1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-26 08:56:58 +00:00

removing references to Bjam

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@350 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Carles Fernandez 2013-03-16 11:02:32 +00:00
parent 718861ba3d
commit 531ef5576a
2 changed files with 41 additions and 38 deletions

View File

@ -140,13 +140,7 @@ This will create a folder named gnss-sdr with the following structure:
|-----utils <- some utilities (e.g. Matlab scripts)
\endverbatim
You are now ready to build GNSS-SDR. For doing that, you can choose either bjam or <a href="http://www.cmake.org/" target="_blank">CMake</a> as building tools:
\li Using bjam:
\verbatim
$ cd gnss-sdr
$ bjam release
\endverbatim
\li Using CMake:
You are now ready to build GNSS-SDR by using <a href="http://www.cmake.org/" target="_blank">CMake</a> as building tool:
\verbatim
$ cd gnss-sdr/build
$ cmake ../
@ -157,17 +151,13 @@ $ make install
If everything goes well, two new executables will be created at <tt>gnss-sdr/install</tt>, namely <tt>gnss-sdr</tt> and <tt>run_tests</tt>. You can create
this documentation by doing:
\verbatim
$ bjam doc
\endverbatim
from the <tt>gnss-sdr</tt> root folder, or
\verbatim
$ make doc
\endverbatim
from the <tt>gnss-sdr/build</tt> folder if you are using CMake. In both cases, <a href="http://www.stack.nl/~dimitri/doxygen/" target="_blank">Doxygen</a> will generate HTML documentation that can be
from the <tt>gnss-sdr/build</tt> folder. In both cases, <a href="http://www.stack.nl/~dimitri/doxygen/" target="_blank">Doxygen</a> will generate HTML documentation that can be
retrieved pointing your browser of preference to <tt>gnss-sdr/docs/html/index.html</tt>.
If you are using CMake, there are two more extra targets available. From the <tt>gnss-sdr/build</tt> folder:
There are two more extra targets available. From the <tt>gnss-sdr/build</tt> folder:
\verbatim
$ make doc-clean
\endverbatim
@ -194,16 +184,6 @@ $ make
$ make install
\endverbatim
Bjam works the other way around. By default, it builds the Debug version:
\verbatim
$ cd gnss-sdr
$ bjam
\endverbatim
and the Release version can be obtained by doing
\verbatim
$ bjam release
\endverbatim
\subsection updating_gnss-sdr Updating GNSS-SDR
If you checked out GNSS-SDR some days ago, it is possible that some developer had updated files at the Subversion repository. You can update your working copy by doing:
\verbatim

View File

@ -25,7 +25,8 @@ of the electromagnetic waves that are exciting the receiver's antenna. The curre
directly to baseband), and then converted to 0s and 1s by the Analog-to-Digital Converter (ADC). That is the job of the Radio Frequency front-end, which at its output delivers a stream of
digital samples. Those samples constitute the input of a software receiver, so for GNSS-SDR the signal models described below can be seen as <i>the rules of the game</i>.
GNSS' space vehicles are modern versions of lighthouses, but with better visibility. Each satellite is a reference point, and if we know our distance to several reference points, we can compute our location, just as mariners do. For each in-view satellite \f$i\f$ of system \f$s\f$, we can write:
GNSS' space vehicles are modern versions of lighthouses, but with better visibility. Each satellite is a reference point, and if we know our distance to several reference points,
we can compute our location, just as mariners do when they see a couple of lighthouses. For each in-view satellite \f$i\f$ of system \f$s\f$, we can write:
\f{equation}{\label{eq:pseudorange}
\rho_i = \sqrt{ \left(x^{\text{Tx}}_i - x \right)^2 + \left(y^{\text{Tx}}_i - y \right)^2 + \left(z^{\text{Tx}}_i - z \right)^2}+c\Delta t^{(s)}+\sigma_{e},
\f}
@ -54,11 +55,13 @@ r(t)=\alpha(t) s_{T} \left(t-\tau(t)\right)e^{-j2 \pi f_d(t) }e^{j 2 \pi f_c t}+
equivalent to the difference of the time of reception (expressed
in the time frame of the receiver) and the time of transmission (expressed in the time frame of the satellite) of a distinct satellite signal; and optionally
<i>ii)</i> the carrier-phase measurement, actually being a measurement on the beat frequency between the received carrier of the satellite signal and a receiver-generated reference frequency. Carrier phase measurements are ambiguous, in the sense that the integer number of carrier wavelengths between satellite and the receiver's antenna is unknown.
