1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-12 02:10:34 +00:00

Some comments added, code cleaning

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@246 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Carles Fernandez 2012-10-16 23:02:02 +00:00
parent f0a0f94007
commit 5b5f165d7b

View File

@ -57,6 +57,7 @@
#define CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 200
#define CARRIER_LOCK_THRESHOLD 20
using google::LogMessage;
@ -111,24 +112,25 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_code_loop_filter=Tracking_2nd_DLL_filter(0.004);
d_carrier_loop_filter=Tracking_2nd_PLL_filter(0.004);
d_code_loop_filter = Tracking_2nd_DLL_filter(0.004);
d_carrier_loop_filter = Tracking_2nd_PLL_filter(0.004);
// Initialize tracking ==========================================
// Set bandwidth of code and carrier loop filters
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
// Correlator spacing
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
d_very_early_late_spc_chips = very_early_late_space_chips; // Define very-early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
// int d_ca_code_size = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4);
// int d_ca_code_size = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4);
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)];
// std::cout << "d_ca_code_size = " << d_ca_code_size << std::endl;
// std::cout << "d_ca_code_size = " << d_ca_code_size << std::endl;
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
@ -152,14 +154,14 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
if (posix_memalign((void**)&d_Very_Late, 16, sizeof(gr_complex)) == 0){};
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
//--- Initializations ------------------------------
// Initial code frequency basis of NCO
d_code_freq_hz = Galileo_E1_CODE_CHIP_RATE_HZ;
// define residual code phase (in chips)
// Residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
// Residual carrier phase
d_rem_carr_phase_rad = 0.0;
// define phase step
// Phase step
d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips]
// sample synchronization
@ -179,67 +181,43 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = 20;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
systemName["R"] = std::string("GLONASS");
systemName["S"] = std::string("SBAS");
//systemName["G"] = std::string("GPS");
//systemName["R"] = std::string("GLONASS");
//systemName["S"] = std::string("SBAS");
systemName["E"] = std::string("Galileo");
systemName["C"] = std::string("Compass");
//systemName["C"] = std::string("Compass");
}
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
{
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
// std::cout << "d_acq_code_phase_samples = " << d_acq_code_phase_samples << std::endl;
// std::cout << "d_acq_carrier_doppler_hz = " << d_acq_carrier_doppler_hz << std::endl;
// std::cout << "d_acq_sample_stamp = " << d_acq_sample_stamp << std::endl;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //initialize the carrier filter
// THE PARAMETER IS NOT USED!!
d_code_loop_filter.initialize(d_acq_code_phase_samples); //initialize the code filter
// THE PARAMETER IS NOT USED!!
// generate local reference ALWAYS starting at chip 2 (2 samples per chip)
// std::cout << "PRN = " << d_acquisition_gnss_synchro->PRN << std::endl;
// std::cout << "Signal = " << d_acquisition_gnss_synchro->Signal << std::endl;
// std::cout << "fs_gen = " << 2*Galileo_E1_CODE_CHIP_RATE_HZ << std::endl;
galileo_e1_code_gen_complex_sampled(&d_ca_code[2],d_acquisition_gnss_synchro->Signal, false, d_acquisition_gnss_synchro->PRN, 2*Galileo_E1_CODE_CHIP_RATE_HZ, 0);
// std::cout << "Local code generated." << std::endl;
// for(int i=0;i<25; i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
// for(int i=(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS-6);i<(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+4); i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
//
// int index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS);
// Fill head and tail
d_ca_code[0] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS)];
// std::cout << "d_ca_code[0] = d_ca_code[" << index <<"]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+1);
d_ca_code[1] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+1)];
// std::cout << "d_ca_code[1] = d_ca_code[" << index <<"]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+2);
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+2)] = d_ca_code[2];
// std::cout << "d_ca_code[" << index <<"] = d_ca_code[2]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+3);
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+3)] = d_ca_code[3];
// std::cout << "d_ca_code[" << index <<"] = d_ca_code[3]" << std::endl;
// for(int i=0;i<25; i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carr_phase_rad = 0;
d_next_rem_code_phase_samples = 0;
d_acc_carrier_phase_rad = 0;
d_code_phase_samples = d_acq_code_phase_samples;
d_code_phase_samples = d_acq_code_phase_samples; // Never used?
