1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-12 10:20:32 +00:00

GPS L1 C/A + GPS L2C M dual frequency offline acquisition and tracking

READY. Issues on PRN numbering are being investigated...
This commit is contained in:
Javier 2015-05-05 18:18:16 +02:00
parent 60b7fe8e08
commit 4c5efd1e8b
18 changed files with 2825 additions and 69 deletions

View File

@ -267,7 +267,7 @@ Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=2
Channels_GPS.count=9
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
@ -281,16 +281,66 @@ Channel0.RF_channel_ID=0
Channel0.system=GPS
Channel0.signal=1C
Channel1.RF_channel_ID=1
Channel1.system=GPS L2C M
Channel1.signal=2S
Channel1.RF_channel_ID=0
Channel1.system=GPS
Channel1.signal=1C
Channel2.RF_channel_ID=0
Channel2.system=GPS
Channel2.signal=1C
Channel3.RF_channel_ID=0
Channel3.system=GPS
Channel3.signal=1C
Channel4.RF_channel_ID=0
Channel4.system=GPS
Channel4.signal=1C
Channel5.RF_channel_ID=0
Channel5.system=GPS
Channel5.signal=1C
Channel6.RF_channel_ID=0
Channel6.system=GPS
Channel6.signal=1C
Channel7.RF_channel_ID=0
Channel7.system=GPS
Channel7.signal=1C
Channel8.RF_channel_ID=1
Channel8.system=GPS L2C M
Channel8.signal=2S
Channel9.RF_channel_ID=1
Channel9.system=GPS L2C M
Channel9.signal=2S
Channel10.RF_channel_ID=1
Channel10.system=GPS L2C M
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.system=GPS L2C M
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.system=GPS L2C M
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.system=GPS L2C M
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.system=GPS L2C M
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.system=GPS L2C M
Channel15.signal=2S
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
@ -299,56 +349,208 @@ Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
;# GPS L1 C/A
Acquisition_GPS0.dump=false
;#filename: Log path and filename
Acquisition_GPS0.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS0.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS0.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS0.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS0.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#threshold: Acquisition threshold
Acquisition_GPS0.threshold=0.015
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS0.threshold=0.015
;Acquisition_GPS0.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS0.doppler_max=5000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS0.doppler_min=-5000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_GPS0.doppler_step=250
;#maximum dwells
Acquisition_GPS0.max_dwells=2
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS1.dump=false
;#filename: Log path and filename
Acquisition_GPS1.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS1.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS1.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS1.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS1.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#threshold: Acquisition threshold
Acquisition_GPS1.threshold=0.015
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS1.threshold=0.015
;Acquisition_GPS1.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS1.doppler_max=5000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS1.doppler_min=-5000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition_GPS1.doppler_step=100
;#maximum dwells
Acquisition_GPS1.doppler_step=250
Acquisition_GPS1.max_dwells=2
Acquisition_GPS2.dump=false
Acquisition_GPS2.dump_filename=./acq_dump.dat
Acquisition_GPS2.item_type=gr_complex
Acquisition_GPS2.if=0
Acquisition_GPS2.sampled_ms=1
