mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-12 19:20:32 +00:00
Added 16 bits short int complex ultra-fast resampler,
carrier wipe-off and correlator kernels (250% faster than gr_complex) enabled in tracking GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc tracking
This commit is contained in:
parent
05937e6995
commit
5ba12c6fdb
@ -158,7 +158,7 @@ Resampler.sample_freq_out=4000000
|
||||
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
;#count: Number of available GPS satellite channels.
|
||||
Channels_1C.count=12
|
||||
Channels_1C.count=1
|
||||
;#count: Number of available Galileo satellite channels.
|
||||
Channels_1B.count=0
|
||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||
|
@ -32,6 +32,7 @@ set(TRACKING_ADAPTER_SOURCES
|
||||
gps_l1_ca_tcp_connector_tracking.cc
|
||||
galileo_e5a_dll_pll_tracking.cc
|
||||
gps_l2_m_dll_pll_tracking.cc
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
|
||||
${OPT_TRACKING_ADAPTERS}
|
||||
)
|
||||
|
||||
|
@ -0,0 +1,159 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_c_aid_tracking_16sc.cc
|
||||
* \brief Implementation of an adapter of a DLL+PLL tracking loop block
|
||||
* for GPS L1 C/A to a TrackingInterface
|
||||
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
|
||||
* Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc.h"
|
||||
#include <glog/logging.h>
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaDllPllCAidTracking16sc::GpsL1CaDllPllCAidTracking16sc(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
boost::shared_ptr<gr::msg_queue> queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams),
|
||||
queue_(queue)
|
||||
{
|
||||
DLOG(INFO) << "role " << role;
|
||||
//################# CONFIGURATION PARAMETERS ########################
|
||||
int fs_in;
|
||||
int vector_length;
|
||||
int f_if;
|
||||
bool dump;
|
||||
std::string dump_filename;
|
||||
std::string item_type;
|
||||
std::string default_item_type = "gr_complex";
|
||||
float pll_bw_hz;
|
||||
float dll_bw_hz;
|
||||
float early_late_space_chips;
|
||||
item_type = configuration->property(role + ".item_type", default_item_type);
|
||||
//vector_length = configuration->property(role + ".vector_length", 2048);
|
||||
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
f_if = configuration->property(role + ".if", 0);
|
||||
dump = configuration->property(role + ".dump", false);
|
||||
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
||||
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
|
||||
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
||||
std::string default_dump_filename = "./track_ch";
|
||||
dump_filename = configuration->property(role + ".dump_filename",
|
||||
default_dump_filename); //unused!
|
||||
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
//################# MAKE TRACKING GNURadio object ###################
|
||||
if (item_type.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
tracking_ = gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(
|
||||
f_if,
|
||||
fs_in,
|
||||
vector_length,
|
||||
queue_,
|
||||
dump,
|
||||
dump_filename,
|
||||
pll_bw_hz,
|
||||
dll_bw_hz,
|
||||
early_late_space_chips);
|
||||
}
|
||||
else
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
LOG(WARNING) << item_type << " unknown tracking item type.";
|
||||
}
|
||||
channel_ = 0;
|
||||
channel_internal_queue_ = 0;
|
||||
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaDllPllCAidTracking16sc::~GpsL1CaDllPllCAidTracking16sc()
|
||||
{}
|
||||
|
||||
|
||||
void GpsL1CaDllPllCAidTracking16sc::start_tracking()
|
||||
{
|
||||
tracking_->start_tracking();
|
||||
}
|
||||
|
||||
/*
|
||||
* Set tracking channel unique ID
|
||||
*/
|
||||
void GpsL1CaDllPllCAidTracking16sc::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
tracking_->set_channel(channel);
|
||||
}
|
||||
|
||||
/*
|
||||
* Set tracking channel internal queue
|
||||
*/
|
||||
void GpsL1CaDllPllCAidTracking16sc::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
tracking_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
|
||||
void GpsL1CaDllPllCAidTracking16sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
}
|
||||
|
||||
void GpsL1CaDllPllCAidTracking16sc::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if(top_block) { /* top_block is not null */};
|
||||
//nothing to connect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
void GpsL1CaDllPllCAidTracking16sc::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if(top_block) { /* top_block is not null */};
|
||||
//nothing to disconnect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
gr::basic_block_sptr GpsL1CaDllPllCAidTracking16sc::get_left_block()
|
||||
{
|
||||
return tracking_;
|
||||
}
|
||||
|
||||
gr::basic_block_sptr GpsL1CaDllPllCAidTracking16sc::get_right_block()
|
||||
{
|
||||
return tracking_;
|
||||
}
|
||||
|
@ -0,0 +1,114 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_c_aid_tracking_16sc.h
|
||||
* \brief Interface of an adapter of a DLL+PLL tracking loop block
|
||||
* for GPS L1 C/A to a TrackingInterface
|
||||
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
|
||||
* Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkha user, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
|
||||
|
||||
#include <string>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include "tracking_interface.h"
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h"
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class implements a code DLL + carrier PLL tracking loop
|
||||
*/
|
||||
class GpsL1CaDllPllCAidTracking16sc : public TrackingInterface
|
||||
{
|
||||
public:
|
||||
|
||||
GpsL1CaDllPllCAidTracking16sc(ConfigurationInterface* configuration,
|
||||
std::string role,
|
||||
unsigned int in_streams,
|
||||
unsigned int out_streams,
|
||||
boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GpsL1CaDllPllCAidTracking16sc();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
//! Returns "gps_l1_ca_dll_pll_c_aid_tracking_16sc"
|
||||
std::string implementation()
|
||||
{
|
||||
return "gps_l1_ca_dll_pll_c_aid_tracking_16sc";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
void start_tracking();
|
||||
|
||||
private:
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr tracking_;
|
||||
size_t item_size_;
|
||||
unsigned int channel_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
};
|
||||
|
||||
#endif // GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_H_
|
@ -16,7 +16,6 @@
|
||||
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
|
||||
if(ENABLE_CUDA)
|
||||
set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} gps_l1_ca_dll_pll_tracking_gpu_cc.cc)
|
||||
set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS})
|
||||
@ -34,6 +33,7 @@ set(TRACKING_GR_BLOCKS_SOURCES
|
||||
galileo_e5a_dll_pll_tracking_cc.cc
|
||||
gps_l2_m_dll_pll_tracking_cc.cc
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
|
||||
${OPT_TRACKING_BLOCKS}
|
||||
)
|
||||
|
||||
@ -48,7 +48,6 @@ include_directories(
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
${Boost_INCLUDE_DIRS}
|
||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||
${VOLK_INCLUDE_DIRS}
|
||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||
${OPT_TRACKING_INCLUDES}
|
||||
)
|
||||
@ -61,7 +60,7 @@ file(GLOB TRACKING_GR_BLOCKS_HEADERS "*.h")
|
||||
add_library(tracking_gr_blocks ${TRACKING_GR_BLOCKS_SOURCES} ${TRACKING_GR_BLOCKS_HEADERS})
|
||||
source_group(Headers FILES ${TRACKING_GR_BLOCKS_HEADERS})
|
||||
|
||||
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${OPT_TRACKING_LIBRARIES})
|
||||
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${OPT_TRACKING_LIBRARIES})
|
||||
|
||||
if(NOT VOLK_GNSSSDR_FOUND)
|
||||
add_dependencies(tracking_gr_blocks volk_gnsssdr_module)
|
||||
|
@ -0,0 +1,612 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.cc
|
||||
* \brief Implementation of a code DLL + carrier PLL tracking block
|
||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <volk/volk.h>