<i>ii)</i> the carrier-phase measurement, actually being a measurement on the beat frequency between the received carrier of the satellite signal and a receiver-generated reference frequency.
Carrier phase measurements are ambiguous, in the sense that the integer number of carrier wavelengths between satellite and the receiver's antenna is unknown.
Techniques such as <a href="http://www.citg.tudelft.nl/en/about-faculty/departments/geoscience-and-remote-sensing/research-themes/gps/lambda-method/" target="_blank">Least-square AMBiguity Decorrelation Approach (LAMBDA)</a> or
Multi Carrier Ambiguity Resolution (MCAR) can be applied to resolve such ambiguity and provide an accurate estimation of the distance between the satellite and the receiver.
Then, depending on the required accuracy, the navigation solution can range from pseudorange-only, computationally low demanding, and limited accuracy least squares methods to sophisticated combinations of code and phase observables at different frequencies for high demanding applications such as surveying, geodesy, and geophysics.
Then, depending on the required accuracy, the navigation solution can range from pseudorange-only, computationally low demanding, and limited accuracy least squares methods to sophisticated combinations of code and
phase observables at different frequencies for high demanding applications such as surveying, geodesy, and geophysics.
Next sections provide brief descriptions of the space segment of different GNSSs and their broadcast signal structures accessible by civilians.
@ -90,7 +93,9 @@ s^{\text{(GPS L1)}}_{T}(t)=e_{L1I}(t) + j e_{L1Q}(t)~,
provide C/A code to ensure backward compatibility.
\li <b>GPS L2C</b>. Defined at <a href="http://www.gps.gov/technical/icwg/IS-GPS-200F.pdf" target="_blank"><b>Interface Specification IS-GPS-200 Revision F</b></a>, is only available on Block IIR-M and subsequent satellite blocks. Centered at \f$f_{\text{GPS L2}}=1227.60\f$ MHz, the signal structure is the same than in (\ref{eq:GPSL1}), with the precision code in the In-phase component, just as in (\ref{eq:L1CAI}) but with an optional presence of the navigation message \f$D_{\text{NAV}}\f$. For the Quadrature-phase component, three options are defined:
\li <b>GPS L2C</b>. Defined at <a href="http://www.gps.gov/technical/icwg/IS-GPS-200F.pdf" target="_blank"><b>Interface Specification IS-GPS-200 Revision F</b></a>, is only available on
Block IIR-M and subsequent satellite blocks. Centered at \f$f_{\text{GPS L2}}=1227.60\f$ MHz, the signal structure is the same than in (\ref{eq:GPSL1}), with the precision code in the In-phase
component, just as in (\ref{eq:L1CAI}) but with an optional presence of the navigation message \f$D_{\text{NAV}}\f$. For the Quadrature-phase component, three options are defined:
\f{align}{ e_{L2CQ}(t) =& \sum_{l=-\infty}^{\infty} D_{\text{CNAV}} \Big[ [l]_{10230} \Big] \oplus \left( C_{\text{CL}} \Big[ |l|_{L_{\text{CL}}} \Big] p_{\text{\tiny{1/2}}} \left( t - lT_{c,L2C} \right) + \right.\\ {} &+ \left. C_{\text{CM}} \Big[ |l|_{L_{\text{CM}}} \Big] p_{\text{\tiny{1/2}}}\left(t - \left(l+\frac{3}{4}\right)T_{c,L2C}\right) \right),\\
e_{L2CQ}(t) =& \sum_{l=-\infty}^{\infty} D_{\text{NAV}} \Big[ [l]_{20460} \Big] \oplus C_{\text{C/A}} \Big[ |l|_{1023} \Big] p \left(t - lT_{c,\text{C/A}}\right) \text{, or}\\
e_{L2CQ}(t)=& \sum_{l=-\infty}^{\infty}C_{\text{C/A}} \Big[ |l|_{1023} \Big] p(t - lT_{c,\text{C/A}})~,
@ -124,7 +129,10 @@ Eight satellites are equally spaced in each plane with \f$45^o\f$ argument of la
the orbital planes have an argument of latitude displacement of \f$15^o\f$ relative to each other.