Acquisition_GPS2.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS2.threshold=0.015
;Acquisition_GPS2.pfa=0.0001
Acquisition_GPS2.doppler_max=5000
Acquisition_GPS2.doppler_min=-5000
Acquisition_GPS2.doppler_step=250
Acquisition_GPS2.max_dwells=2
Acquisition_GPS3.dump=false
Acquisition_GPS3.dump_filename=./acq_dump.dat
Acquisition_GPS3.item_type=gr_complex
Acquisition_GPS3.if=0
Acquisition_GPS3.sampled_ms=1
Acquisition_GPS3.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS3.threshold=0.015
;Acquisition_GPS3.pfa=0.0001
Acquisition_GPS3.doppler_max=5000
Acquisition_GPS3.doppler_min=-5000
Acquisition_GPS3.doppler_step=250
Acquisition_GPS3.max_dwells=2
Acquisition_GPS4.dump=false
Acquisition_GPS4.dump_filename=./acq_dump.dat
Acquisition_GPS4.item_type=gr_complex
Acquisition_GPS4.if=0
Acquisition_GPS4.sampled_ms=1
Acquisition_GPS4.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS4.threshold=0.015
;Acquisition_GPS4.pfa=0.0001
Acquisition_GPS4.doppler_max=5000
Acquisition_GPS4.doppler_min=-5000
Acquisition_GPS4.doppler_step=250
Acquisition_GPS4.max_dwells=2
Acquisition_GPS5.dump=false
Acquisition_GPS5.dump_filename=./acq_dump.dat
Acquisition_GPS5.item_type=gr_complex
Acquisition_GPS5.if=0
Acquisition_GPS5.sampled_ms=1
Acquisition_GPS5.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS5.threshold=0.015
;Acquisition_GPS5.pfa=0.0001
Acquisition_GPS5.doppler_max=5000
Acquisition_GPS5.doppler_min=-5000
Acquisition_GPS5.doppler_step=250
Acquisition_GPS5.max_dwells=2
Acquisition_GPS6.dump=false
Acquisition_GPS6.dump_filename=./acq_dump.dat
Acquisition_GPS6.item_type=gr_complex
Acquisition_GPS6.if=0
Acquisition_GPS6.sampled_ms=1
Acquisition_GPS6.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS6.threshold=0.015
;Acquisition_GPS6.pfa=0.0001
Acquisition_GPS6.doppler_max=5000
Acquisition_GPS6.doppler_min=-5000
Acquisition_GPS6.doppler_step=250
Acquisition_GPS6.max_dwells=2
Acquisition_GPS7.dump=false
Acquisition_GPS7.dump_filename=./acq_dump.dat
Acquisition_GPS7.item_type=gr_complex
Acquisition_GPS7.if=0
Acquisition_GPS7.sampled_ms=1
Acquisition_GPS7.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_GPS7.threshold=0.015
;Acquisition_GPS7.pfa=0.0001
Acquisition_GPS7.doppler_max=5000
Acquisition_GPS7.doppler_min=-5000
Acquisition_GPS7.doppler_step=250
Acquisition_GPS7.max_dwells=2
;# GPS L2C M
Acquisition_GPS8.dump=false
Acquisition_GPS8.dump_filename=./acq_dump.dat
Acquisition_GPS8.item_type=gr_complex
Acquisition_GPS8.if=0
Acquisition_GPS8.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS8.threshold=0.0005
;Acquisition_GPS8.pfa=0.001
Acquisition_GPS8.doppler_max=5000
Acquisition_GPS8.doppler_min=-5000
Acquisition_GPS8.doppler_step=100
Acquisition_GPS8.max_dwells=1
Acquisition_GPS9.dump=false
Acquisition_GPS9.dump_filename=./acq_dump.dat
Acquisition_GPS9.item_type=gr_complex
Acquisition_GPS9.if=0
Acquisition_GPS9.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS9.threshold=0.0005
;Acquisition_GPS9.pfa=0.001
Acquisition_GPS9.doppler_max=5000
Acquisition_GPS9.doppler_min=-5000
Acquisition_GPS9.doppler_step=100
Acquisition_GPS9.max_dwells=1
Acquisition_GPS10.dump=false
Acquisition_GPS10.dump_filename=./acq_dump.dat
Acquisition_GPS10.item_type=gr_complex
Acquisition_GPS10.if=0
Acquisition_GPS10.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS10.threshold=0.0005
;Acquisition_GPS10.pfa=0.001
Acquisition_GPS10.doppler_max=5000
Acquisition_GPS10.doppler_min=-5000
Acquisition_GPS10.doppler_step=100
Acquisition_GPS10.max_dwells=1
Acquisition_GPS11.dump=false
Acquisition_GPS11.dump_filename=./acq_dump.dat
Acquisition_GPS11.item_type=gr_complex
Acquisition_GPS11.if=0
Acquisition_GPS11.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS11.threshold=0.0005