|
||||
#include <glog/logging.h>
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "control_message_factory.h"
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Include in definition header file
|
||||
*/
|
||||
#define CN0_ESTIMATION_SAMPLES 20
|
||||
#define MINIMUM_VALID_CN0 25
|
||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(if_freq,
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::forecast (int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
if (noutput_items != 0)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips) :
|
||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<gr_complex*>(volk_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
|
||||
d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_get_alignment()));
|
||||
|
||||
d_in_16sc = static_cast<lv_16sc_t*>(volk_malloc(2 * d_vector_length * sizeof(lv_16sc_t), volk_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
|
||||
d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_malloc(d_n_correlator_taps*sizeof(lv_16sc_t), volk_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
|
||||
}
|
||||
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_malloc(d_n_correlator_taps*sizeof(float), volk_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_cpu_16sc.init(2 * d_correlation_length_samples, d_n_correlator_taps);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carrier_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
d_enable_tracking = false;
|
||||
d_pull_in = false;
|
||||
d_last_seg = 0;
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
||||
|
||||
systemName["G"] = std::string("GPS");
|
||||
systemName["S"] = std::string("SBAS");
|
||||
|
||||
set_relative_rate(1.0 / (static_cast<double>(d_vector_length) * 2.0));
|
||||
|
||||
d_channel_internal_queue = 0;
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_cycles = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
|
||||
d_pll_to_dll_assist_secs_Ti = 0.0;
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_code_phase_step_chips = 0.0;
|
||||
d_carrier_phase_step_rad = 0.0;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_correlation_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //The carrier loop filter implements the Doppler accumulator
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
||||
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
|
||||
}
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
d_rem_carrier_phase_rad = 0.0;
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_acc_carrier_phase_cycles = 0.0;
|
||||
d_pll_to_dll_assist_secs_Ti = 0.0;
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0,1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::~gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
|
||||
volk_free(d_local_code_shift_chips);
|
||||
volk_free(d_ca_code);
|
||||
|
||||
volk_free(d_in_16sc);
|
||||
volk_free(d_ca_code_16sc);
|
||||
volk_free(d_correlator_outs_16sc);
|
||||
|
||||
delete[] d_Prompt_buffer;
|
||||
multicorrelator_cpu_16sc.free();
|
||||
}
|
||||
|
||||
|
||||
|
||||
int gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
// process vars
|
||||
double code_error_chips_Ti = 0.0;
|
||||
double code_error_filt_chips = 0.0;
|
||||
double code_error_filt_secs_Ti = 0.0;
|
||||
double CURRENT_INTEGRATION_TIME_S;
|
||||
double CORRECTED_INTEGRATION_TIME_S;
|
||||
double dll_code_error_secs_Ti = 0.0;
|
||||
double carr_phase_error_secs_Ti = 0.0;
|
||||
double old_d_rem_code_phase_samples;
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
d_sample_counter += samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
*out[0] = current_synchro_data;
|
||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
|
||||
volk_gnsssdr_32fc_convert_16ic(d_in_16sc,in,d_correlation_length_samples);
|
||||
//std::cout << std::fixed << std::setw( 11 ) << std::setprecision( 6 );
|
||||
//std::cout<<"in="<<in[0]<<" in 16sc="<<d_in_16sc[0]<<std::endl;
|
||||
|
||||
multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc,d_in_16sc);
|
||||
multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, d_carrier_phase_step_rad, d_rem_code_phase_chips, d_code_phase_step_chips, d_correlation_length_samples);
|
||||
|
||||
//std::cout<<"E float="<<d_correlator_outs[0]<<" E 16sc="<<d_correlator_outs_16sc[0]<<std::endl;
|
||||
//std::cout<<"P float="<<d_correlator_outs[1]<<" P 16sc="<<d_correlator_outs_16sc[1]<<std::endl;
|
||||
//std::cout<<"L float="<<d_correlator_outs[2]<<" L 16sc="<<d_correlator_outs_16sc[2]<<std::endl;
|
||||
|
||||
//std::cout<<std::endl;
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag())) / GPS_TWO_PI; //prompt output
|
||||
// Carrier discriminator filter
|
||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||
// Input [s/Ti] -> output [Hz]
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
// code Doppler frequency update
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()), std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag())); //[chips/Ti] //early and late
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
||||
// DLL code error estimation [s/Ti]
|
||||
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
|
||||
dll_code_error_secs_Ti = - code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||
|
||||
d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
|
||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
|
||||
|
||||
// UPDATE REMNANT CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||
// UPDATE CARRIER PHASE ACCUULATOR
|
||||
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S;
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag()); //prompt
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
||||
if (d_queue != gr::msg_queue::sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + old_d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// debug: Second counter in channel 0
|
||||
if (d_channel == 0)
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// stream to collect cout calls to improve thread safety
|
||||
std::stringstream tmp_str_stream;
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
|
||||
if (d_channel == 0)
|
||||
{
|
||||
// debug: Second counter in channel 0
|
||||
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
|
||||
std::cout << tmp_str_stream.rdbuf() << std::flush;
|
||||
}
|
||||
}
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
|
||||
}
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
if(d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
float tmp_E, tmp_P, tmp_L;
|
||||
double tmp_double;
|
||||
prompt_I = d_correlator_outs_16sc[1].real();
|
||||
prompt_Q = d_correlator_outs_16sc[1].imag();
|
||||
tmp_E = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()));
|
||||
tmp_P = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag()));
|
||||
tmp_L = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag()));
|
||||
try
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_cycles), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e->what();
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_correlation_length_samples; //count for the processed samples
|
||||
|
||||
if((noutput_items == 0) || (ninput_items[0] == 0))
|
||||
{
|
||||
LOG(WARNING) << "noutput_items = 0";
|
||||
}
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -0,0 +1,189 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc.h
|
||||
* \brief Interface of a code DLL + carrier PLL tracking block
|
||||
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
|
||||
* Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
|
||||
* Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
|
||||
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
|
||||
|
||||
#include <fstream>
|
||||
#include <queue>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <volk/volk.h>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_FLL_PLL_filter.h"
|
||||
#include "cpu_multicorrelator.h"
|
||||
