisition_fpga->set_block_exp(d_total_block_exp);
//
// acquisition_fpga->run_acquisition();
// acquisition_fpga->read_acquisition_results(&indext, &firstpeak, &secondpeak, &initial_sample, &d_input_power, &d_doppler_index, &total_block_exp);
//
// doppler = 0;
// d_test_statistics = 0;
// }
// else
// {
acquisition_fpga->configure_acquisition();
acquisition_fpga->set_doppler_sweep(d_num_doppler_bins);
//printf("d_num_doppler_bins = %d\n", (int) d_num_doppler_bins);
acquisition_fpga->write_local_code();
//acquisition_fpga->set_doppler_sweep(2);
//printf("acq lib going to launch acquisition\n");
acquisition_fpga->set_block_exp(d_total_block_exp);
//printf("running acq for channel %d\n", (int) d_channel);
acquisition_fpga->run_acquisition();
//printf("acq lib going to read the acquisition results\n");
//read_acquisition_results(&indext, &firstpeak, &secondpeak, &initial_sample, &d_input_power, &d_doppler_index);
//printf("reading results for channel %d\n", (int) d_channel);
acquisition_fpga->read_acquisition_results(&indext, &firstpeak, &secondpeak, &initial_sample, &d_input_power, &d_doppler_index, &total_block_exp);
//printf("returned d_doppler_index = %d\n", d_doppler_index);
//printf("gnuradio block : d_total_block_exp = %d total_block_exp = %d\n", (int) d_total_block_exp, (int) total_block_exp);
//printf("d_fft_size = %d = %d\n", d_fft_size, acq_parameters.samples_per_code);
//printf("indext = %d\n", (int) indext);
//printf("initial_sample = %d\n", (int) initial_sample);
//printf("firstpeak = %d\n", (int) firstpeak);
//printf("secondpeak = %d\n", (int) secondpeak);
//printf("total_block_exp = %d\n", (int) total_block_exp);
// if (total_block_exp == 11)
// {
// printf("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE\n");
// getchar();
//
// }
// if (total_block_exp > d_total_block_exp)
// {
// usleep(5000000);
// acquisition_fpga->read_acquisition_results(&indext, &firstpeak, &secondpeak, &initial_sample, &d_input_power, &d_doppler_index, &total_block_exp);
// printf("second time d_fft_size = %d = %d", d_fft_size, acq_parameters.samples_per_code);
// printf("second time indext = %d\n", (int) indext);
// printf("second time initial_sample = %d\n", (int) initial_sample);
// printf("second time firstpeak = %d\n", (int) firstpeak);
// printf("second time secondpeak = %d\n", (int) secondpeak);
// printf("second time total_block_exp = %d\n", (int) total_block_exp);
// }
if (total_block_exp > d_total_block_exp)
{
printf("changing blk exp..... d_total_block_exp = %d total_block_exp = %d chan = %d\n", d_total_block_exp, total_block_exp, d_channel);
//getchar();
// if the attenuation factor of the FPGA FFT-IFFT is smaller than the reference attenuation factor then we need to update the reference attenuation factor
std::cout << "changing blk exp..... d_total_block_exp = " << d_total_block_exp << " total_block_exp = " << total_block_exp << " chan = " << d_channel << std::endl;
d_total_block_exp = total_block_exp;
}
//printf("end channel %d -----------------------------------------------------\n", (int) d_channel);
//printf("READ ACQ RESULTS\n");
// debug
//acquisition_fpga->unblock_samples();
//usleep(5000000);
//} // end while test
//int32_t doppler;
// NEW SATELLITE DETECTION ALGORITHM STARTS HERE ----------------------------------------------------
if (d_single_doppler_flag == false)
{
doppler = -static_cast<int32_t>(acq_parameters.doppler_max) + d_doppler_step * (d_doppler_index - 1);
//doppler = -static_cast<int32_t>(acq_parameters.doppler_max) + d_doppler_step * (d_doppler_index); // this is the wrong one
}
else
{
doppler = static_cast<int32_t>(acq_parameters.doppler_max);
}
doppler = -static_cast<int32_t>(acq_parameters.doppler_max) + d_doppler_step * (d_doppler_index - 1);
if (secondpeak > 0)
{
@ -395,40 +227,6 @@ void pcps_acquisition_fpga::set_active(bool active)
d_test_statistics = 0.0;
}
// // OLD SATELLITE DETECTION ALGORITHM STARTS HERE ----------------------------------------------------
//
// d_mag = magt;
//
//
// // debug
// //debug_d_max_absolute = magt;
// //debug_d_input_power_absolute = d_input_power;
// //debug_indext = indext;
// //debug_doppler_index = d_doppler_index;
//
// // temp_d_input_power = d_input_power;
//
// d_input_power = (d_input_power - d_mag) / (d_fft_size - 1);
// //int32_t doppler;
// if (d_single_doppler_flag == false)
// {
// doppler = -static_cast<int32_t>(acq_parameters.doppler_max) + d_doppler_step * (d_doppler_index - 1);