;Acquisition_GPS11.pfa=0.001
Acquisition_GPS11.doppler_max=5000
Acquisition_GPS11.doppler_min=-5000
Acquisition_GPS11.doppler_step=100
Acquisition_GPS11.max_dwells=1
Acquisition_GPS12.dump=false
Acquisition_GPS12.dump_filename=./acq_dump.dat
Acquisition_GPS12.item_type=gr_complex
Acquisition_GPS12.if=0
Acquisition_GPS12.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS12.threshold=0.0005
;Acquisition_GPS12.pfa=0.001
Acquisition_GPS12.doppler_max=5000
Acquisition_GPS12.doppler_min=-5000
Acquisition_GPS12.doppler_step=100
Acquisition_GPS12.max_dwells=1
Acquisition_GPS13.dump=false
Acquisition_GPS13.dump_filename=./acq_dump.dat
Acquisition_GPS13.item_type=gr_complex
Acquisition_GPS13.if=0
Acquisition_GPS13.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS13.threshold=0.0005
;Acquisition_GPS13.pfa=0.001
Acquisition_GPS13.doppler_max=5000
Acquisition_GPS13.doppler_min=-5000
Acquisition_GPS13.doppler_step=100
Acquisition_GPS13.max_dwells=1
Acquisition_GPS14.dump=false
Acquisition_GPS14.dump_filename=./acq_dump.dat
Acquisition_GPS14.item_type=gr_complex
Acquisition_GPS14.if=0
Acquisition_GPS14.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS14.threshold=0.0005
;Acquisition_GPS14.pfa=0.001
Acquisition_GPS14.doppler_max=5000
Acquisition_GPS14.doppler_min=-5000
Acquisition_GPS14.doppler_step=100
Acquisition_GPS14.max_dwells=1
Acquisition_GPS15.dump=false
Acquisition_GPS15.dump_filename=./acq_dump.dat
Acquisition_GPS15.item_type=gr_complex
Acquisition_GPS15.if=0
Acquisition_GPS15.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_GPS15.threshold=0.0005
;Acquisition_GPS15.pfa=0.001
Acquisition_GPS15.doppler_max=5000
Acquisition_GPS15.doppler_min=-5000
Acquisition_GPS15.doppler_step=100
Acquisition_GPS15.max_dwells=1
;######### ACQUISITION GLOBAL CONFIG ############
@ -385,50 +587,185 @@ Acquisition_GPS.max_dwells=1
;######### TRACKING CHANNEL 0 CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_GPS0.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS0.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS0.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS0.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS0.dump_filename=./tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS0.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS0.dll_bw_hz=3.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS0.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS0.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_GPS0.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 1 CONFIG ############
;#implementation: Selected tracking algorithm:
Tracking_GPS1.implementation=GPS_L2_M_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS1.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS1.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS1.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS1.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS1.dump_filename=./tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS1.pll_bw_hz=40.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS1.dll_bw_hz=3.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS1.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS1.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_GPS1.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 2 CONFIG ############
Tracking_GPS2.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS2.item_type=gr_complex
Tracking_GPS2.if=0
Tracking_GPS2.dump=false
Tracking_GPS2.dump_filename=./tracking_ch_
Tracking_GPS2.pll_bw_hz=40.0;
Tracking_GPS2.dll_bw_hz=3.0;
Tracking_GPS2.fll_bw_hz=10.0;
Tracking_GPS2.order=3;