#include "cpu_multicorrelator_16sc.h"
|
||||
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc;
|
||||
|
||||
typedef boost::shared_ptr<gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc>
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr;
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
* \brief This class implements a DLL + PLL tracking loop block
|
||||
*/
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc: public gr::block
|
||||
{
|
||||
public:
|
||||
~gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc();
|
||||
|
||||
void set_channel(unsigned int channel);
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
void start_tracking();
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
int general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
|
||||
|
||||
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
|
||||
|
||||
private:
|
||||
friend gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_16sc_cc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_16sc_cc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
// tracking configuration vars
|
||||
boost::shared_ptr<gr::msg_queue> d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
unsigned int d_vector_length;
|
||||
bool d_dump;
|
||||
|
||||
Gnss_Synchro* d_acquisition_gnss_synchro;
|
||||
unsigned int d_channel;
|
||||
int d_last_seg;
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
int d_n_correlator_taps;
|
||||
|
||||
lv_16sc_t* d_in_16sc;
|
||||
|
||||
gr_complex* d_ca_code;
|
||||
lv_16sc_t* d_ca_code_16sc;
|
||||
float* d_local_code_shift_chips;
|
||||
//gr_complex* d_correlator_outs;
|
||||
lv_16sc_t* d_correlator_outs_16sc;
|
||||
//cpu_multicorrelator multicorrelator_cpu;
|
||||
cpu_multicorrelator_16sc multicorrelator_cpu_16sc;
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_code_phase_chips;
|
||||
double d_rem_carrier_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_FLL_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_carrier_phase_step_rad;
|
||||
double d_acc_carrier_phase_cycles;
|
||||
double d_code_phase_samples;
|
||||
double d_pll_to_dll_assist_secs_Ti;
|
||||
|
||||
//Integration period in samples
|
||||
int d_correlation_length_samples;
|
||||
|
||||
//processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
unsigned long int d_acq_sample_stamp;
|
||||
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
bool d_enable_tracking;
|
||||
bool d_pull_in;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
std::ofstream d_dump_file;
|
||||
|
||||
std::map<std::string, std::string> systemName;
|
||||
std::string sys;
|
||||
};
|
||||
|
||||
#endif //GNSS_SDR_GPS_L1_CA_DLL_PLL_C_AID_TRACKING_16SC_CC_H
|
@ -0,0 +1,606 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_dll_pll_tracking_gpu_cc.cc
|
||||
* \brief Implementation of a code DLL + carrier PLL tracking block, GPU ACCELERATED
|
||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_dll_pll_tracking_gpu_cc.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include "gnss_synchro.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <volk/volk.h> //volk_alignement
|
||||
// includes
|
||||
#include <cuda_profiler_api.h>
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Include in definition header file
|
||||
*/
|
||||
#define CN0_ESTIMATION_SAMPLES 20
|
||||
#define MINIMUM_VALID_CN0 25
|
||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l1_ca_dll_pll_tracking_gpu_cc_sptr
|
||||
gps_l1_ca_dll_pll_make_tracking_gpu_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_tracking_gpu_cc_sptr(new Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(if_freq,
|
||||
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::forecast (int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
|
||||
|
||||
|
||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
boost::shared_ptr<gr::msg_queue> queue,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips) :
|
||||
gr::block("Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// initialize internal vars
|
||||
d_queue = queue;
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Set GPU flags
|
||||
cudaSetDeviceFlags(cudaDeviceMapHost);
|
||||
//allocate host memory
|
||||
//pinned memory mode - use special function to get OS-pinned memory
|
||||
int N_CORRELATORS = 3;
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// Get space for the resampled early / prompt / late local replicas
|
||||
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// correlator outputs (scalar)
|
||||
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
|
||||
|
||||
//map to EPL pointers
|
||||
d_Early = &d_corr_outs_gpu[0];
|
||||
d_Prompt = &d_corr_outs_gpu[1];
|
||||
d_Late = &d_corr_outs_gpu[2];
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
multicorrelator_gpu = new cuda_multicorrelator();
|
||||
//local code resampler on GPU
|
||||
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
|
||||
multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
|
||||
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
d_enable_tracking = false;
|
||||
d_pull_in = false;
|
||||
d_last_seg = 0;
|
||||
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
||||
|
||||
systemName["G"] = std::string("GPS");
|
||||
systemName["S"] = std::string("SBAS");
|
||||
|
||||
|
||||
set_relative_rate(1.0/((double)d_vector_length*2));
|
||||
|
||||
d_channel_internal_queue = 0;
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
d_acc_code_phase_secs = 0.0;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1.0/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
||||
|
||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
d_acc_code_phase_secs = 0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0,1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
cudaFreeHost(in_gpu);
|
||||
cudaFreeHost(d_corr_outs_gpu);
|
||||
cudaFreeHost(d_local_code_shift_chips);
|
||||
cudaFreeHost(d_ca_code);
|
||||
multicorrelator_gpu->free_cuda();
|
||||
delete(multicorrelator_gpu);
|
||||
delete[] d_Prompt_buffer;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
double carr_error_hz=0.0;
|
||||
double carr_error_filt_hz=0.0;
|
||||
double code_error_chips=0.0;
|
||||
double code_error_filt_chips=0.0;
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0];
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
|
||||
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
*out[0] = current_synchro_data;
|
||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
|
||||
// UPDATE NCO COMMAND
|
||||
double phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
//code resampler on GPU (new)
|
||||
double code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
|
||||
std::cout<<"rem_code_phase_chips="<<rem_code_phase_chips<<" d_current_prn_length_samples="<<d_current_prn_length_samples<<std::endl;
|
||||
memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
|
||||
cudaProfilerStart();
|
||||
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda( static_cast<float>(d_rem_carr_phase_rad),
|
||||
static_cast<float>(phase_step_rad),
|
||||
static_cast<float>(code_phase_step_chips),
|
||||
static_cast<float>(rem_code_phase_chips),
|
||||
d_current_prn_length_samples, 3);
|
||||
cudaProfilerStop();
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
|
||||
if (d_queue != gr::msg_queue::sptr())
|
||||
{
|
||||
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
|
||||
}
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
|
||||
//compute remnant code phase samples BEFORE the Tracking timestamp
|
||||
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
// ########## DEBUG OUTPUT
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// debug: Second counter in channel 0
|
||||
if (d_channel == 0)
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
|
||||
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
|
||||
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
|
||||
/*!
|
||||
* \todo The stop timer has to be moved to the signal source!