// //doppler = -static_cast<int32_t>(acq_parameters.doppler_max) + d_doppler_step * (d_doppler_index); // this is the wrong one
// }
// else
// {
// doppler = static_cast<int32_t>(acq_parameters.doppler_max);
// }
// //d_gnss_synchro->Acq_delay_samples = static_cast<double>(2*(indext % (2*acq_parameters.samples_per_code)));
//
//
// //printf("acq gnuradioblock doppler = %d\n", doppler);
//
// // END OF OLD SATELLITE ALGORITHM --------------------------------------------------------------------
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_sample_counter = initial_sample;
@ -437,86 +235,27 @@ void pcps_acquisition_fpga::set_active(bool active)
if (d_downsampling_factor > 1)
{
//printf("yes here\n");
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(d_downsampling_factor*(indext % acq_parameters.samples_per_code));
d_gnss_synchro->Acq_delay_samples = static_cast<double>(d_downsampling_factor*(indext));
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81*0.25*d_downsampling_factor; // delay due to the downsampling filter in the acquisition
d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 44; //33; //41; //+ 81*0.5; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81/d_downsampling_factor; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(2*(indext % acq_parameters.samples_per_code));
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(2*(indext));
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter*2 - 81;
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
}
else
{
//printf("xxxxxxxxxxxxxxxx no here\n");
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter - 40; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81*0.5*d_downsampling_factor;
}
}
else
{
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; // delay due to the downsampling filter in the acquisition
}
//d_gnss_synchro->Acq_samplestamp_samples = 2*d_sample_counter - 81; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter - 40; // delay due to the downsampling filter in the acquisition
// // OLD SATELLITE DETECTION ALGORITHM STARTS HERE AGAIN -----------------------------------------------
//
// d_test_statistics = (d_mag / d_input_power); //* correction_factor;
//
// // END OF OLD SATELLITE ALGORITHM AGAIN --------------------------------------------------------------------
// debug
// if (d_gnss_synchro->Acq_delay_samples > acq_parameters.code_length)
// {
// printf("d_gnss_synchro->Acq_samplestamp_samples = %d\n", d_gnss_synchro->Acq_samplestamp_samples);
// printf("d_gnss_synchro->Acq_delay_samples = %f\n", d_gnss_synchro->Acq_delay_samples);
// }
// if (temp_d_input_power > debug_d_input_power_absolute)
// {
// debug_d_max_absolute = d_mag;
// debug_d_input_power_absolute = temp_d_input_power;
// }
// printf ("max debug_d_max_absolute = %f\n", debug_d_max_absolute);
// printf ("debug_d_input_power_absolute = %f\n", debug_d_input_power_absolute);
// printf("&&&&& d_test_statistics = %f\n", d_test_statistics);
// printf("&&&&& debug_d_max_absolute =%f\n",debug_d_max_absolute);
// printf("&&&&& debug_d_input_power_absolute =%f\n",debug_d_input_power_absolute);
// printf("&&&&& debug_indext = %d\n",debug_indext);
// printf("&&&&& debug_doppler_index = %d\n",debug_doppler_index);
if (d_test_statistics > d_threshold)
{
d_active = false;
// printf("##### d_test_statistics = %f\n", d_test_statistics);
// printf("##### firstpeak =%f\n",firstpeak);
// printf("##### secondpeak =%f\n",secondpeak);
// printf("##### d_gnss_synchro->Acq_delay_samples = %d\n",(int) d_gnss_synchro->Acq_delay_samples);
// printf("##### d_gnss_synchro->Acq_samplestamp_samples = %d\n",(int) d_gnss_synchro->Acq_samplestamp_samples);
send_positive_acquisition();
d_state = 0; // Positive acquisition
//printf("acq POSITIVE ACQ d_fft_size = %d = %d\n", d_fft_size, acq_parameters.samples_per_code);
//printf("acq POSITIVE ACQ d_gnss_synchro->Acq_delay_samples = %f\n: ",d_gnss_synchro->Acq_delay_samples);
//printf("acq POSITIVE ACQ d_gnss_synchro->Acq_samplestamp_samples = %d\n", (unsigned int) d_gnss_synchro->Acq_samplestamp_samples);
//printf("acq POSITIVE ACQ d_gnss_synchro->Acq_doppler_hz = %f\n", d_gnss_synchro->Acq_doppler_hz);
//printf("acq POSITIVE ACQ d_gnss_synchro->PRN = %d\n", (int) d_gnss_synchro->PRN);
}
else
{
@ -524,9 +263,6 @@ void pcps_acquisition_fpga::set_active(bool active)
d_active = false;
send_negative_acquisition();
}