Tracking_GPS2.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 3 CONFIG ############
Tracking_GPS3.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS3.item_type=gr_complex
Tracking_GPS3.if=0
Tracking_GPS3.dump=false
Tracking_GPS3.dump_filename=./tracking_ch_
Tracking_GPS3.pll_bw_hz=40.0;
Tracking_GPS3.dll_bw_hz=3.0;
Tracking_GPS3.fll_bw_hz=10.0;
Tracking_GPS3.order=3;
Tracking_GPS3.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 4 CONFIG ############
Tracking_GPS4.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS4.item_type=gr_complex
Tracking_GPS4.if=0
Tracking_GPS4.dump=false
Tracking_GPS4.dump_filename=./tracking_ch_
Tracking_GPS4.pll_bw_hz=40.0;
Tracking_GPS4.dll_bw_hz=3.0;
Tracking_GPS4.fll_bw_hz=10.0;
Tracking_GPS4.order=3;
Tracking_GPS4.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 5 CONFIG ############
Tracking_GPS5.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS5.item_type=gr_complex
Tracking_GPS5.if=0
Tracking_GPS5.dump=false
Tracking_GPS5.dump_filename=./tracking_ch_
Tracking_GPS5.pll_bw_hz=40.0;
Tracking_GPS5.dll_bw_hz=3.0;
Tracking_GPS5.fll_bw_hz=10.0;
Tracking_GPS5.order=3;
Tracking_GPS5.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 6 CONFIG ############
Tracking_GPS6.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS6.item_type=gr_complex
Tracking_GPS6.if=0
Tracking_GPS6.dump=false
Tracking_GPS6.dump_filename=./tracking_ch_
Tracking_GPS6.pll_bw_hz=40.0;
Tracking_GPS6.dll_bw_hz=3.0;
Tracking_GPS6.fll_bw_hz=10.0;
Tracking_GPS6.order=3;
Tracking_GPS6.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 7 CONFIG ############
Tracking_GPS7.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_GPS7.item_type=gr_complex
Tracking_GPS7.if=0
Tracking_GPS7.dump=false
Tracking_GPS7.dump_filename=./tracking_ch_
Tracking_GPS7.pll_bw_hz=40.0;
Tracking_GPS7.dll_bw_hz=3.0;
Tracking_GPS7.fll_bw_hz=10.0;
Tracking_GPS7.order=3;
Tracking_GPS7.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 8 CONFIG ############
Tracking_GPS8.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS8.item_type=gr_complex
Tracking_GPS8.if=0
Tracking_GPS8.dump=false
Tracking_GPS8.dump_filename=./tracking_ch_
Tracking_GPS8.pll_bw_hz=2.0;
Tracking_GPS8.dll_bw_hz=0.5;
Tracking_GPS8.fll_bw_hz=2.0;
Tracking_GPS8.order=2;
Tracking_GPS8.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 9 CONFIG ############
Tracking_GPS9.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS9.item_type=gr_complex
Tracking_GPS9.if=0
Tracking_GPS9.dump=false
Tracking_GPS9.dump_filename=./tracking_ch_
Tracking_GPS9.pll_bw_hz=2.0;
Tracking_GPS9.dll_bw_hz=0.5;
Tracking_GPS9.fll_bw_hz=2.0;
Tracking_GPS9.order=2;
Tracking_GPS9.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 10 CONFIG ############
Tracking_GPS10.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS10.item_type=gr_complex
Tracking_GPS10.if=0
Tracking_GPS10.dump=false
Tracking_GPS10.dump_filename=./tracking_ch_
Tracking_GPS10.pll_bw_hz=2.0;
Tracking_GPS10.dll_bw_hz=0.5;
Tracking_GPS10.fll_bw_hz=2.0;
Tracking_GPS10.order=2;
Tracking_GPS10.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 11 CONFIG ############
Tracking_GPS11.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS11.item_type=gr_complex
Tracking_GPS11.if=0
Tracking_GPS11.dump=false
Tracking_GPS11.dump_filename=./tracking_ch_
Tracking_GPS11.pll_bw_hz=2.0;
Tracking_GPS11.dll_bw_hz=0.5;
Tracking_GPS11.fll_bw_hz=2.0;
Tracking_GPS11.order=2;
Tracking_GPS11.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 12 CONFIG ############
Tracking_GPS12.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS12.item_type=gr_complex
Tracking_GPS12.if=0
Tracking_GPS12.dump=false