|
||||
*/
|
||||
// stream to collect cout calls to improve thread safety
|
||||
std::stringstream tmp_str_stream;
|
||||
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
|
||||
{
|
||||
d_last_seg = floor(d_sample_counter / d_fs_in);
|
||||
|
||||
if (d_channel == 0)
|
||||
{
|
||||
// debug: Second counter in channel 0
|
||||
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
|
||||
std::cout << tmp_str_stream.rdbuf() << std::flush;
|
||||
}
|
||||
}
|
||||
*d_Early = gr_complex(0,0);
|
||||
*d_Prompt = gr_complex(0,0);
|
||||
*d_Late = gr_complex(0,0);
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
if(d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
float tmp_E, tmp_P, tmp_L;
|
||||
float tmp_float;
|
||||
double tmp_double;
|
||||
prompt_I = (*d_Prompt).real();
|
||||
prompt_Q = (*d_Prompt).imag();
|
||||
tmp_E = std::abs<float>(*d_Early);
|
||||
tmp_P = std::abs<float>(*d_Prompt);
|
||||
tmp_L = std::abs<float>(*d_Late);
|
||||
try
|
||||
{
|
||||
|
||||
// EPR
|
||||
d_dump_file.write((char*)&tmp_E, sizeof(float));
|
||||
d_dump_file.write((char*)&tmp_P, sizeof(float));
|
||||
d_dump_file.write((char*)&tmp_L, sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write((char*)&prompt_I, sizeof(float));
|
||||
d_dump_file.write((char*)&prompt_Q, sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
tmp_float = d_acc_carrier_phase_rad;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// carrier and code frequency
|
||||
tmp_float = d_carrier_doppler_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = d_code_freq_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//PLL commands
|
||||
tmp_float = carr_error_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = carr_error_filt_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//DLL commands
|
||||
tmp_float = code_error_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = code_error_filt_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
tmp_float = d_CN0_SNV_dB_Hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float = d_carrier_lock_test;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write((char*)&tmp_double, sizeof(double));
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
|
||||
//LOG(INFO)<<"GPS tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -33,6 +33,7 @@ endif(ENABLE_CUDA)
|
||||
set(TRACKING_LIB_SOURCES
|
||||
correlator.cc
|
||||
cpu_multicorrelator.cc
|
||||
cpu_multicorrelator_16sc.cc
|
||||
lock_detectors.cc
|
||||
tcp_communication.cc
|
||||
tcp_packet_data.cc
|
||||
|
194
src/algorithms/tracking/libs/cpu_multicorrelator_16sc.cc
Normal file
194
src/algorithms/tracking/libs/cpu_multicorrelator_16sc.cc
Normal file
@ -0,0 +1,194 @@
|
||||
/*!
|
||||
* \file cpu_multicorrelator_16sc.cc
|
||||
* \brief High optimized CPU vector multiTAP correlator class
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Class that implements a high optimized vector multiTAP correlator class for CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
#include "cpu_multicorrelator_16sc.h"
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <gnuradio/fxpt.h> // fixed point sine and cosine
|
||||
|
||||
#define LV_HAVE_GENERIC
|
||||
#define LV_HAVE_SSE2
|
||||
#include "volk_gnsssdr_16ic_x2_dot_prod_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_x2_multiply_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_resampler_16ic.h"
|
||||
#include "volk_gnsssdr_16ic_xn_resampler_16ic_xn.h"
|
||||
#include "volk_gnsssdr_16ic_xn_dot_prod_16ic_xn.h"
|
||||
|
||||
bool cpu_multicorrelator_16sc::init(
|
||||
int max_signal_length_samples,
|
||||
int n_correlators
|
||||
)
|
||||
{
|
||||
|
||||
// ALLOCATE MEMORY FOR INTERNAL vectors
|
||||
size_t size = max_signal_length_samples * sizeof(lv_16sc_t);
|
||||
|
||||
// NCO signal
|
||||
d_nco_in = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
|
||||
|
||||
// Doppler-free signal
|
||||
d_sig_doppler_wiped = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
|
||||
|
||||
d_local_codes_resampled = new lv_16sc_t*[n_correlators];
|
||||
for (int n = 0; n < n_correlators; n++)
|
||||
{
|
||||
d_local_codes_resampled[n] = static_cast<lv_16sc_t*>(volk_malloc(size, volk_get_alignment()));
|
||||
}
|
||||
d_n_correlators = n_correlators;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool cpu_multicorrelator_16sc::set_local_code_and_taps(
|
||||
int code_length_chips,
|
||||
const lv_16sc_t* local_code_in,
|
||||
float *shifts_chips
|
||||
)
|
||||
{
|
||||
d_local_code_in = local_code_in;
|
||||
d_shifts_chips = shifts_chips;
|
||||
d_code_length_chips = code_length_chips;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool cpu_multicorrelator_16sc::set_input_output_vectors(lv_16sc_t* corr_out, const lv_16sc_t* sig_in)
|
||||
{
|
||||
// Save CPU pointers
|
||||
d_sig_in = sig_in;
|
||||
d_corr_out = corr_out;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void cpu_multicorrelator_16sc::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
|
||||
{
|
||||
|
||||
float *tmp_code_phases_chips;
|
||||
tmp_code_phases_chips=static_cast<float*>(volk_malloc(d_n_correlators*sizeof(float), volk_get_alignment()));
|
||||
for (int n=0;n<d_n_correlators;n++)
|
||||
{
|
||||
tmp_code_phases_chips[n]=d_shifts_chips[n]-rem_code_phase_chips;
|
||||
}
|
||||
|
||||
volk_gnsssdr_16ic_xn_resampler_16ic_xn_sse2(d_local_codes_resampled,
|
||||
d_local_code_in,
|
||||
tmp_code_phases_chips,
|
||||
code_phase_step_chips,
|
||||
correlator_length_samples,
|
||||
d_code_length_chips,
|
||||
d_n_correlators);
|
||||
|
||||
volk_free(tmp_code_phases_chips);
|
||||
|
||||
// float local_code_chip_index;
|
||||
// for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
||||
// {
|
||||
// for (int n = 0; n < correlator_length_samples; n++)
|
||||
// {
|
||||
// // resample code for current tap
|
||||
// local_code_chip_index = std::fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
|
||||
// //Take into account that in multitap correlators, the shifts can be negative!
|
||||
// if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
|
||||
// d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
|
||||
void cpu_multicorrelator_16sc::update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad)
|
||||
{
|
||||
float sin_f, cos_f;
|
||||
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
||||
int phase_rad_i = gr::fxpt::float_to_fixed(rem_carr_phase_rad);
|
||||
|
||||
for(int i = 0; i < correlator_length_samples; i++)
|
||||
{
|
||||
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
|
||||
d_nco_in[i] = lv_16sc_t((short int)(cos_f*2.0), (short int)(-sin_f*2.0));
|
||||
phase_rad_i += phase_step_rad_i;
|
||||
}
|
||||
}
|
||||
|
||||
bool cpu_multicorrelator_16sc::Carrier_wipeoff_multicorrelator_resampler(
|
||||
float rem_carrier_phase_in_rad,
|
||||
float phase_step_rad,
|
||||
float rem_code_phase_chips,
|
||||
float code_phase_step_chips,
|
||||
int signal_length_samples)
|
||||
{
|
||||
update_local_carrier(signal_length_samples, rem_carrier_phase_in_rad, phase_step_rad);
|
||||
|
||||
//std::cout<<"d_nco_in 16sc="<<d_nco_in[23]<<std::endl;
|
||||
volk_gnsssdr_16ic_x2_multiply_16ic_a_sse2(d_sig_doppler_wiped,d_sig_in,d_nco_in,signal_length_samples);
|
||||
//std::cout<<"d_sig_doppler_wiped 16sc="<<d_sig_doppler_wiped[23]<<std::endl;
|
||||
update_local_code(signal_length_samples,rem_code_phase_chips, code_phase_step_chips);
|
||||
|
||||
volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_a_sse2(d_corr_out, d_sig_doppler_wiped, (const lv_16sc_t**)d_local_codes_resampled,signal_length_samples,d_n_correlators);
|
||||
|
||||
//for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
|
||||
// {
|
||||
// volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(&d_corr_out[current_correlator_tap], d_sig_doppler_wiped, d_local_codes_resampled[current_correlator_tap],signal_length_samples);
|
||||
// }
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
cpu_multicorrelator_16sc::cpu_multicorrelator_16sc()
|
||||
{
|
||||
d_sig_in = NULL;
|
||||
d_nco_in = NULL;
|
||||
d_sig_doppler_wiped = NULL;
|
||||
d_local_code_in = NULL;
|
||||
d_shifts_chips = NULL;
|
||||
d_corr_out = NULL;
|
||||
d_local_codes_resampled = NULL;
|
||||
d_code_length_chips = 0;
|
||||
d_n_correlators = 0;
|
||||
}
|
||||
|
||||
bool cpu_multicorrelator_16sc::free()
|
||||
{
|
||||
// Free memory
|
||||
if (d_sig_doppler_wiped != NULL) volk_free(d_sig_doppler_wiped);
|
||||
if (d_nco_in != NULL) volk_free(d_nco_in);
|
||||
for (int n = 0; n < d_n_correlators; n++)
|
||||
{
|
||||
volk_free(d_local_codes_resampled[n]);
|
||||
}
|
||||
delete d_local_codes_resampled;
|
||||
return true;
|
||||
}
|
||||
|
73
src/algorithms/tracking/libs/cpu_multicorrelator_16sc.h
Normal file
73
src/algorithms/tracking/libs/cpu_multicorrelator_16sc.h
Normal file
@ -0,0 +1,73 @@
|
||||
/*!