//printf("######### acq LEAVING SET ACTIVE\n");
//printf("acq set active end\n");
}
@ -534,71 +270,13 @@ int pcps_acquisition_fpga::general_work(int noutput_items __attribute__((unused)
gr_vector_int& ninput_items, gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items __attribute__((unused)))
{
//printf("ACQ GENERAL WORK CALLED\n");
// the general work is not used with the acquisition that uses the FPGA
return noutput_items;
}
// this function is only used for the unit tests
void pcps_acquisition_fpga::set_single_doppler_flag(unsigned int single_doppler_flag)
{
acquisition_fpga->set_single_doppler_flag(single_doppler_flag);
d_single_doppler_flag = true;
}
// this function is only used for the unit tests
void pcps_acquisition_fpga::read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor)
{
float input_power; // not used
uint32_t max_index_tmp;
uint64_t initial_sample_tmp;
acquisition_fpga->read_acquisition_results(&max_index_tmp, max_magnitude, second_magnitude, &initial_sample_tmp, &input_power, doppler_index, total_fft_scaling_factor);
if (d_select_queue_Fpga == 0)
{
if (d_downsampling_factor > 1)
{
//printf("yes here\n");
*max_index = static_cast<double>(d_downsampling_factor*(max_index_tmp));
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81*0.25*d_downsampling_factor; // delay due to the downsampling filter in the acquisition
*initial_sample = (initial_sample_tmp)*d_downsampling_factor - 44; //33; //41; //+ 81*0.5; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81/d_downsampling_factor; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(2*(indext % acq_parameters.samples_per_code));
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(2*(indext));
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter*2 - 81;
//d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
}
else
{
//printf("xxxxxxxxxxxxxxxx no here\n");
//max_index = static_cast<double>(indext % acq_parameters.samples_per_code);
//initial_sample = d_sample_counter; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter - 40; // delay due to the downsampling filter in the acquisition
//d_gnss_synchro->Acq_samplestamp_samples = d_downsampling_factor*d_sample_counter - 81*0.5*d_downsampling_factor;
}
}
// printf("gnuradioblock acq samplestamp = %d\n", (int) *initial_sample);
// else
// {
// d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
// d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; // delay due to the downsampling filter in the acquisition
// }
// acquisition_fpga->read_acquisition_results(max_index, max_magnitude,
// initial_sample, power_sum, doppler_index);
}
// this function is only used for the unit tests
void pcps_acquisition_fpga::reset_acquisition(void)
{
// this function triggers a HW reset of the FPGA PL.
acquisition_fpga->reset_acquisition();
}

View File

@ -1,26 +1,14 @@
/*!
* \file pcps_acquisition_fpga.h
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
* \brief This class implements a Parallel Code Phase Search Acquisition for the FPGA
*
* Note: The CFAR algorithm is not implemented in the FPGA.
* Note 2: The bit transition flag is not implemented in the FPGA
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message queue
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkhauser, 2007. pp 81-84
*
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* <li> Marc Majoral, 2019. mmajoral(at)cttc.es
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
@ -30,7 +18,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -51,7 +39,7 @@
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#ifndef GNSS_SDR_PCPS_ACQUISITION_FPGA_H_
#define GNSS_SDR_PCPS_ACQUISITION_FPGA_H_
@ -122,15 +110,8 @@ private:
Gnss_Synchro* d_gnss_synchro;
std::shared_ptr<fpga_acquisition> acquisition_fpga;
// debug
//float debug_d_max_absolute;
//float debug_d_input_power_absolute;
//int32_t debug_indext;
//int32_t debug_doppler_index;
float d_downsampling_factor;
uint32_t d_select_queue_Fpga;
bool d_single_doppler_flag;
uint32_t d_total_block_exp;
@ -145,9 +126,7 @@ public:
*/
inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
// printf("acq set gnss synchro start\n");
d_gnss_synchro = p_gnss_synchro;
// printf("acq set gnss synchro end\n");
}
/*!
@ -155,9 +134,7 @@ public:
*/
inline uint32_t mag() const
{
// printf("acq dmag start\n");
return d_mag;
// printf("acq dmag end\n");
}
/*!
@ -238,19 +215,7 @@ public:
gr_vector_void_star& output_items);
/*!