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_next_prn_length_samples = d_vector_length;
std::string sys_ = &d_acquisition_gnss_synchro->System;
@ -263,7 +241,6 @@ void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
{
double tcode_half_chips;
float rem_code_phase_half_chips;
int associated_chip_index;
@ -274,45 +251,28 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
int very_early_late_spc_samples;
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
// unified loop for VE, E, P, L, VL code vectors
code_phase_step_chips = ((double)d_code_freq_hz) / ((double)d_fs_in);
code_phase_step_half_chips = (2.0*(double)d_code_freq_hz) / ((double)d_fs_in);
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_hz / d_fs_in);
tcode_half_chips = -(double)rem_code_phase_half_chips;
early_late_spc_samples=round(d_early_late_spc_chips/code_phase_step_chips);
very_early_late_spc_samples=round(d_very_early_late_spc_chips/code_phase_step_chips);
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
epl_loop_length_samples=d_current_prn_length_samples+very_early_late_spc_samples*2;
// if(d_debug_counter<10){
// std::cout << std::endl;
// std::cout << "======= DEBUG " << d_debug_counter << " ========" << std::endl << std::endl;
// std::cout << "rem_code_phase_half_chips = " << rem_code_phase_half_chips << std::endl;
// std::cout << "code_phase_step_chips = " << code_phase_step_chips << std::endl;
// std::cout << "code_phase_step_half_chips = " << code_phase_step_half_chips << std::endl;
// std::cout << "early_late_spc_samples = " << early_late_spc_samples << std::endl;
// std::cout << "very_early_late_spc_samples = " << very_early_late_spc_samples << std::endl;
// std::cout << "d_current_prn_length_samples = " << d_current_prn_length_samples << std::endl;
// std::cout << "epl_loop_length_samples = " << epl_loop_length_samples << std::endl << std::endl;
// }
epl_loop_length_samples = d_current_prn_length_samples + very_early_late_spc_samples*2;
for (int i=0; i<epl_loop_length_samples; i++)
{
associated_chip_index = 2 + round(fmod(tcode_half_chips - 2*d_very_early_late_spc_chips, code_length_half_chips));
// if(d_debug_counter<4 && ((i<10)||(i==100)||(498<i && i<501)||(i==1000)||(i==5000)||(i==10000)||(i==20000)||(i==32000))) {
// std::cout << "tcode_half_chips = " << tcode_half_chips << ", i = " << i << ", associated_chip_index = " << associated_chip_index << std::endl;
// //std::cout << "tcode_half_chips - 2*d_very_early_late_spc_chips = " << tcode_half_chips - 2*d_very_early_late_spc_chips << ", i = " << i << ", associated_chip_index = " << associated_chip_index << std::endl;
// }
d_very_early_code[i] = d_ca_code[associated_chip_index];
tcode_half_chips = tcode_half_chips + code_phase_step_half_chips;
}
memcpy(d_early_code,&d_very_early_code[very_early_late_spc_samples-early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_prompt_code,&d_very_early_code[very_early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_late_code,&d_very_early_code[2*very_early_late_spc_samples-early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_very_late_code,&d_very_early_code[2*very_early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_early_code, &d_very_early_code[very_early_late_spc_samples - early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_prompt_code, &d_very_early_code[very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_late_code, &d_very_early_code[2*very_early_late_spc_samples - early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_very_late_code, &d_very_early_code[2*very_early_late_spc_samples], d_current_prn_length_samples* sizeof(gr_complex));
}
@ -330,7 +290,7 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_carrier()
phase_rad += phase_step_rad;
}
d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad; // Why here????
}
@ -360,8 +320,6 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error;
float carr_nco;
float code_error;
@ -369,50 +327,45 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
if (d_enable_tracking == true)
{
/*
* Receiver signal alignment
*/
if (d_pull_in == true)
{
/*
* Signal alignment (skip samples until the incoming signal is aligned with local replica
*/
int samples_offset;
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_next_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_next_prn_length_samples);
// std::cout<<"acq_trk_shif_correction="<<acq_trk_shif_correction_samples<< std::endl;
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
// std::cout << "samples_offset=" << samples_offset << std::endl;
d_debug_counter++;
consume_each(samples_offset); //shift input to perform alignement with local replica
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
}
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignement
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
// if(d_debug_counter == 1) {
// for (int i=0; i<10; i++) std::cout << "in["<<i<<"] = "<< in[i] << std::endl;
// }
// Update the prn length based on code freq (variable) and
// sampling frequency (fixed)
// Update the prn length based on code freq (variable) and sampling frequency (fixed)
// variable code PRN sample block size
d_current_prn_length_samples = d_next_prn_length_samples;
// Generate local code and carrier replicas
update_local_code();
update_local_carrier();
// perform Early, Prompt and Late correlation
// perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation
d_correlator.Carrier_wipeoff_and_VEPL_volk(d_current_prn_length_samples,
in,
d_carr_sign,
@ -429,23 +382,24 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
is_unaligned());
// Compute PLL error and update carrier NCO
// PLL discriminator
carr_error = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
// Implement carrier loop filter and generate NCO command
carr_nco = d_carrier_loop_filter.get_carrier_nco(carr_error);
// Modify carrier freq based on NCO command
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_nco;
//std::cout << "d_carrier_doppler_hz = " << d_carrier_doppler_hz << std::endl;
// Compute DLL error and update code NCO
// DLL discriminator
code_error = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late);
// Implement code loop filter and generate NCO command
code_nco = d_code_loop_filter.get_code_nco(code_error);
// Modify code freq based on NCO command
d_code_freq_hz = Galileo_E1_CODE_CHIP_RATE_HZ - code_nco;
// Update the phase step based on code freq (variable) and
// sampling frequency (fixed)
// Update the phase step based on code freq (variable) and sampling frequency (fixed)
d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips]
// variable code PRN sample block size
// keep alignment parameters for the next input buffer
float T_chip_seconds;
float T_prn_seconds;
float T_prn_samples;
@ -458,19 +412,6 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
d_next_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_next_rem_code_phase_samples = K_blk_samples - d_next_prn_length_samples; //rounding error
// if(d_debug_counter<10){
// std::cout << std::endl;
// std::cout << "----- LOOP RESULTS -----" << std::endl;
// std::cout << "carr_error = " << carr_error << std::endl;
// std::cout << "carr_nco = " << carr_nco << std::endl;
// std::cout << "d_carrier_doppler_hz = " << d_carrier_doppler_hz << std::endl;
// std::cout << "code_error = " << code_error << std::endl;
// std::cout << "code_nco = " << code_nco << std::endl;
// std::cout << "d_code_freq_hz = " << d_code_freq_hz << std::endl;
// std::cout << "d_code_phase_step_chips = " << d_code_phase_step_chips << std::endl;
// std::cout << "d_rem_code_phase_samples = " << d_rem_code_phase_samples << std::endl;
// }
/*!