|
||||
* \file cpu_multicorrelator_16sc.h
|
||||
* \brief High optimized CPU vector multiTAP correlator class for lv_16sc_t (short int complex)
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2016. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Class that implements a high optimized vector multiTAP correlator class for CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_CPU_MULTICORRELATOR_16SC_H_
|
||||
#define GNSS_SDR_CPU_MULTICORRELATOR_16SC_H_
|
||||
|
||||
#include <volk/volk.h> //include original volk first!
|
||||
#include "volk_gnsssdr/volk_gnsssdr.h"
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Class that implements carrier wipe-off and correlators.
|
||||
*/
|
||||
class cpu_multicorrelator_16sc
|
||||
{
|
||||
public:
|
||||
cpu_multicorrelator_16sc();
|
||||
bool init(int max_signal_length_samples, int n_correlators);
|
||||
bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
|
||||
bool set_input_output_vectors(lv_16sc_t* corr_out, const lv_16sc_t* sig_in);
|
||||
void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips);
|
||||
void update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad);
|
||||
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
|
||||
bool free();
|
||||
|
||||
private:
|
||||
// Allocate the device input vectors
|
||||
const lv_16sc_t *d_sig_in;
|
||||
lv_16sc_t *d_nco_in;
|
||||
lv_16sc_t **d_local_codes_resampled;
|
||||
lv_16sc_t *d_sig_doppler_wiped;
|
||||
const lv_16sc_t *d_local_code_in;
|
||||
lv_16sc_t *d_corr_out;
|
||||
float *d_shifts_chips;
|
||||
int d_code_length_chips;
|
||||
int d_n_correlators;
|
||||
bool update_local_code();
|
||||
bool update_local_carrier();
|
||||
};
|
||||
|
||||
|
||||
#endif /* CPU_MULTICORRELATOR_H_ */
|
31
src/algorithms/tracking/libs/saturated_arithmetic.h
Normal file
31
src/algorithms/tracking/libs/saturated_arithmetic.h
Normal file
@ -0,0 +1,31 @@
|
||||
#ifndef SATURATED_ARITHMETIC_H_
|
||||
#define SATURATED_ARITHMETIC_H_
|
||||
|
||||
#include <limits.h>
|
||||
//#include <types.h>
|
||||
static inline int16_t sat_adds16b(int16_t x, int16_t y)
|
||||
{
|
||||
// int16_t ux = x;
|
||||
// int16_t uy = y;
|
||||
// int16_t res = ux + uy;
|
||||
//
|
||||
// /* Calculate overflowed result. (Don't change the sign bit of ux) */
|
||||
// ux = (ux >> 15) + SHRT_MAX;
|
||||
//
|
||||
// /* Force compiler to use cmovns instruction */
|
||||
// if ((int16_t) ((ux ^ uy) | ~(uy ^ res)) >= 0)
|
||||
// {
|
||||
// res = ux;
|
||||
// }
|
||||
//
|
||||
// return res;
|
||||
|
||||
int32_t res = (int32_t) x + (int32_t) y;
|
||||
|
||||
if (res < SHRT_MIN) res = SHRT_MIN;
|
||||
if (res > SHRT_MAX) res = SHRT_MAX;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif /*SATURATED_ARITHMETIC_H_*/
|
171
src/algorithms/tracking/libs/volk_gnsssdr_16ic_resampler_16ic.h
Normal file
171
src/algorithms/tracking/libs/volk_gnsssdr_16ic_resampler_16ic.h
Normal file
@ -0,0 +1,171 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_resampler_16ic.h
|
||||
* \brief Volk protokernel: resample a 16 bits complex vector
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <cmath>
|
||||
//#pragma STDC FENV_ACCESS ON
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
//int round_int( float r ) {
|
||||
// return (r > 0.0) ? (r + 0.5) : (r - 0.5);
|
||||
//}
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
|
||||
\param cVector The vector where the result will be stored
|
||||
\param aVector One of the vectors to be multiplied
|
||||
\param bVector One of the vectors to be multiplied
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_generic(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips)
|
||||
{
|
||||
int local_code_chip_index;
|
||||
//fesetround(FE_TONEAREST);
|
||||
for (unsigned int n = 0; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = round(code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f);
|
||||
if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
|
||||
if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
|
||||
//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
|
||||
result[n] = local_code[local_code_chip_index];
|
||||
}
|
||||
//std::cout<<std::endl;
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_resampler_16ic_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, float rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, int code_length_chips)//, int* scratch_buffer, float* scratch_buffer_float)
|
||||
{
|
||||
|
||||
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
||||
unsigned int number;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
lv_16sc_t* _result = result;
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
__m128 _rem_code_phase,_code_phase_step_chips;
|
||||
__m128i _code_length_chips,_code_length_chips_minus1;
|
||||
__m128 _code_phase_out,_code_phase_out_with_offset;
|
||||
rem_code_phase_chips=rem_code_phase_chips-0.5f;
|
||||
|
||||
_rem_code_phase = _mm_load1_ps(&rem_code_phase_chips); //load float to all four float values in m128 register
|
||||
_code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
|
||||
four_times_code_length_chips_minus1[0]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[1]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[2]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[3]=code_length_chips-1;
|
||||
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips[4];
|
||||
four_times_code_length_chips[0]=code_length_chips;
|
||||
four_times_code_length_chips[1]=code_length_chips;
|
||||
four_times_code_length_chips[2]=code_length_chips;
|
||||
four_times_code_length_chips[3]=code_length_chips;
|
||||
|
||||
_code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
|
||||
_code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
|
||||
|
||||
__m128i negative_indexes, overflow_indexes,_code_phase_out_int, _code_phase_out_int_neg,_code_phase_out_int_over;
|
||||
|
||||
__m128i zero=_mm_setzero_si128();
|
||||
|
||||
|
||||
__attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
__m128 _4output_index=_mm_load_ps(init_idx_float);
|