* \brief This function is only used for the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief This funciton is only used for the unit tests
*/
void read_acquisition_results(uint32_t *max_index,
float *max_magnitude, float *second_magnitude, uint64_t *initial_sample, uint32_t *doppler_index, uint32_t *total_fft_scaling_factor);
/*!
* \brief This funciton is only used for the unit tests
* \brief This funciton triggers a HW reset of the FPGA PL.
*/
void reset_acquisition(void);

View File

@ -2,7 +2,7 @@
* \file fpga_acquisition.cc
* \brief High optimized FPGA vector correlator class
* \authors <ul>
* <li> Marc Majoral, 2018. mmajoral(at)cttc.cat
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
* </ul>
*
* Class that controls and executes a high optimized acquisition HW
@ -31,7 +31,7 @@
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
*/
#include "fpga_acquisition.h"
#include "GPS_L1_CA.h"
@ -42,10 +42,9 @@
#include <sys/mman.h> // libraries used by the GIPO
#include <utility>
#include <unistd.h> // for the usleep function only (debug)
// FPGA register parameters
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
#define RESET_ACQUISITION 2 // command to reset the multicorrelator
@ -59,50 +58,28 @@
#define SELECT_MSB 0XFF00 // value to select the most significant byte
#define SELECT_16_BITS 0xFFFF // value to select 16 bits
#define SHL_8_BITS 256 // value used to shift a value 8 bits to the left
// 12-bits
//#define SELECT_LSBits 0x0FFF
//#define SELECT_MSBbits 0x00FFF000
//#define SELECT_24_BITS 0x00FFFFFF
//#define SHL_12_BITS 4096
// 16-bits
#define SELECT_LSBits 0x000003FF
#define SELECT_MSBbits 0x000FFC00
#define SELECT_ALL_CODE_BITS 0x000FFFFF
#define SHL_CODE_BITS 1024
#define SELECT_LSBits 0x000003FF // Select the 10 LSbits out of a 20-bit word
#define SELECT_MSBbits 0x000FFC00 // Select the 10 MSbits out of a 20-bit word
#define SELECT_ALL_CODE_BITS 0x000FFFFF // Select a 20 bit word
#define SHL_CODE_BITS 1024 // shift left by 10 bits
bool fpga_acquisition::init()
{
//printf("acq lib init called\n");
// configure the acquisition with the main initialization values
//fpga_acquisition::configure_acquisition();
return true;
}
bool fpga_acquisition::set_local_code(uint32_t PRN)
{
//printf("acq lib set_local_code_called\n");
// select the code with the chosen PRN
d_PRN = PRN;
// printf("#### ACQ: WRITING LOCAL CODE for PRN %d\n", (int) PRN);
//
// fpga_acquisition::fpga_configure_acquisition_local_code(
// &d_all_fft_codes[d_nsamples_total * (PRN - 1)]);
//fpga_acquisition::fpga_configure_acquisition_local_code(
// &d_all_fft_codes[0]);
return true;
}
void fpga_acquisition::write_local_code()
{
//printf("#### ACQ: WRITING LOCAL CODE for PRN %d\n", (int) d_PRN);
fpga_acquisition::fpga_configure_acquisition_local_code(
&d_all_fft_codes[d_nsamples_total * (d_PRN - 1)]);
@ -116,15 +93,10 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
lv_16sc_t *all_fft_codes,
uint32_t excludelimit)
{
//printf("acq lib constructor called\n");
//printf("AAA- sampled_ms = %d\n ", sampled_ms);
uint32_t vector_length = nsamples_total;
uint32_t vector_length = nsamples_total; // * sampled_ms;
//printf("AAA- vector_length = %d\n ", vector_length);
// initial values
d_device_name = std::move(device_name);
//d_freq = freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_excludelimit = excludelimit;
@ -136,56 +108,12 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
d_fd = 0; // driver descriptor
d_map_base = nullptr; // driver memory map
d_all_fft_codes = all_fft_codes;
/*
//printf("acq internal device name = %s\n", d_device_name.c_str());
// open communication with HW accelerator
if ((d_fd = open(d_device_name.c_str(), O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << d_device_name;
std::cout << "Acq: cannot open deviceio" << d_device_name << std::endl;
}
else
{
//printf("acq lib DEVICE OPENED CORRECTLY\n");
}
d_map_base = reinterpret_cast<volatile uint32_t *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0));
if (d_map_base == reinterpret_cast<void *>(-1))
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
std::cout << "Acq: cannot map deviceio" << d_device_name << std::endl;
}
else
{
//printf("acq lib MAP BASE MAPPED CORRECTLY\n");
}
// sanity check : check test register
uint32_t writeval = TEST_REG_SANITY_CHECK;
uint32_t readval;
readval = fpga_acquisition::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