Tracking_GPS12.dump_filename=./tracking_ch_
Tracking_GPS12.pll_bw_hz=2.0;
Tracking_GPS12.dll_bw_hz=0.5;
Tracking_GPS12.fll_bw_hz=2.0;
Tracking_GPS12.order=2;
Tracking_GPS12.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 13 CONFIG ############
Tracking_GPS13.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS13.item_type=gr_complex
Tracking_GPS13.if=0
Tracking_GPS13.dump=false
Tracking_GPS13.dump_filename=./tracking_ch_
Tracking_GPS13.pll_bw_hz=2.0;
Tracking_GPS13.dll_bw_hz=0.5;
Tracking_GPS13.fll_bw_hz=2.0;
Tracking_GPS13.order=2;
Tracking_GPS13.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 14 CONFIG ############
Tracking_GPS14.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS14.item_type=gr_complex
Tracking_GPS14.if=0
Tracking_GPS14.dump=false
Tracking_GPS14.dump_filename=./tracking_ch_
Tracking_GPS14.pll_bw_hz=2.0;
Tracking_GPS14.dll_bw_hz=0.5;
Tracking_GPS14.fll_bw_hz=2.0;
Tracking_GPS14.order=2;
Tracking_GPS14.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 15 CONFIG ############
Tracking_GPS15.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_GPS15.item_type=gr_complex
Tracking_GPS15.if=0
Tracking_GPS15.dump=false
Tracking_GPS15.dump_filename=./tracking_ch_
Tracking_GPS15.pll_bw_hz=2.0;
Tracking_GPS15.dll_bw_hz=0.5;
Tracking_GPS15.fll_bw_hz=2.0;
Tracking_GPS15.order=2;
Tracking_GPS15.early_late_space_chips=0.5;
;######### TRACKING GLOBAL CONFIG ############
@ -460,6 +797,72 @@ TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=1;
TelemetryDecoder_GPS0.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS0.dump=false
TelemetryDecoder_GPS0.decimation_factor=20;
TelemetryDecoder_GPS1.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS1.dump=false
TelemetryDecoder_GPS1.decimation_factor=20;
TelemetryDecoder_GPS2.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS2.dump=false
TelemetryDecoder_GPS2.decimation_factor=20;
TelemetryDecoder_GPS3.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS3.dump=false
TelemetryDecoder_GPS3.decimation_factor=20;
TelemetryDecoder_GPS4.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS4.dump=false
TelemetryDecoder_GPS4.decimation_factor=20;
TelemetryDecoder_GPS5.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS5.dump=false
TelemetryDecoder_GPS5.decimation_factor=20;
TelemetryDecoder_GPS6.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS6.dump=false
TelemetryDecoder_GPS6.decimation_factor=20;
TelemetryDecoder_GPS7.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS7.dump=false
TelemetryDecoder_GPS7.decimation_factor=20;
TelemetryDecoder_GPS8.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS8.dump=false
TelemetryDecoder_GPS8.decimation_factor=1;
TelemetryDecoder_GPS9.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS9.dump=false
TelemetryDecoder_GPS9.decimation_factor=1;
TelemetryDecoder_GPS10.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS10.dump=false
TelemetryDecoder_GPS10.decimation_factor=1;
TelemetryDecoder_GPS11.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS11.dump=false
TelemetryDecoder_GPS11.decimation_factor=1;
TelemetryDecoder_GPS12.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS12.dump=false
TelemetryDecoder_GPS12.decimation_factor=1;
TelemetryDecoder_GPS13.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS13.dump=false
TelemetryDecoder_GPS13.decimation_factor=1;
TelemetryDecoder_GPS14.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS14.dump=false
TelemetryDecoder_GPS14.decimation_factor=1;
TelemetryDecoder_GPS15.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_GPS15.dump=false
TelemetryDecoder_GPS15.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables

View File

@ -54,11 +54,13 @@ void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, uns
// compute delay array index for given PRN number
if(120 <= _prn && _prn <= 138)
{
prn_idx = _prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
//prn_idx = _prn - 88; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33-1 =-88)
prn_idx = _prn - 87; // SBAS PRNs are at array indices 31 to 50 (offset: -120+33 =-87)
}
else
{
prn_idx = _prn-1;
//prn_idx = _prn-1;
prn_idx = _prn;
}
/* A simple error check */

View File

@ -18,6 +18,7 @@
set(TELEMETRY_DECODER_ADAPTER_SOURCES
gps_l1_ca_telemetry_decoder.cc
gps_l2_m_telemetry_decoder.cc
galileo_e1b_telemetry_decoder.cc
sbas_l1_telemetry_decoder.cc
galileo_e5a_telemetry_decoder.cc

View File

@ -0,0 +1,122 @@
/*!
* \file gps_l2_m_telemetry_decoder.cc
* \brief Implementation of an adapter of a GPS L2C M NAV data decoder block
* to a TelemetryDecoderInterface
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l2_m_telemetry_decoder.h"
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "gps_ephemeris.h"
#include "gps_almanac.h"
#include "gps_iono.h"
#include "gps_utc_model.h"
#include "configuration_interface.h"
extern concurrent_queue<Gps_Ephemeris> global_gps_ephemeris_queue;
extern concurrent_queue<Gps_Iono> global_gps_iono_queue;
extern concurrent_queue<Gps_Utc_Model> global_gps_utc_model_queue;
extern concurrent_queue<Gps_Almanac> global_gps_almanac_queue;
using google::LogMessage;
GpsL2MTelemetryDecoder::GpsL2MTelemetryDecoder(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role),
in_streams_(in_streams),
out_streams_(out_streams),
queue_(queue)
{
std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./navigation.dat";
DLOG(INFO) << "role " << role;
DLOG(INFO) << "vector length " << vector_length_;
vector_length_ = configuration->property(role + ".vector_length", 2048);
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_filename);
int fs_in;
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
// make telemetry decoder object
telemetry_decoder_ = gps_l2_m_make_telemetry_decoder_cc(satellite_, 0, (long)fs_in, vector_length_, queue_, dump_); // TODO fix me
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
// set the navigation msg queue;
telemetry_decoder_->set_ephemeris_queue(&global_gps_ephemeris_queue);
telemetry_decoder_->set_iono_queue(&global_gps_iono_queue);
telemetry_decoder_->set_almanac_queue(&global_gps_almanac_queue);
telemetry_decoder_->set_utc_model_queue(&global_gps_utc_model_queue);
//decimation factor
int decimation_factor = configuration->property(role + ".decimation_factor", 1);
telemetry_decoder_->set_decimation(decimation_factor);
LOG(INFO) << "global navigation message queue assigned to telemetry_decoder ("<< telemetry_decoder_->unique_id() << ")"<<"role "<<role;
}
GpsL2MTelemetryDecoder::~GpsL2MTelemetryDecoder()
{}
void GpsL2MTelemetryDecoder::set_satellite(Gnss_Satellite satellite)
{
satellite_ = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
telemetry_decoder_->set_satellite(satellite_);
DLOG(INFO) << "TELEMETRY DECODER: satellite set to " << satellite_;
}
void GpsL2MTelemetryDecoder::connect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
// Nothing to connect internally
DLOG(INFO) << "nothing to connect internally";
}
void GpsL2MTelemetryDecoder::disconnect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
// Nothing to disconnect
}
gr::basic_block_sptr GpsL2MTelemetryDecoder::get_left_block()
{
return telemetry_decoder_;
}
gr::basic_block_sptr GpsL2MTelemetryDecoder::get_right_block()
{
return telemetry_decoder_;
}