||||
__attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
|
||||
__m128 _4constant_float=_mm_load_ps(init_4constant_float);
|
||||
|
||||
//__attribute__((aligned(16))) int output_indexes[4];
|
||||
|
||||
for(number=0;number < quarterPoints; number++){
|
||||
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
|
||||
_code_phase_out_with_offset = _mm_add_ps(_code_phase_out,_rem_code_phase); //add the phase offset
|
||||
_code_phase_out_int=_mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
|
||||
|
||||
negative_indexes=_mm_cmplt_epi32 (_code_phase_out_int, zero); //test for negative values
|
||||
_code_phase_out_int_neg=_mm_add_epi32(_code_phase_out_int,_code_length_chips); //the negative values branch
|
||||
//_code_phase_out_int_over=_mm_or_si128(_mm_and_si128(_code_phase_out_int_neg,_code_phase_out_int),_mm_andnot_si128(negative_indexes,_code_phase_out_int));
|
||||
_code_phase_out_int_neg=_mm_xor_si128(_code_phase_out_int,_mm_and_si128( negative_indexes,_mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
|
||||
|
||||
overflow_indexes=_mm_cmpgt_epi32 (_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
|
||||
_code_phase_out_int_over=_mm_sub_epi32(_code_phase_out_int_neg,_code_length_chips); //the negative values branch
|
||||
_code_phase_out_int_over=_mm_xor_si128(_code_phase_out_int_neg,_mm_and_si128( overflow_indexes,_mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
|
||||
|
||||
_mm_storeu_si128((__m128i*)local_code_chip_index,_code_phase_out_int_over); // Store the results back
|
||||
|
||||
//_mm_store_ps((float*)_scratch_buffer_float,_code_phase_out_with_offset);
|
||||
|
||||
//todo: optimize the local code lookup table with intrinsics, if possible
|
||||
*_result++=local_code[local_code_chip_index[0]];
|
||||
*_result++=local_code[local_code_chip_index[1]];
|
||||
*_result++=local_code[local_code_chip_index[2]];
|
||||
*_result++=local_code[local_code_chip_index[3]];
|
||||
|
||||
_4output_index = _mm_add_ps(_4output_index,_4constant_float);
|
||||
//_scratch_buffer_float+=4;
|
||||
|
||||
}
|
||||
|
||||
for(number = quarterPoints * 4;number < num_output_samples; number++){
|
||||
local_code_chip_index[0]=static_cast<int>(code_phase_step_chips*static_cast<float>(number) + rem_code_phase_chips+0.5f);
|
||||
if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips-1;
|
||||
if (local_code_chip_index[0] > (code_length_chips-1)) local_code_chip_index[0] -= code_length_chips;
|
||||
*_result++=local_code[local_code_chip_index[0]];
|
||||
//*_scratch_buffer_float++=code_phase_step_chips*static_cast<float>(number)+rem_code_phase_chips;
|
||||
}
|
||||
|
||||
// for(unsigned int n=0;n<num_output_samples;n++)
|
||||
// {
|
||||
//
|
||||
// std::cout<<"s["<<n<<"]="<<scratch_buffer_float[n]<<","<<scratch_buffer[n]<<" ";
|
||||
// }
|
||||
// std::cout<<std::endl;
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_resampler_16ic_a_H*/
|
@ -0,0 +1,152 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
|
||||
* \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "saturated_arithmetic.h"
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
|
||||
\param cVector The vector where the accumulated result will be stored
|
||||
\param aVector One of the vectors to be multiplied and accumulated
|
||||
\param bVector One of the vectors to be multiplied and accumulated
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
result[0]=lv_16sc_t(0,0);
|
||||
for (unsigned int n=0;n<num_points;n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[0]+=in_a[n]*in_b[n];
|
||||
lv_16sc_t tmp=in_a[n]*in_b[n];
|
||||
result[0].real(sat_adds16b(result[0].real(),tmp.real()));
|
||||
result[0].imag(sat_adds16b(result[0].imag(),tmp.imag()));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
|
||||
lv_16sc_t dotProduct=lv_16sc_t(0,0);
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t* _in_a = in_a;
|
||||
const lv_16sc_t* _in_b = in_b;
|
||||
lv_16sc_t* _out = out;
|
||||
|
||||
if (sse_iters>0)
|
||||
{
|
||||
|
||||
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, realcacc, imagcacc, result;
|
||||
|
||||
realcacc = _mm_setzero_si128();
|
||||
imagcacc = _mm_setzero_si128();
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
for(unsigned int number = 0;number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
b = _mm_loadu_si128((__m128i*)_in_b);
|
||||
c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
|
||||
b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
|
||||
|
||||
imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
|
||||
|
||||
imag = _mm_adds_epi16(imag1,imag2); //with saturation aritmetic!
|
||||
|
||||
realcacc = _mm_adds_epi16 (realcacc, real);
|
||||
imagcacc = _mm_adds_epi16 (imagcacc, imag);
|
||||
|
||||
_in_a += 4;
|
||||
_in_b += 4;
|
||||
|
||||
}
|
||||
|
||||
|
||||
realcacc = _mm_and_si128 (realcacc, mask_real);
|
||||
imagcacc = _mm_and_si128 (imagcacc, mask_imag);
|
||||
|
||||
result = _mm_or_si128 (realcacc, imagcacc);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
||||
|
||||
for (int i = 0; i<4; ++i)
|
||||
{
|
||||
dotProduct.real(sat_adds16b(dotProduct.real(),dotProductVector[i].real()));
|
||||
dotProduct.imag(sat_adds16b(dotProduct.imag(),dotProductVector[i].imag()));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i<(num_points % 4); ++i)
|
||||
{
|
||||
//dotProduct += (*_in_a++) * (*_in_b++);
|
||||
lv_16sc_t tmp=(*_in_a++) * (*_in_b++);
|
||||
dotProduct.real(sat_adds16b(dotProduct.real(),tmp.real()));
|
||||
dotProduct.imag(sat_adds16b(dotProduct.imag(),tmp.imag()));
|
||||
|
||||
}
|
||||
|
||||
*_out = dotProduct;
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_u_H*/
|
@ -0,0 +1,117 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
|
||||
* \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
|
||||
\param cVector The vector where the result will be stored
|
||||
\param aVector One of the vectors to be multiplied
|
||||
\param bVector One of the vectors to be multiplied
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_x2_multiply_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