LOG(INFO) << "Acquisition test register sanity check success!";
//printf("acq lib REG SANITY CHECK SUCCESS\n");
//std::cout << "Acquisition test register sanity check success!" << std::endl;
}
*/
fpga_acquisition::reset_acquisition();
fpga_acquisition::open_device();
fpga_acquisition::fpga_acquisition_test_register();
fpga_acquisition::close_device();
// flag used for testing purposes
d_single_doppler_flag = 0;
d_PRN = 0;
DLOG(INFO) << "Acquisition FPGA class created";
@ -193,17 +121,12 @@ fpga_acquisition::fpga_acquisition(std::string device_name,
void fpga_acquisition::open_device()
{
//printf("acq internal device name = %s\n", d_device_name.c_str());
// open communication with HW accelerator
if ((d_fd = open(d_device_name.c_str(), O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << d_device_name;
std::cout << "Acq: cannot open deviceio" << d_device_name << std::endl;
}
else
{
//printf("acq lib DEVICE OPENED CORRECTLY\n");
}
d_map_base = reinterpret_cast<volatile uint32_t *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0));
@ -212,41 +135,17 @@ void fpga_acquisition::open_device()
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
std::cout << "Acq: cannot map deviceio" << d_device_name << std::endl;
}
else
{
//printf("acq lib MAP BASE MAPPED CORRECTLY\n");
}
/*
// sanity check : check test register
uint32_t writeval = TEST_REG_SANITY_CHECK;
uint32_t readval;
readval = fpga_acquisition::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
LOG(INFO) << "Acquisition test register sanity check success!";
//printf("acq lib REG SANITY CHECK SUCCESS\n");
//std::cout << "Acquisition test register sanity check success!" << std::endl;
}
*/
}
fpga_acquisition::~fpga_acquisition()
{
//printf("acq lib destructor called\n");
//fpga_acquisition::close_device();
}
bool fpga_acquisition::free()
{
//printf("acq lib free called\n");
return true;
}
@ -258,15 +157,12 @@ void fpga_acquisition::fpga_acquisition_test_register()
uint32_t writeval = TEST_REG_SANITY_CHECK;
uint32_t readval;
//printf("acq lib test register called\n");
//uint32_t readval;
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
//readval = fpga_acquisition::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
LOG(WARNING) << "Acquisition test register sanity check failed";
@ -274,20 +170,7 @@ void fpga_acquisition::fpga_acquisition_test_register()
else
{
LOG(INFO) << "Acquisition test register sanity check success!";
//printf("acq lib REG SANITY CHECK SUCCESS\n");
//std::cout << "Acquisition test register sanity check success!" << std::endl;
}
/*
//printf("acq lib test register called\n");
uint32_t readval;
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
// return read value
return readval;
*/
}
@ -296,305 +179,109 @@ void fpga_acquisition::fpga_configure_acquisition_local_code(lv_16sc_t fft_local
uint32_t local_code;
uint32_t k, tmp, tmp2;
uint32_t fft_data;
//printf("acq lib fpga_configure_acquisition_local_code_called\n");
// clear memory address counter
//d_map_base[6] = LOCAL_CODE_CLEAR_MEM;
//printf("writing local code for d_PRN = %d\n", (int) d_PRN);
//printf("writing local code d_nsamples_total = %d\n", (int) d_nsamples_total);
//printf("writing local code d_vector_length = %d\n", (int) d_vector_length);
d_map_base[9] = LOCAL_CODE_CLEAR_MEM;
// write local code
for (k = 0; k < d_vector_length; k++)
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
//tmp = k;
//tmp2 = k;
//local_code = (tmp & SELECT_LSB) | ((tmp2 * SHL_8_BITS) & SELECT_MSB); // put together the real part and the imaginary part
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_16_BITS);
//local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_12_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
local_code = (tmp & SELECT_LSBits) | ((tmp2 * SHL_CODE_BITS) & SELECT_MSBbits); // put together the real part and the imaginary part
//fft_data = MEM_LOCAL_CODE_WR_ENABLE | (local_code & SELECT_24_BITS);
fft_data = local_code & SELECT_ALL_CODE_BITS;
d_map_base[6] = fft_data;
//printf("debug local code %d real = %d imag = %d local_code = %d fft_data = %d\n", k, tmp, tmp2, local_code, fft_data);
//printf("debug local code %d real = 0x%08X imag = 0x%08X local_code = 0x%08X fft_data = 0x%08X\n", k, tmp, tmp2, local_code, fft_data);
}
//printf("acq d_vector_length = %d\n", d_vector_length);
//while(1);
}
void fpga_acquisition::run_acquisition(void)
{