View File

@ -0,0 +1,96 @@
/*!
* \file gps_l2_m_telemetry_decoder.h
* \brief Interface of an adapter of a GPS L1 C/A NAV data decoder block
* to a TelemetryDecoderInterface
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L2_M_TELEMETRY_DECODER_H_
#define GNSS_SDR_GPS_L2_M_TELEMETRY_DECODER_H_
#include <string>
#include <gnuradio/msg_queue.h>
#include "telemetry_decoder_interface.h"
#include "gps_l2_m_telemetry_decoder_cc.h"
class ConfigurationInterface;
/*!
* \brief This class implements a NAV data decoder for GPS L2 M
*/
class GpsL2MTelemetryDecoder : public TelemetryDecoderInterface
{
public:
GpsL2MTelemetryDecoder(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue);
virtual ~GpsL2MTelemetryDecoder();
std::string role()
{
return role_;
}
//! Returns "gps_l2_m_telemetry_decoder"
std::string implementation()
{
return "gps_l2_m_telemetry_decoder";
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
void set_satellite(Gnss_Satellite satellite);
void set_channel(int channel){telemetry_decoder_->set_channel(channel);}
void reset()
{
return;
}
size_t item_size()
{
return 0;
}
private:
gps_l2_m_telemetry_decoder_cc_sptr telemetry_decoder_;
Gnss_Satellite satellite_;
int channel_;
unsigned int vector_length_;
std::string item_type_;
bool dump_;
std::string dump_filename_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
boost::shared_ptr<gr::msg_queue> queue_;
};
#endif

View File

@ -18,6 +18,7 @@
set(TELEMETRY_DECODER_GR_BLOCKS_SOURCES
gps_l1_ca_telemetry_decoder_cc.cc
gps_l2_m_telemetry_decoder_cc.cc
galileo_e1b_telemetry_decoder_cc.cc
sbas_l1_telemetry_decoder_cc.cc
galileo_e5a_telemetry_decoder_cc.cc

View File

@ -86,7 +86,6 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
d_queue = queue;
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "TELEMETRY PROCESSING: satellite " << d_satellite;
d_vector_length = vector_length;
d_samples_per_bit = ( GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS ) / GPS_CA_TELEMETRY_RATE_BITS_SECOND;
d_fs_in = fs_in;
@ -357,7 +356,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_i
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
}
else