* \todo Improve the lock detection algorithm!
*/
@ -484,9 +425,14 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = galileo_e1_CN0_SNV(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// ###### TRACKING UNLOCK NOTIFICATION #####
// Loss of lock detection
if (std::abs(d_carrier_lock_test) > d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
@ -501,25 +447,26 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
//tracking_message = 3; //loss of lock
//d_channel_internal_queue->push(tracking_message);
ControlMessageFactory* cmf = new ControlMessageFactory();
if (d_queue != gr_msg_queue_sptr()) {
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
if (d_queue != gr_msg_queue_sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
delete cmf;
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
//std::cout<<"d_carrier_lock_fail_counter"<<d_carrier_lock_fail_counter<<"\r\n";
}
// ########### Output the tracking data to navigation and PVT ##########
// ########### Output the tracking results to Telemetry block ##########
current_synchro_data.Prompt_I = (double)(*d_Prompt).imag();
current_synchro_data.Prompt_Q = (double)(*d_Prompt).real();
current_synchro_data.Prompt_I = (double)(*d_Prompt).imag(); // ???????
current_synchro_data.Prompt_Q = (double)(*d_Prompt).real(); // ???????
// Tracking_timestamp_secs is aligned with the PRN start sample
current_synchro_data.Tracking_timestamp_secs=((double)d_sample_counter+(double)d_next_prn_length_samples+(double)d_next_rem_code_phase_samples)/(double)d_fs_in;
current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter +
(double)d_next_prn_length_samples + (double)d_next_rem_code_phase_samples) / (double)d_fs_in;
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs=0;
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad;
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
*out[0] = current_synchro_data;
@ -536,7 +483,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
@ -547,7 +494,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
}
}
}
@ -556,8 +503,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
//std::cout<<output_items.size()<<std::endl;
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
@ -565,7 +511,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
if(d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
// Dump results to file
float prompt_I;
float prompt_Q;
float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL;
@ -581,7 +527,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
try
{
// EPR
// Dump correlators output
d_dump_file.write((char*)&tmp_VE, sizeof(float));
d_dump_file.write((char*)&tmp_E, sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float));
@ -594,42 +540,30 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
// carrier and code frequency
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
d_dump_file.write((char*)&d_code_freq_hz, sizeof(float));
//PLL commands
d_dump_file.write((char*)&carr_error, sizeof(float));
d_dump_file.write((char*)&carr_nco, sizeof(float));
//DLL commands
d_dump_file.write((char*)&code_error, sizeof(float));
d_dump_file.write((char*)&code_nco, sizeof(float));
// CN0 and carrier lock test
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_double=(double)(d_sample_counter+d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// if(d_debug_counter < 10){
// std::cout << std::endl;
// std::cout << "d_debug_counter = " << d_debug_counter << std::endl;
// std::cout << "VE = " << tmp_VE << ", E = " << tmp_E << ", P = "<< tmp_P << ", L = " << tmp_L << ", VL = " << tmp_VL << std::endl << std::endl;
// }
}
catch (std::ifstream::failure e)
{
std::cout << "Exception writing trk dump file " << e.what() << std::endl;
}
}
// if(d_current_prn_length_samples!=d_vector_length)
// std::cout << "d_current_prn_length_samples = " << d_current_prn_length_samples << std::endl;
consume_each(d_current_prn_length_samples); // this is necesary in gr_block derivates
consume_each(d_current_prn_length_samples); // this is required for gr_block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
d_debug_counter++;
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
@ -642,7 +576,7 @@ void galileo_e1_dll_pll_veml_tracking_cc::set_channel(unsigned int channel)
d_channel = channel;
LOG_AT_LEVEL(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump==true)
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
@ -672,10 +606,8 @@ void galileo_e1_dll_pll_veml_tracking_cc::set_channel_queue(concurrent_queue<int
void galileo_e1_dll_pll_veml_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
// Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
//DLOG(INFO) << "Tracking code phase set to " << d_acq_code_phase_samples;
//DLOG(INFO) << "Tracking carrier doppler set to " << d_acq_carrier_doppler_hz;
//DLOG(INFO) << "Tracking Satellite set to " << d_satellite;
}