1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 20:20:35 +00:00

Common reception time now is not reasigned when the reference satellite has changed, thus, avoiding discontinuities

This commit is contained in:
Javier Arribas 2019-04-09 17:56:03 +02:00
parent 1d059dda15
commit 5673533e5a
2 changed files with 39 additions and 69 deletions

View File

@ -114,7 +114,7 @@ hybrid_observables_gs::hybrid_observables_gs(uint32_t nchannels_in,
} }
} }
T_rx_TOW_ms = 0U; T_rx_TOW_ms = 0U;
T_rx_TOW_offset_ms = 0U; T_rx_step_ms = 20; //read from config at the adapter GNSS-SDR.observable_interval_ms!!
T_rx_TOW_set = false; T_rx_TOW_set = false;
// rework // rework
@ -443,8 +443,8 @@ void hybrid_observables_gs::update_TOW(const std::vector<Gnss_Synchro> &data)
//2. If the TOW is set, it must be incremented by the desired receiver time step. //2. If the TOW is set, it must be incremented by the desired receiver time step.
// the time step must match the observables timer block (connected to the las input channel) // the time step must match the observables timer block (connected to the las input channel)
std::vector<Gnss_Synchro>::const_iterator it; std::vector<Gnss_Synchro>::const_iterator it;
// if (!T_rx_TOW_set) if (!T_rx_TOW_set)
// { {
//uint32_t TOW_ref = std::numeric_limits<uint32_t>::max(); //uint32_t TOW_ref = std::numeric_limits<uint32_t>::max();
uint32_t TOW_ref = 0U; uint32_t TOW_ref = 0U;
for (it = data.cbegin(); it != data.cend(); it++) for (it = data.cbegin(); it != data.cend(); it++)
@ -458,23 +458,24 @@ void hybrid_observables_gs::update_TOW(const std::vector<Gnss_Synchro> &data)
} }
} }
} }
T_rx_TOW_ms = TOW_ref; T_rx_TOW_ms = TOW_ref - (TOW_ref % 20);
//} }
// else else
// { {
// T_rx_TOW_ms += T_rx_step_ms; T_rx_TOW_ms += T_rx_step_ms; //the tow time step increment must match the ref time channel step
// //todo: check what happens during the week rollover //todo: check what happens during the week rollover
// if (T_rx_TOW_ms >= 604800000) if (T_rx_TOW_ms >= 604800000)
// { {
// T_rx_TOW_ms = T_rx_TOW_ms % 604800000; T_rx_TOW_ms = T_rx_TOW_ms % 604800000;
// } }
// } }
// std::cout << "T_rx_TOW_ms: " << T_rx_TOW_ms << std::endl;
} }
void hybrid_observables_gs::compute_pranges(std::vector<Gnss_Synchro> &data) void hybrid_observables_gs::compute_pranges(std::vector<Gnss_Synchro> &data)
{ {
// std::cout.precision(17);
// std::cout << " T_rx_TOW_ms: " << static_cast<double>(T_rx_TOW_ms) << std::endl;
std::vector<Gnss_Synchro>::iterator it; std::vector<Gnss_Synchro>::iterator it;
for (it = data.begin(); it != data.end(); it++) for (it = data.begin(); it != data.end(); it++)
{ {
@ -486,12 +487,20 @@ void hybrid_observables_gs::compute_pranges(std::vector<Gnss_Synchro> &data)
it->Pseudorange_m = traveltime_s * SPEED_OF_LIGHT; it->Pseudorange_m = traveltime_s * SPEED_OF_LIGHT;
it->Flag_valid_pseudorange = true; it->Flag_valid_pseudorange = true;
// debug code // debug code
// std::cout.precision(17); //
// std::cout << "[" << it->Channel_ID << "] interp_TOW_ms: " << it->interp_TOW_ms << std::endl; // std::cout << "[" << it->Channel_ID << "] interp_TOW_ms: " << it->interp_TOW_ms << std::endl;
