1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-04-04 17:57:03 +00:00

Removing duplicated code

This commit is contained in:
Javier Arribas 2017-03-29 11:49:23 +02:00
parent ab75381e33
commit 5b83d828da
2 changed files with 0 additions and 157 deletions

View File

@ -262,141 +262,6 @@ signed long int Gps_Navigation_Message::read_navigation_signed(std::bitset<GPS_S
return value;
}
double Gps_Navigation_Message::check_t(double time)
{
double corrTime;
double half_week = 302400; // seconds
corrTime = time;
if (time > half_week)
{
corrTime = time - 2 * half_week;
}
else if (time < -half_week)
{
corrTime = time + 2 * half_week;
}
return corrTime;
}
// 20.3.3.3.3.1 User Algorithm for SV Clock Correction.
double Gps_Navigation_Message::sv_clock_correction(double transmitTime)
{
double dt;
dt = check_t(transmitTime - d_Toc);
d_satClkCorr = (d_A_f2 * dt + d_A_f1) * dt + d_A_f0 + d_dtr;
double correctedTime = transmitTime - d_satClkCorr;
return correctedTime;
}
void Gps_Navigation_Message::satellitePosition(double transmitTime)
{
double tk;
double a;
double n;
double n0;
double M;
double E;
double E_old;
double dE;
double nu;
double phi;
double u;
double r;
double i;
double Omega;
// Find satellite's position ----------------------------------------------
// Restore semi-major axis
a = d_sqrt_A * d_sqrt_A;
// Time from ephemeris reference epoch
tk = check_t(transmitTime - d_Toe);
// Computed mean motion
n0 = sqrt(GM / (a * a * a));
// Corrected mean motion
n = n0 + d_Delta_n;
// Mean anomaly
M = d_M_0 + n * tk;
// Reduce mean anomaly to between 0 and 2pi
M = fmod((M + 2 * GPS_PI), (2 * GPS_PI));
// Initial guess of eccentric anomaly
E = M;
// --- Iteratively compute eccentric anomaly ----------------------------
for (int ii = 1; ii < 20; ii++)
{
E_old = E;
E = M + d_e_eccentricity * sin(E);
dE = fmod(E - E_old, 2 * GPS_PI);
if (fabs(dE) < 1e-12)
{
//Necessary precision is reached, exit from the loop
break;
}
}
// Compute relativistic correction term
d_dtr = F * d_e_eccentricity * d_sqrt_A * sin(E);
// Compute the true anomaly
double tmp_Y = sqrt(1.0 - d_e_eccentricity * d_e_eccentricity) * sin(E);
double tmp_X = cos(E) - d_e_eccentricity;
nu = atan2(tmp_Y, tmp_X);
// Compute angle phi (argument of Latitude)
phi = nu + d_OMEGA;
// Reduce phi to between 0 and 2*pi rad
phi = fmod((phi), (2 * GPS_PI));
// Correct argument of latitude
u = phi + d_Cuc * cos(2 * phi) + d_Cus * sin(2 * phi);
// Correct radius
r = a * (1 - d_e_eccentricity * cos(E)) + d_Crc * cos(2 * phi) + d_Crs * sin(2 * phi);
// Correct inclination
i = d_i_0 + d_IDOT * tk + d_Cic * cos(2 * phi) + d_Cis * sin(2 * phi);
// Compute the angle between the ascending node and the Greenwich meridian
Omega = d_OMEGA0 + (d_OMEGA_DOT - OMEGA_EARTH_DOT) * tk - OMEGA_EARTH_DOT * d_Toe;
// Reduce to between 0 and 2*pi rad
Omega = fmod((Omega + 2 * GPS_PI), (2 * GPS_PI));
// --- Compute satellite coordinates in Earth-fixed coordinates
d_satpos_X = cos(u) * r * cos(Omega) - sin(u) * r * cos(i) * sin(Omega);
d_satpos_Y = cos(u) * r * sin(Omega) + sin(u) * r * cos(i) * cos(Omega);
d_satpos_Z = sin(u) * r * sin(i);
// Satellite's velocity. Can be useful for Vector Tracking loops
double Omega_dot = d_OMEGA_DOT - OMEGA_EARTH_DOT;
d_satvel_X = - Omega_dot * (cos(u) * r + sin(u) * r * cos(i)) + d_satpos_X * cos(Omega) - d_satpos_Y * cos(i) * sin(Omega);
d_satvel_Y = Omega_dot * (cos(u) * r * cos(Omega) - sin(u) * r * cos(i) * sin(Omega)) + d_satpos_X * sin(Omega) + d_satpos_Y * cos(i) * cos(Omega);
d_satvel_Z = d_satpos_Y * sin(i);
}
int Gps_Navigation_Message::subframe_decoder(char *subframe)
{
int subframe_ID = 0;

View File

@ -58,15 +58,6 @@ private:
signed long int read_navigation_signed(std::bitset<GPS_SUBFRAME_BITS> bits, const std::vector<std::pair<int,int>> parameter);
bool read_navigation_bool(std::bitset<GPS_SUBFRAME_BITS> bits, const std::vector<std::pair<int,int>> parameter);
void print_gps_word_bytes(unsigned int GPS_word);
/*
* Accounts for the beginning or end of week crossover
*
* See paragraph 20.3.3.3.3.1 (IS-GPS-200E)
* \param[in] - time in seconds
* \param[out] - corrected time, in seconds
*/
double check_t(double time);
public:
bool b_valid_ephemeris_set_flag; // flag indicating that this ephemeris set have passed the validation check
//broadcast orbit 1
@ -212,19 +203,6 @@ public:
*/
int subframe_decoder(char *subframe);
/*!
* \brief Computes the position of the satellite
*
* Implementation of Table 20-IV (IS-GPS-200E)
*/
void satellitePosition(double transmitTime);
/*!
* \brief Sets (\a d_satClkCorr) according to the User Algorithm for SV Clock Correction
* and returns the corrected clock (IS-GPS-200E, 20.3.3.3.3.1)
*/
double sv_clock_correction(double transmitTime);
/*!
* \brief Computes the Coordinated Universal Time (UTC) and
* returns it in [s] (IS-GPS-200E, 20.3.3.5.2.4)