GLONASS civil signal-in-space is defined at <a href="http://facility.unavco.org/data/docs/ICD_GLONASS_5.1_(2008)_en.pdf" target="_blank"><b>Interface Control Document. Navigational radiosignal in bands L1, L2. Edition 5.1</b></a>. This system makes use of a frequency-division multiple access (FDMA) signal structure, transmitting in two bands: \f$f^{(k)}_{GLO L1}=1602+k \cdot 0.5625\f$ MHz and \f$f^{(k)}_{GLO L2}=1246+k \cdot 0.4375\f$ MHz, where \f$k\in \left\{ -7,-6,\cdots,5,6\right\}\f$ is the channel number. Satellites in opposite points of an orbit plane transmit signals on equal frequencies, as these satellites will never be in view simultaneously by a ground-based user.
GLONASS civil signal-in-space is defined at <a href="http://facility.unavco.org/data/docs/ICD_GLONASS_5.1_(2008)_en.pdf" target="_blank"><b>Interface Control Document. Navigational radiosignal in bands L1, L2. Edition 5.1</b></a>.
This system makes use of a frequency-division multiple access (FDMA) signal structure, transmitting in two bands: \f$f^{(k)}_{GLO L1}=1602+k \cdot 0.5625\f$ MHz and \f$f^{(k)}_{GLO L2}=1246+k \cdot 0.4375\f$ MHz,
where \f$k\in \left\{ -7,-6,\cdots,5,6\right\}\f$ is the channel number. Satellites in opposite points of an orbit plane transmit signals on equal frequencies, as these satellites will never be
in view simultaneously by a ground-based user.
\li <b>GLONASS L1</b>. Two kind of signals are transmitted: a standard precision (SP) and an obfuscated high precision (HP) signal. The complex baseband transmitted signal can be written as
@ -136,12 +144,19 @@ s^{\text{(GLO L1)}}_{T}(t)=e_{L1I}(t) + j e_{L1Q}(t)~,
e_{L1I}(t) =& \sum_{l=-\infty}^{\infty} D_{\text{GNAV}}\Big[ [l]_{102200}\Big] \oplus C_{\text{HP}} \Big[ |l|_{L_{\text{HP}}} \Big] p(t - lT_{c,\text{HP}})~,\\
e_{L1Q}(t) =& \sum_{l=-\infty}^{\infty} D_{\text{GNAV}}\Big[ [l]_{10220} \Big] \oplus C_{\text{SP}} \Big[ |l|_{511} \Big] p(t - lT_{c,\text{SP}})~,
\f}
where \f$T_{c,\text{HP}}=\frac{1}{5.11}\f$ \f$\mu\f$s, \f$T_{c,\text{SP}}=\frac{1}{0.511}\f$ \f$\mu\f$s, and \f$L_{\text{HP}}=3.3554\cdot 10^7\f$. The navigation message \f$D_{\text{GNAV}}\f$ is transmitted at \f$50\f$ bps. Details of its content and structure, as well as the generation of the \f$C_{\text{SP}}\f$ code, can be found at the <a href="http://facility.unavco.org/data/docs/ICD_GLONASS_5.1_(2008)_en.pdf" target="_blank">ICD</a>. The usage of the HP signal should be agreed with the Russian Federation Defense Ministry, and no more details have been disclosed.
where \f$T_{c,\text{HP}}=\frac{1}{5.11}\f$ \f$\mu\f$s, \f$T_{c,\text{SP}}=\frac{1}{0.511}\f$ \f$\mu\f$s, and \f$L_{\text{HP}}=3.3554\cdot 10^7\f$. The navigation
message \f$D_{\text{GNAV}}\f$ is transmitted at \f$50\f$ bps. Details of its content and structure, as well as the generation of the \f$C_{\text{SP}}\f$ code, can be found at
the <a href="http://facility.unavco.org/data/docs/ICD_GLONASS_5.1_(2008)_en.pdf" target="_blank">ICD</a>. The usage of the HP signal should be agreed with the Russian Federation Defense
Ministry, and no more details have been disclosed.