for (unsigned int n=0;n<num_points;n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
result[n]=in_a[n]*in_b[n];
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
|
||||
{
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
const lv_16sc_t* _in_a = in_a;
|
||||
const lv_16sc_t* _in_b = in_b;
|
||||
lv_16sc_t* _out = out;
|
||||
for(unsigned int number = 0;number < sse_iters; number++)
|
||||
{
|
||||
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
b = _mm_loadu_si128((__m128i*)_in_b);
|
||||
c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
|
||||
|
||||
b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
|
||||
|
||||
imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
|
||||
|
||||
imag = _mm_adds_epi16(imag1,imag2);
|
||||
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
|
||||
|
||||
result = _mm_or_si128 (real, imag);
|
||||
|
||||
_mm_storeu_si128((__m128i*)_out, result);
|
||||
|
||||
_in_a += 4;
|
||||
_in_b += 4;
|
||||
_out += 4;
|
||||
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i<(num_points % 4); ++i)
|
||||
{
|
||||
*_out++ = (*_in_a++) * (*_in_b++);
|
||||
}
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_multiply_16ic_a_H*/
|
@ -0,0 +1,175 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_x2_dot_prod_16ic.h
|
||||
* \brief Volk protokernel: multiplies two 16 bits vectors and accumulates them
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "saturated_arithmetic.h"
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors and accumulates them, storing the result in the third vector
|
||||
\param cVector The vector where the accumulated result will be stored
|
||||
\param aVector One of the vectors to be multiplied and accumulated
|
||||
\param bVector One of the vectors to be multiplied and accumulated
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_generic(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
|
||||
{
|
||||
|
||||
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
result[n_vec]=lv_16sc_t(0,0);
|
||||
for (unsigned int n=0;n<num_points;n++)
|
||||
{
|
||||
//r*a.r - i*a.i, i*a.r + r*a.i
|
||||
//result[n_vec]+=in_common[n]*in_a[n_vec][n];
|
||||
lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
|
||||
result[n_vec].real(sat_adds16b(result[n_vec].real(),tmp.real()));
|
||||
result[n_vec].imag(sat_adds16b(result[n_vec].imag(),tmp.imag()));
|
||||
}
|
||||
//std::cout<<"in_common[0]="<<in_common[0]<<"in_a[n_vec][0]="<<in_a[n_vec][0]<<std::endl;
|
||||
//std::cout<<"in_common[0]*in_a[n_vec][0]="<<in_common[0]*in_a[n_vec][0]<<std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_16sc_t** in_a, unsigned int num_points, int num_a_vectors)
|
||||
{
|
||||
|
||||
lv_16sc_t dotProduct=lv_16sc_t(0,0);
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
|
||||
const lv_16sc_t** _in_a = in_a;
|
||||
const lv_16sc_t* _in_common = in_common;
|
||||
lv_16sc_t* _out = out;
|
||||
|
||||
if (sse_iters>0)
|
||||
{
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||
|
||||
//todo dyn mem reg
|
||||
|
||||
__m128i* realcacc;
|
||||
__m128i* imagcacc;
|
||||
|
||||
realcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
imagcacc=(__m128i*)calloc(num_a_vectors,sizeof(__m128i)); //calloc also sets memory to 0
|
||||
|
||||
|
||||
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
|
||||
|
||||
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||
|
||||
for(unsigned int number = 0;number < sse_iters; number++)
|
||||
{
|
||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||
|
||||
b = _mm_loadu_si128((__m128i*)_in_common); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
|
||||
a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||
|
||||
c=_mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||
|
||||
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||
real = _mm_subs_epi16 (c,c_sr);
|
||||
|
||||
b_sl = _mm_slli_si128(b,2); // b3.r, b2.i ....
|
||||
a_sl = _mm_slli_si128(a,2); // a3.r, a2.i ....
|
||||
|
||||
imag1 = _mm_mullo_epi16(a,b_sl); // a3.i*b3.r, ....
|
||||
imag2 = _mm_mullo_epi16(b,a_sl); // b3.i*a3.r, ....
|
||||
|
||||
imag = _mm_adds_epi16(imag1,imag2);
|
||||
|
||||
realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real);
|
||||
imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag);
|
||||
|
||||
}
|
||||
_in_common += 4;
|
||||
|
||||
}
|
||||
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real);
|
||||
imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag);
|
||||
|
||||
result = _mm_or_si128 (realcacc[n_vec], imagcacc[n_vec]);
|
||||
|
||||
_mm_storeu_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
||||
dotProduct=lv_16sc_t(0,0);
|
||||
for (int i = 0; i<4; ++i)
|
||||
{
|
||||
dotProduct.real(sat_adds16b(dotProduct.real(),dotProductVector[i].real()));
|
||||
dotProduct.imag(sat_adds16b(dotProduct.imag(),dotProductVector[i].imag()));
|
||||
}
|
||||
_out[n_vec]=dotProduct;
|
||||
}
|
||||
free(realcacc);
|
||||
free(imagcacc);
|
||||
}
|
||||
|
||||
for (int n_vec=0;n_vec<num_a_vectors;n_vec++)
|
||||
{
|
||||
for(unsigned int n = sse_iters * 4;n < num_points; n++){
|
||||
|
||||
lv_16sc_t tmp=in_common[n]*in_a[n_vec][n];
|
||||
_out[n_vec].real(sat_adds16b(_out[n_vec].real(),tmp.real()));
|
||||
_out[n_vec].imag(sat_adds16b(_out[n_vec].imag(),tmp.imag()));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_u_H*/
|
@ -0,0 +1,172 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
|
||||
* \brief Volk protokernel: resample a 16 bits complex vector
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* Volk protokernel that multiplies two 16 bits vectors (8 bits the real part
|
||||
* and 8 bits the imaginary part) and accumulates them
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H
|
||||
#define INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
#include <cmath>
|
||||
//#pragma STDC FENV_ACCESS ON
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
//int round_int( float r ) {
|
||||
// return (r > 0.0) ? (r + 0.5) : (r - 0.5);
|
||||
//}
|
||||
/*!