// std::cout << "[" << it->Channel_ID << "] Diff T_rx_TOW_ms - interp_TOW_ms: " << static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms << std::endl; // std::cout << "[" << it->Channel_ID << "] Diff T_rx_TOW_ms - interp_TOW_ms: " << static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms << std::endl;
}
}
// for (it = data.begin(); it != data.end(); it++)
// {
// if (it->Flag_valid_word)
// {
// std::cout << "[" << it->Channel_ID << "] Pseudorange_m: " << it->Pseudorange_m << std::endl; // std::cout << "[" << it->Channel_ID << "] Pseudorange_m: " << it->Pseudorange_m << std::endl;
} // }
} // }
// std::cout << std::endl;
// usleep(1000); // usleep(1000);
} }
@ -548,7 +557,7 @@ int hybrid_observables_gs::general_work(int noutput_items __attribute__((unused)
for (uint32_t n = 0; n < d_nchannels_out; n++) for (uint32_t n = 0; n < d_nchannels_out; n++)
{ {
Gnss_Synchro interpolated_gnss_synchro{}; Gnss_Synchro interpolated_gnss_synchro{};
if (!interp_trk_obs(interpolated_gnss_synchro, n, d_Rx_clock_buffer.front() + T_rx_TOW_offset_ms * T_rx_clock_step_samples)) if (!interp_trk_obs(interpolated_gnss_synchro, n, d_Rx_clock_buffer.front()))
{ {
// Produce an empty observation // Produce an empty observation
interpolated_gnss_synchro = Gnss_Synchro(); interpolated_gnss_synchro = Gnss_Synchro();
@ -564,49 +573,10 @@ int hybrid_observables_gs::general_work(int noutput_items __attribute__((unused)
} }
epoch_data.push_back(interpolated_gnss_synchro); epoch_data.push_back(interpolated_gnss_synchro);
} }
if (n_valid > 0)
{
update_TOW(epoch_data);
int tow_inc_loop_count = 0;
while (T_rx_TOW_ms % 20 != 0 and tow_inc_loop_count < 20)
{
tow_inc_loop_count++;
T_rx_TOW_offset_ms++;
T_rx_TOW_offset_ms = T_rx_TOW_offset_ms % 20;
//check if effectively the receiver TOW is now multiple of 20 ms
n_valid = 0;
epoch_data.clear();
for (uint32_t n = 0; n < d_nchannels_out; n++)
{
Gnss_Synchro interpolated_gnss_synchro{};
if (!interp_trk_obs(interpolated_gnss_synchro, n, d_Rx_clock_buffer.front() + T_rx_TOW_offset_ms * T_rx_clock_step_samples))
{
// Produce an empty observation
interpolated_gnss_synchro = Gnss_Synchro();
interpolated_gnss_synchro.Flag_valid_pseudorange = false;
interpolated_gnss_synchro.Flag_valid_word = false;
interpolated_gnss_synchro.Flag_valid_acquisition = false;
interpolated_gnss_synchro.fs = 0;
interpolated_gnss_synchro.Channel_ID = n;
}
else
{
n_valid++;
}
epoch_data.push_back(interpolated_gnss_synchro);
}
update_TOW(epoch_data);
// debug code:
// if (T_rx_TOW_ms % 20 != 0)
// {
// std::cout << "Warning: RX TOW is not multiple of 20 ms\n";
// }
// std::cout << "T_rx_TOW_ms=" << T_rx_TOW_ms << " T_rx_TOW_offset_ms=" << T_rx_TOW_offset_ms << " ->" << T_rx_TOW_ms % 20 << std::endl;
}
}
if (n_valid > 0) if (n_valid > 0)
{ {
update_TOW(epoch_data);
compute_pranges(epoch_data); compute_pranges(epoch_data);
} }

View File

@ -83,7 +83,7 @@ private:
//rx time follow GPST //rx time follow GPST
bool T_rx_TOW_set; bool T_rx_TOW_set;
uint32_t T_rx_TOW_ms; uint32_t T_rx_TOW_ms;
uint32_t T_rx_TOW_offset_ms; uint32_t T_rx_step_ms;
bool d_dump; bool d_dump;
bool d_dump_mat; bool d_dump_mat;
uint32_t d_nchannels_in; uint32_t d_nchannels_in;