\li <b>GLONASS L2</b>. Beginning with the second generation of satellites, called GLONASS-M and first launched in 2001, a second civil signal is available using the same SP code than the one in the L1 band.
The use of FDMA techniques, in which the same code is used to broadcast navigation signals on different frequencies, and the placement of civil GLONASS transmissions on frequencies close to \f$1600\f$ MHz, well above the GPS L1 band, have complicated the design of combined GLONASS/GPS receivers, particularly low-cost equipment for mass-market applications. Future plans of modernization are intended to increase compatibility and interoperability with other GNSS, and include the addition of a code-division multiple access (CDMA) structure, and possibly binary offset carrier (BOC) modulation, beginning with the third civil signal in the L3 band (\f$1197.648 - 1212.255\f$ MHz). Russia is implementing the new signals on the next-generation GLONASS-K satellites, with a first prototype successfully launched into orbit on February 26, 2011.
The use of FDMA techniques, in which the same code is used to broadcast navigation signals on different frequencies, and the placement of civil GLONASS transmissions on frequencies close to \f$1600\f$ MHz,
well above the GPS L1 band, have complicated the design of combined GLONASS/GPS receivers, particularly low-cost equipment for mass-market applications. Future plans of modernization are
intended to increase compatibility and interoperability with other GNSS, and include the addition of a code-division multiple access (CDMA) structure, and possibly binary offset carrier (BOC)
modulation, beginning with the third civil signal in the L3 band (\f$1197.648 - 1212.255\f$ MHz). Russia is implementing the new signals on the next-generation GLONASS-K satellites, with a
first prototype successfully launched into orbit on February 26, 2011.
@ -177,7 +192,8 @@ In case of channel \f$C\f$, it is a pilot (dataless) channel with a secondary co
\f{align}{
\nonumber e_{E1C}(t)&= \sum_{m=-\infty}^{+\infty}C_{E1Cs}\Big[|m|_{25}\Big] \oplus \sum_{l=1}^{4092}C_{E1Cp}\Big[ l \Big] \cdot \\ {}& \; \; \cdot p(t-mT_{c,E1Cs}-lT_{c,E1Cp})~,\label{eq:E1C}
\f}
with \f$T_{c,E1B}=T_{c,E1Cp}=\frac{1}{1.023}\f$ \f$\mu\f$s and \f$T_{c,E1Cs}=4\f$ ms. The \f$C_{E1B}\f$ and \f$C_{E1Cp}\f$ primary codes are pseudorandom memory code sequences defined at Annex C.7 and C.8 of <a href="http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf" target="_blank">OS SIS ICD</a>. The binary
with \f$T_{c,E1B}=T_{c,E1Cp}=\frac{1}{1.023}\f$ \f$\mu\f$s and \f$T_{c,E1Cs}=4\f$ ms. The \f$C_{E1B}\f$ and \f$C_{E1Cp}\f$ primary codes are pseudorandom memory code sequences defined at
Annex C.7 and C.8 of <a href="http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf" target="_blank">OS SIS ICD</a>. The binary
sequence of the secondary code \f$C_{E1Cs}\f$ is 0011100000001010110110010. This band also contains another component, Galileo E1A, intended for the Public Regulated Service (PRS).
It uses a BOC(15,2.5) modulation with cosine-shaped subcarrier \f$f_{s,E1A}=15.345\f$ MHz and \f$T_{c, E1A}=\frac{1}{2.5575}\f$ \f$\mu\f$s.
The PRS spreading codes and the structure of the navigation message have not been made public.