|
||||
\brief Multiplies the two input complex vectors, point-by-point, storing the result in the third vector
|
||||
\param cVector The vector where the result will be stored
|
||||
\param aVector One of the vectors to be multiplied
|
||||
\param bVector One of the vectors to be multiplied
|
||||
\param num_points The number of complex values in aVector and bVector to be multiplied together, accumulated and stored into cVector
|
||||
*/
|
||||
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_generic(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips, int num_out_vectors)
|
||||
{
|
||||
int local_code_chip_index;
|
||||
//fesetround(FE_TONEAREST);
|
||||
for (int current_vector = 0; current_vector < num_out_vectors; current_vector++)
|
||||
{
|
||||
for (unsigned int n = 0; n < num_output_samples; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = round(code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips[current_vector]-0.5f);
|
||||
if (local_code_chip_index < 0.0) local_code_chip_index += code_length_chips;
|
||||
if (local_code_chip_index > (code_length_chips-1)) local_code_chip_index -= code_length_chips;
|
||||
//std::cout<<"g["<<n<<"]="<<code_phase_step_chips*static_cast<float>(n) + rem_code_phase_chips-0.5f<<","<<local_code_chip_index<<" ";
|
||||
result[current_vector][n] = local_code[local_code_chip_index];
|
||||
}
|
||||
}
|
||||
//std::cout<<std::endl;
|
||||
}
|
||||
|
||||
#endif /*LV_HAVE_GENERIC*/
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
static inline void volk_gnsssdr_16ic_xn_resampler_16ic_xn_sse2(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips ,float code_phase_step_chips, unsigned int num_output_samples, unsigned int code_length_chips, int num_out_vectors)
|
||||
{
|
||||
|
||||
_MM_SET_ROUNDING_MODE (_MM_ROUND_NEAREST);//_MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
||||
unsigned int number;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
|
||||
lv_16sc_t** _result = result;
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
float tmp_rem_code_phase_chips;
|
||||
__m128 _rem_code_phase,_code_phase_step_chips;
|
||||
__m128i _code_length_chips,_code_length_chips_minus1;
|
||||
__m128 _code_phase_out,_code_phase_out_with_offset;
|
||||
|
||||
_code_phase_step_chips = _mm_load1_ps(&code_phase_step_chips); //load float to all four float values in m128 register
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips_minus1[4];
|
||||
four_times_code_length_chips_minus1[0]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[1]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[2]=code_length_chips-1;
|
||||
four_times_code_length_chips_minus1[3]=code_length_chips-1;
|
||||
|
||||
__attribute__((aligned(16))) int four_times_code_length_chips[4];
|
||||
four_times_code_length_chips[0]=code_length_chips;
|
||||
four_times_code_length_chips[1]=code_length_chips;
|
||||
four_times_code_length_chips[2]=code_length_chips;
|
||||
four_times_code_length_chips[3]=code_length_chips;
|
||||
|
||||
_code_length_chips = _mm_loadu_si128((__m128i*)&four_times_code_length_chips); //load float to all four float values in m128 register
|
||||
_code_length_chips_minus1 = _mm_loadu_si128((__m128i*)&four_times_code_length_chips_minus1); //load float to all four float values in m128 register
|
||||
|
||||
__m128i negative_indexes, overflow_indexes,_code_phase_out_int, _code_phase_out_int_neg,_code_phase_out_int_over;
|
||||
|
||||
__m128i zero=_mm_setzero_si128();
|
||||
|
||||
__attribute__((aligned(16))) float init_idx_float[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
__m128 _4output_index=_mm_load_ps(init_idx_float);
|
||||
__attribute__((aligned(16))) float init_4constant_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
|
||||
__m128 _4constant_float=_mm_load_ps(init_4constant_float);
|
||||
|
||||
int current_vector=0;
|
||||
int sample_idx=0;
|
||||
for(number=0;number < quarterPoints; number++){
|
||||
//common to all outputs
|
||||
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
|
||||
|
||||
//output vector dependant (different code phase offset)
|
||||
for(current_vector=0;current_vector<num_out_vectors;current_vector++)
|
||||
{
|
||||
tmp_rem_code_phase_chips=rem_code_phase_chips[current_vector]-0.5f; // adjust offset to perform correct rounding (chip transition at 0)
|
||||
_rem_code_phase = _mm_load1_ps(&tmp_rem_code_phase_chips); //load float to all four float values in m128 register
|
||||
|
||||
_code_phase_out_with_offset = _mm_add_ps(_code_phase_out,_rem_code_phase); //add the phase offset
|
||||
_code_phase_out_int=_mm_cvtps_epi32(_code_phase_out_with_offset); //convert to integer
|
||||
|
||||
negative_indexes=_mm_cmplt_epi32 (_code_phase_out_int, zero); //test for negative values
|
||||
_code_phase_out_int_neg=_mm_add_epi32(_code_phase_out_int,_code_length_chips); //the negative values branch
|
||||
_code_phase_out_int_neg=_mm_xor_si128(_code_phase_out_int,_mm_and_si128( negative_indexes,_mm_xor_si128( _code_phase_out_int_neg, _code_phase_out_int )));
|
||||
|
||||
overflow_indexes=_mm_cmpgt_epi32 (_code_phase_out_int_neg, _code_length_chips_minus1); //test for overflow values
|
||||
_code_phase_out_int_over=_mm_sub_epi32(_code_phase_out_int_neg,_code_length_chips); //the negative values branch
|
||||
_code_phase_out_int_over=_mm_xor_si128(_code_phase_out_int_neg,_mm_and_si128( overflow_indexes,_mm_xor_si128( _code_phase_out_int_over, _code_phase_out_int_neg )));
|
||||
|
||||
_mm_storeu_si128((__m128i*)local_code_chip_index,_code_phase_out_int_over); // Store the results back
|
||||
|
||||
//todo: optimize the local code lookup table with intrinsics, if possible
|
||||
_result[current_vector][sample_idx]=local_code[local_code_chip_index[0]];
|
||||
_result[current_vector][sample_idx+1]=local_code[local_code_chip_index[1]];
|
||||
_result[current_vector][sample_idx+2]=local_code[local_code_chip_index[2]];
|
||||
_result[current_vector][sample_idx+3]=local_code[local_code_chip_index[3]];
|
||||
|
||||
|
||||
}
|
||||
_4output_index = _mm_add_ps(_4output_index,_4constant_float);
|
||||
sample_idx+=4;
|
||||
}
|
||||
|
||||
for(number = quarterPoints * 4;number < num_output_samples; number++){
|
||||
|
||||
for(current_vector=0;current_vector<num_out_vectors;current_vector++)
|
||||
{
|
||||
local_code_chip_index[0]=static_cast<int>(code_phase_step_chips*static_cast<float>(number) + rem_code_phase_chips[current_vector]);
|
||||
if (local_code_chip_index[0] < 0.0) local_code_chip_index[0] += code_length_chips-1;
|
||||
if (local_code_chip_index[0] > (code_length_chips-1)) local_code_chip_index[0] -= code_length_chips;
|
||||
_result[current_vector][number]=local_code[local_code_chip_index[0]];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_a_H*/
|
@ -79,6 +79,7 @@
|
||||
#include "galileo_e5a_noncoherent_iq_acquisition_caf.h"
|
||||
#include "gps_l1_ca_dll_pll_tracking.h"
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking.h"
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_16sc.h"
|
||||
#include "gps_l1_ca_dll_pll_optim_tracking.h"
|
||||
#include "gps_l1_ca_dll_fll_pll_tracking.h"
|
||||
#include "gps_l1_ca_tcp_connector_tracking.h"
|
||||
@ -1318,6 +1319,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
|
||||
out_streams, queue));
|
||||
block = std::move(block_);
|
||||
}
|
||||
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc") == 0)
|
||||
{
|
||||
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking16sc(configuration.get(), role, in_streams,
|
||||
out_streams, queue));
|
||||
block = std::move(block_);
|
||||
}
|
||||
else if (implementation.compare("GPS_L1_CA_DLL_PLL_Optim_Tracking") == 0)
|
||||
{
|
||||
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaDllPllOptimTracking(configuration.get(), role, in_streams,
|
||||
@ -1589,6 +1596,12 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
|
||||
out_streams, queue));
|
||||
block = std::move(block_);
|
||||
}
|
||||
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_16sc") == 0)
|
||||
{
|
||||
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTracking16sc(configuration.get(), role, in_streams,
|
||||
out_streams, queue));
|
||||
block = std::move(block_);
|
||||
}
|
||||
else if (implementation.compare("GPS_L1_CA_DLL_PLL_Optim_Tracking") == 0)
|
||||
{
|
||||
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllOptimTracking(configuration.get(), role, in_streams,
|
||||
|
Loading…
Reference in New Issue
Block a user