//uint32_t result_valid = 0;
//while(result_valid == 0)
//{
// read_result_valid(&result_valid); // polling
//}
//printf("acq lib run_acqisition called\n");
// enable interrupts
int32_t reenable = 1;
int32_t disable_int = 0;
//reenable = 1;
write(d_fd, reinterpret_cast<void *>(&reenable), sizeof(int32_t));
// launch the acquisition process
//printf("acq lib launchin acquisition ...\n");
//printf("acq lib launch acquisition\n");
d_map_base[8] = LAUNCH_ACQUISITION; // writing a 1 to reg 8 launches the acquisition process
//printf("acq lib waiting for interrupt ...\n");
int32_t irq_count;
ssize_t nb;
//uint32_t result_valid = 0;
//usleep(5000000);
//printf("acq lib waiting for result valid\n");
//while(result_valid == 0)
//{
// read_result_valid(&result_valid); // polling
//}
//printf("result valid\n");
// wait for interrupt
nb = read(d_fd, &irq_count, sizeof(irq_count));
//usleep(500000); // debug
//printf("interrupt received\n");
if (nb != sizeof(irq_count))
{
printf("acquisition module Read failed to retrieve 4 bytes!\n");
printf("acquisition module Interrupt number %d\n", irq_count);
}
write(d_fd, reinterpret_cast<void *>(&disable_int), sizeof(int32_t));
}
void fpga_acquisition::set_block_exp(uint32_t total_block_exp)
{
//printf("******* acq writing total exponent = %d\n", (int) total_block_exp);
d_map_base[11] = total_block_exp;
}
void fpga_acquisition::set_doppler_sweep(uint32_t num_sweeps)
{
//printf("writing doppler_max = %d\n", (int) d_doppler_max);
//printf("writing doppler_step = %d\n", (int) d_doppler_step);
//printf("num_sweeps = %d\n", num_sweeps);
if (d_single_doppler_flag == 0)
{
//printf("acq lib set_doppler_sweep called\n");
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
//int32_t doppler = static_cast<int32_t>(-d_doppler_max) + d_doppler_step * doppler_index;
int32_t doppler = static_cast<int32_t>(-d_doppler_max);
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAA phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
// repeat the calculation with the doppler step
doppler = static_cast<int32_t>(d_doppler_step);
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAA phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_incr for doppler step = %d to d map base 4\n", phase_step_rad_int);
d_map_base[4] = phase_step_rad_int;
//printf("AAA writing num sweeps to d map base 5 = %d\n", num_sweeps);
d_map_base[5] = num_sweeps;
}
else
{
//printf("acq lib set_doppler_sweep called\n");
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
//int32_t doppler = static_cast<int32_t>(-d_doppler_max) + d_doppler_step * doppler_index;
//printf("executing with doppler = %d\n", (int) d_doppler_max);
int32_t doppler = static_cast<int32_t>(d_doppler_max);
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAA phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
//printf("executing with doppler step = %d\n", (int) d_doppler_step);
// repeat the calculation with the doppler step
doppler = static_cast<int32_t>(d_doppler_step);
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAA phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAA writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
d_map_base[4] = phase_step_rad_int;
//printf("AAA writing num sweeps to d map base 5 = 1\n");
d_map_base[5] = 1; // 1 sweep
}
}
/*
void fpga_acquisition::set_doppler_sweep_debug(uint32_t num_sweeps, uint32_t doppler_index)
{
//printf("acq lib set_doppler_sweep_debug called\n");
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
//int32_t doppler = static_cast<int32_t>(-d_doppler_max);
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAAh phase_step_rad_real for initial doppler = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAAh phase_step_rad_real for initial doppler after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAAh writing phase_step_rad_int for initial doppler = %d to d map base 3\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
// repeat the calculation with the doppler step
doppler = static_cast<int32_t>(d_doppler_step);
phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
//printf("AAAh phase_step_rad_real for doppler step = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAAh phase_step_rad_real for doppler step after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("AAAh writing phase_step_rad_int for doppler step = %d to d map base 4\n", phase_step_rad_int);
d_map_base[4] = phase_step_rad_int;