@ -188,16 +204,23 @@ The PRS spreading codes and the structure of the navigation message have not bee
s_{T}^{\text{(Gal E6)}}(t) = \frac{1}{\sqrt{2}}\left(e_{E6B}(t)-e_{E6C}(t)\right){~},
\f}
\f{align}{
\nonumber e_{E6B}(t) =& \sum_{m=-\infty}^{+\infty} D_{\text{C/NAV}} \Big[ [l]_{5115}\Big] \oplus C_{E6B}\Big[|l|_{L_{E6B}}\Big] \cdot \\ {}& \cdot p(t - lT_{c,E6}),\\
\nonumber e_{E6C}(t)=& \sum_{m=-\infty}^{+\infty}C_{E6Cs}\Big[|m|_{100}\Big] \oplus \sum_{l=1}^{L_{E6C}}C_{E6Cp}\Big[ l \Big] \cdot \\ {}& \cdot p(t-mT_{c,E6s} -lT_{c,E6p}),
\nonumber e_{E6B}(t) =& \sum_{m=-\infty}^{+\infty} D_{\text{C/NAV}} \Big[ [l]_{5115}\Big] \oplus C_{E6B}\Big[|l|_{L_{E6B}}\Big] \cdot \\ {}& \cdot p(t - lT_{c,E6}),\\
\nonumber e_{E6C}(t) =& \sum_{m=-\infty}^{+\infty}C_{E6Cs}\Big[|m|_{100}\Big] \oplus \sum_{l=1}^{L_{E6C}}C_{E6Cp}\Big[ l \Big] \cdot \\ {}& \cdot p(t-mT_{c,E6s} -lT_{c,E6p}),
\f}
where \f$D_{\text{C/NAV}}\f$ is the C/NAV navigation data stream, which is modulated with the encrypted ranging code \f$C_{E6B}\f$ with chip period \f$T_{c,E6}=\frac{1}{5.115}\f$ \f$\mu\f$s, thus being a BPSK(5) modulation. Codes \f$C_{E6B}\f$ and primary codes \f$C_{E6Cs}\f$ and their respective lengths, \f$L_{E6B}\f$ and \f$L_{E6C}\f$, have not been published. The secondary codes for the pilot component, \f$C_{E6Cs}\f$, are available at the <a href="http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf" target="_blank">OS SIS ICD</a>. The receiver reference bandwidth for this signal is \f$40.920\f$ MHz. This band also contains another component, Galileo E6A, intended for PRS.
where \f$D_{\text{C/NAV}}\f$ is the C/NAV navigation data stream, which is modulated with the encrypted ranging code \f$C_{E6B}\f$ with chip period \f$T_{c,E6}=\frac{1}{5.115}\f$ \f$\mu\f$s, thus
being a BPSK(5) modulation. Codes \f$C_{E6B}\f$ and primary codes \f$C_{E6Cs}\f$ and their respective lengths, \f$L_{E6B}\f$ and \f$L_{E6C}\f$, have not been published. The secondary codes
for the pilot component, \f$C_{E6Cs}\f$, are available at the <a href="http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf" target="_blank">OS SIS ICD</a>.
The receiver reference bandwidth for this signal is \f$40.920\f$ MHz. This band also contains another component, Galileo E6A, intended for PRS.
\li <b>Galileo E5</b>. Centered at \f$f_{\text{Gal E5}}=1191.795\f$ MHz and with a total bandwidth of \f$51.150\f$ MHz, its signal structure deserves some analysis. The AltBOC modulation can be generically expressed as
\f{equation}{\label{AltBOC}
s^{\text{AltBOC}}(t)=x_1(t)v^{*}(t)+x_2(t)v(t)~,
\f}
where \f$v(t)=\frac{1}{\sqrt{2}}\left( \text{sign}\left( \cos (2 \pi f_s t)\right)+j \text{sign}\left( \sin (2 \pi f_s t)\right)\right)\f$ is the single side-band subcarrier, \f$f_s\f$ is the subcarrier frequency, \f$(\cdot)^{*}\f$ stands for the conjugate operation, and \f$x_1(t)\f$ and \f$x_2(t)\f$ are QPSK signals. The resulting waveform does not exhibit constant envelope. In case of Galileo, the need for high efficiency of the satellites' onboard High Power Amplifier (HPA) has pushed a modification on the signal in order to make it envelope-constant and thus use the HPA at saturation. This can be done by adding some inter-modulation products to the expression above, coming up with the following definition:
where \f$v(t)=\frac{1}{\sqrt{2}}\left( \text{sign}\left( \cos (2 \pi f_s t)\right)+j \text{sign}\left( \sin (2 \pi f_s t)\right)\right)\f$ is the single side-band
subcarrier, \f$f_s\f$ is the subcarrier frequency, \f$(\cdot)^{*}\f$ stands for the conjugate operation, and \f$x_1(t)\f$ and \f$x_2(t)\f$ are QPSK signals.
The resulting waveform does not exhibit constant envelope. In case of Galileo, the need for high efficiency of the satellites' onboard High Power Amplifier (HPA) has pushed
a modification on the signal in order to make it envelope-constant and thus use the HPA at saturation. This can be done by adding some inter-modulation products to the expression
above, coming up with the following definition:
\f{align}{
\nonumber s^{\text{(Gal E5)}}_{T}(t)= & e_{E5a}(t) ssc_s^{*}(t)+ e_{E5b}(t) ssc_s(t) + \\
@ -227,8 +250,7 @@ e_{E5aI}(t)=& \sum_{m=-\infty}^{+\infty}C_{E5aIs}\Big[|m|_{20}\Big] \oplus \sum
\f}
where \f$T_{c,E5s}=1 \f$ ms and \f$T_{c,E5p}=\frac{1}{10.23}\f$ \f$\mu\f$s.
Channel A contains the F/NAV type of navigation message, \f$D_{\text{F/NAV}}\f$, intended for the Open Service. The I/NAV message structures for the E5bI and E1B signals use the same page
layout. Only page sequencing is different, with page swapping
between both components in order to allow a fast reception of data by a dual frequency
layout. Only page sequencing is different, with page swapping between both components in order to allow a fast reception of data by a dual frequency
receiver. The single subcarrier \f$sc_s(t)\f$ and the product subcarrier \f$sc_p(t)\f$ are defined as:
\f{align}{
sc_s(t)=& \frac{\sqrt{2}}{4}\text{sign} \left( \cos \left( 2 \pi f_s t - \frac{\pi}{4}\right) \right)+\\ \nonumber {}&+ \frac{1}{2}\text{sign} \Big( \cos \left( 2 \pi f_s t \right) \Big)+\\
@ -238,7 +260,8 @@ receiver. The single subcarrier \f$sc_s(t)\f$ and the product subcarrier \f$sc_p
sc_p(t)=& -\frac{\sqrt{2}}{4}\text{sign} \left( \cos \left( 2 \pi f_s t - \frac{\pi}{4}\right) \right)+\\ \nonumber {}&+ \frac{1}{2}\text{sign} \Big( \cos \left( 2 \pi f_s t \right) \Big)+\\
{} &-\frac{\sqrt{2}}{4}\text{sign} \left( \cos \left( 2 \pi f_s t + \frac{\pi}{4}\right) \right)~,
\f}
with a subcarrier frequency of \f$f_s=15.345\f$ MHz, thus defining an AltBOC(15,10) modulation. The QPSK(10) signal \f$e_{E5a}(t)\f$ defined above is shifted to \f$f_{\text{Gal E5a}}\doteq f_{\text{Gal E5}}-f_s=1176.450\f$ MHz, while \f$e_{E5b}(t)\f$ is shifted to \f$f_{\text{Gal E5b}}\doteq f_{\text{Gal E5}}+f_s=1207.140\f$ MHz.
with a subcarrier frequency of \f$f_s=15.345\f$ MHz, thus defining an AltBOC(15,10) modulation. The QPSK(10) signal \f$e_{E5a}(t)\f$ defined above is shifted
to \f$f_{\text{Gal E5a}}\doteq f_{\text{Gal E5}}-f_s=1176.450\f$ MHz, while \f$e_{E5b}(t)\f$ is shifted to \f$f_{\text{Gal E5b}}\doteq f_{\text{Gal E5}}+f_s=1207.140\f$ MHz.
Thus, we can bandpass filter around \f$f_{\text{Gal E5a}}\f$ and get a good approximation of a QPSK(10) signal, with very low energy components of \f$e_{E5b}(t)\f$, \f$ \bar{e}_{E5a}(t)\f$,
and \f$ \bar{e}_{E5b}(t)\f$:
\f{equation}{