//printf("AAAh writing num sweeps to d map base 5 = %d\n", num_sweeps);
d_map_base[5] = num_sweeps;
}
*/
void fpga_acquisition::configure_acquisition()
{
fpga_acquisition::open_device();
//printf("acq lib configure acquisition called\n");
d_map_base[0] = d_select_queue;
//printf("AAA d_select_queue = %d\n", d_select_queue);
//d_map_base[0] = 1;
//printf("acq internal writing d_vector_length = %d to d map base 1\n ", d_vector_length);
d_map_base[1] = d_vector_length;
//printf("acq interal writing d_nsamples = %d to d map base 2\n ", d_nsamples);
d_map_base[2] = d_nsamples;
//printf("AAA writing LOG2 d_vector_length = %d to d map base 7\n ", (int)log2((float)d_vector_length));
d_map_base[7] = static_cast<int32_t>(log2(static_cast<float>(d_vector_length))); // log2 FFTlength
//printf("AAA writing excludelimit = %d to d map base 12\n", (int) d_excludelimit);
d_map_base[12] = d_excludelimit;
//printf("acquisition debug vector length = %d\n", d_vector_length);
//printf("acquisition debug vector length = %d\n", (int)log2((float)d_vector_length));
}
//void fpga_acquisition::configure_acquisition_debug()
//{
// fpga_acquisition::open_device();
//
// //printf("acq lib configure acquisition called\n");
// // d_map_base[0] = d_select_queue;
// //printf("AAA d_select_queue = %d\n", d_select_queue);
//
// //usleep(500000);
// //d_map_base[0] = 1;
// //printf("acq internal writing d_vector_length = %d to d map base 1\n ", d_vector_length);
///* d_map_base[1] = d_vector_length;
// //printf("acq interal writing d_nsamples = %d to d map base 2\n ", d_nsamples);
// d_map_base[2] = d_nsamples;
// //printf("AAA writing LOG2 d_vector_length = %d to d map base 7\n ", (int)log2((float)d_vector_length));
// d_map_base[7] = static_cast<int32_t>(log2(static_cast<float>(d_vector_length))); // log2 FFTlength
// //printf("AAA writing excludelimit = %d to d map base 12\n", (int) d_excludelimit);
// d_map_base[12] = d_excludelimit;
//*/
// //printf("acquisition debug vector length = %d\n", d_vector_length);
// //printf("acquisition debug vector length = %d\n", (int)log2((float)d_vector_length));
//}
void fpga_acquisition::set_phase_step(uint32_t doppler_index)
{
//printf("acq lib set phase step SHOULD NOT BE called\n");
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
int32_t doppler = -static_cast<int32_t>(d_doppler_max) + d_doppler_step * doppler_index;
//float phase_step_rad = GPS_TWO_PI * (d_freq + doppler) / static_cast<float>(d_fs_in);
float phase_step_rad = GPS_TWO_PI * (doppler) / static_cast<float>(d_fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
@ -603,15 +290,12 @@ void fpga_acquisition::set_phase_step(uint32_t doppler_index)
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
//printf("AAA+ phase_step_rad_real = %f\n", phase_step_rad_real);
if (phase_step_rad_real >= 1.0)
{
phase_step_rad_real = MAX_PHASE_STEP_RAD;
}
//printf("AAA+ phase_step_rad_real after checking = %f\n", phase_step_rad_real);
phase_step_rad_int_temp = phase_step_rad_real * POW_2_2; // * 2^2
phase_step_rad_int = static_cast<int32_t>(phase_step_rad_int_temp * (POW_2_29)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
//printf("writing phase_step_rad_int = %d to d_map_base 3 THE SECOND FUNCTION\n", phase_step_rad_int);
d_map_base[3] = phase_step_rad_int;
}
@ -620,22 +304,11 @@ void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
float *firstpeak, float *secondpeak, uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index, uint32_t *total_blk_exp)
{
//do
//{
//usleep(500000);
//printf("reading results\n");
//printf("acq lib read_acquisition_results_called\n");
uint64_t initial_sample_tmp = 0;
uint32_t readval = 0;
uint64_t readval_long = 0;
uint64_t readval_long_shifted = 0;
readval = d_map_base[1];
initial_sample_tmp = readval;
@ -644,42 +317,26 @@ void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
initial_sample_tmp = initial_sample_tmp + readval_long_shifted; // 2^32
*initial_sample = initial_sample_tmp;
//printf("-------> acq initial sample TOTAL = %llu\n", *initial_sample);
readval = d_map_base[3];
*firstpeak = static_cast<float>(readval);
//printf("-------> read first peak = %f\n", *firstpeak);
readval = d_map_base[4];
*secondpeak = static_cast<float>(readval);
//printf("-------> read second peak = %f\n", *secondpeak);
readval = d_map_base[5];
*max_index = readval;
//printf("-------> read max index = %d\n", (int) *max_index);
//printf("acq lib read max_magnitude dmap 2 = %d = %f\n", readval, *max_magnitude);
//readval = d_map_base[4];
*power_sum = 0;
//printf("acq lib read power sum dmap 4 = %d = %f\n", readval, *power_sum);
readval = d_map_base[8];
*total_blk_exp = readval;
//printf("---------> read total block exponent = %d\n", (int) *total_blk_exp);
readval = d_map_base[7]; // read doppler index -- this read releases the interrupt line
*doppler_index = readval;
//printf("---------> read doppler_index = %d\n", (int) *doppler_index );
readval = d_map_base[15]; // read dummy
//} while (*total_blk_exp == 11);
fpga_acquisition::close_device();
}
@ -687,21 +344,18 @@ void fpga_acquisition::read_acquisition_results(uint32_t *max_index,
void fpga_acquisition::block_samples()
{
//printf("acq lib block samples called\n");
d_map_base[14] = 1; // block the samples
}
void fpga_acquisition::unblock_samples()
{
//printf("acq lib unblock samples called\n");
d_map_base[14] = 0; // unblock the samples
}
void fpga_acquisition::close_device()
{
//printf("acq lib close device called\n");
uint32_t *aux = const_cast<uint32_t *>(d_map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
{
@ -714,16 +368,10 @@ void fpga_acquisition::close_device()
void fpga_acquisition::reset_acquisition(void)
{
fpga_acquisition::open_device();
//printf("acq lib reset acquisition called\n");
d_map_base[8] = RESET_ACQUISITION; // writing a 2 to d_map_base[8] resets the multicorrelator
fpga_acquisition::close_device();
}
// this function is only used for the unit tests
void fpga_acquisition::set_single_doppler_flag(unsigned int single_doppler_flag)
{
d_single_doppler_flag = single_doppler_flag;
}
// this function is only used for the unit tests
void fpga_acquisition::read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor)
@ -736,7 +384,6 @@ void fpga_acquisition::read_fpga_total_scale_factor(uint32_t *total_scale_factor
//readval = d_map_base[8];
*fw_scale_factor = 0;
//printf("reading scale factor of %d\n", (int) readval);
}
void fpga_acquisition::read_result_valid(uint32_t *result_valid)

View File

@ -2,7 +2,7 @@
* \file fpga_acquisition.h
* \brief High optimized FPGA vector correlator class
* \authors <ul>
* <li> Marc Majoral, 2018. mmajoral(at)cttc.cat
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
* </ul>
*
* Class that controls and executes a high optimized acquisition HW
@ -10,7 +10,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -61,14 +61,10 @@ public:
bool set_local_code(uint32_t PRN);
bool free();
void set_doppler_sweep(uint32_t num_sweeps);
//void set_doppler_sweep_debug(uint32_t num_sweeps, uint32_t doppler_index);
void run_acquisition(void);
void set_phase_step(uint32_t doppler_index);
//void read_acquisition_results(uint32_t *max_index, float *max_magnitude,
// uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index);
void read_acquisition_results(uint32_t *max_index, float *firstpeak, float *secondpeak, uint64_t *initial_sample, float *power_sum, uint32_t *doppler_index, uint32_t *total_blk_exp);
void block_samples();
void unblock_samples();
@ -78,9 +74,7 @@ public:
*/
void set_doppler_max(uint32_t doppler_max)
{
//printf("acq lib set doppler max called\n");
d_doppler_max = doppler_max;
//printf("set acq lib d_doppler_max = %d\n", (int) d_doppler_max);
}
/*!
@ -89,23 +83,16 @@ public:
*/
void set_doppler_step(uint32_t doppler_step)
{
//printf("acq lib set doppler step called\n");
d_doppler_step = doppler_step;
//printf("set acq lib d_doppler_step = %d\n", (int) d_doppler_step);
}
/*!
* \brief this function is only used in the unit test
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief this function is only used in the unit test
* \brief Reset the FPGA PL.
*/
void reset_acquisition(void);
/*!
* \brief this function is only used in the unit test
* \brief read the scaling factor that has been used by the FFT-IFFT
*/
void read_fpga_total_scale_factor(uint32_t *total_scale_factor, uint32_t *fw_scale_factor);
@ -137,13 +124,8 @@ private:
// FPGA private functions
void fpga_acquisition_test_register(void);
void fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[]);
//void configure_acquisition();
// void close_device();
// void open_device();
void read_result_valid(uint32_t *result_valid);
// test parameters
unsigned int d_single_doppler_flag; // this flag is only used for testing purposes
};
#endif /* GNSS_SDR_FPGA_ACQUISITION_H_ */