View File

@ -0,0 +1,410 @@
/*!
* \file gps_l2_m_telemetry_decoder_cc.cc
* \brief Implementation of a NAV message demodulator block based on
* Kay Borre book MATLAB-based GPS receiver
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
/*!
* \todo Clean this code and move the telemetry definitions to GPS_L1_CA system definitions file
*/
#include "gps_l2_m_telemetry_decoder_cc.h"
#include <iostream>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "control_message_factory.h"
#include "gnss_synchro.h"
#ifndef _rotl
#define _rotl(X,N) ((X << N) ^ (X >> (32-N))) // Used in the parity check algorithm
#endif
using google::LogMessage;
/*!
* \todo name and move the magic numbers to GPS_L1_CA.h
*/
gps_l2_m_telemetry_decoder_cc_sptr
gps_l2_m_make_telemetry_decoder_cc(Gnss_Satellite satellite, long if_freq, long fs_in, unsigned
int vector_length, boost::shared_ptr<gr::msg_queue> queue, bool dump)
{
return gps_l2_m_telemetry_decoder_cc_sptr(new gps_l2_m_telemetry_decoder_cc(satellite, if_freq,
fs_in, vector_length, queue, dump));
}
void gps_l2_m_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
for (unsigned i = 0; i < 3; i++)
{
ninput_items_required[i] = d_samples_per_bit * 8; //set the required sample history
}
}
gps_l2_m_telemetry_decoder_cc::gps_l2_m_telemetry_decoder_cc(
Gnss_Satellite satellite,
long if_freq,
long fs_in,
unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump) :
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
d_vector_length = vector_length;
d_samples_per_bit = ( GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS ) / GPS_CA_TELEMETRY_RATE_BITS_SECOND;
d_fs_in = fs_in;
//d_preamble_duration_seconds = (1.0 / GPS_CA_TELEMETRY_RATE_BITS_SECOND) * GPS_CA_PREAMBLE_LENGTH_BITS;
//std::cout<<"d_preamble_duration_seconds="<<d_preamble_duration_seconds<<"\r\n";
// set the preamble
unsigned short int preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE;
memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GPS_CA_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
// preamble bits to sampled symbols
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_BITS * d_samples_per_bit);
int n = 0;
for (int i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++)
{
for (unsigned int j = 0; j < d_samples_per_bit; j++)
{
if (d_preambles_bits[i] == 1)
{
d_preambles_symbols[n] = 1;
}
else
{
d_preambles_symbols[n] = -1;
}
n++;
}
}
d_sample_counter = 0;
//d_preamble_code_phase_seconds = 0;
d_stat = 0;
d_preamble_index = 0;
d_symbol_accumulator = 0;
d_symbol_accumulator_counter = 0;
d_frame_bit_index = 0;
d_preamble_time_seconds = 0;
d_flag_frame_sync = false;
d_GPS_frame_4bytes = 0;
d_prev_GPS_frame_4bytes = 0;
d_flag_parity = false;
d_TOW_at_Preamble = 0;
d_TOW_at_current_symbol = 0;
flag_TOW_set = false;
d_average_count = 0;
//set_history(d_samples_per_bit*8); // At least a history of 8 bits are needed to correlate with the preamble
}
gps_l2_m_telemetry_decoder_cc::~gps_l2_m_telemetry_decoder_cc()
{
delete d_preambles_symbols;
d_dump_file.close();
}
bool gps_l2_m_telemetry_decoder_cc::gps_word_parityCheck(unsigned int gpsword)
{
unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity;
/* XOR as many bits in parallel as possible. The magic constants pick
up bits which are to be XOR'ed together to implement the GPS parity
check algorithm described in IS-GPS-200E. This avoids lengthy shift-
and-xor loops. */
d1 = gpsword & 0xFBFFBF00;
d2 = _rotl(gpsword,1) & 0x07FFBF01;
d3 = _rotl(gpsword,2) & 0xFC0F8100;
d4 = _rotl(gpsword,3) & 0xF81FFE02;
d5 = _rotl(gpsword,4) & 0xFC00000E;
d6 = _rotl(gpsword,5) & 0x07F00001;
d7 = _rotl(gpsword,6) & 0x00003000;
t = d1 ^ d2 ^ d3 ^ d4 ^ d5 ^ d6 ^ d7;
// Now XOR the 5 6-bit fields together to produce the 6-bit final result.
parity = t ^ _rotl(t,6) ^ _rotl(t,12) ^ _rotl(t,18) ^ _rotl(t,24);
parity = parity & 0x3F;
if (parity == (gpsword & 0x3F)) return(true);
else return(false);
}
int gps_l2_m_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int corr_value = 0;
int preamble_diff = 0;
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
d_sample_counter++; //count for the processed samples
// ########### Output the tracking data to navigation and PVT ##########
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
// TODO Optimize me!
//******* preamble correlation ********
for (unsigned int i = 0; i < d_samples_per_bit*8; i++)
{
if (in[0][i].Prompt_I < 0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
else
{
corr_value += d_preambles_symbols[i];
}
}
d_flag_preamble = false;
//******* frame sync ******************
if (abs(corr_value) >= 160)
{
//TODO: Rewrite with state machine
if (d_stat == 0)
{
d_GPS_FSM.Event_gps_word_preamble();
d_preamble_index = d_sample_counter;//record the preamble sample stamp
LOG(INFO) << "Preamble detection for SAT " << this->d_satellite;
d_symbol_accumulator = 0; //sync the symbol to bits integrator
d_symbol_accumulator_counter = 0;
d_frame_bit_index = 8;
d_stat = 1; // enter into frame pre-detection status
}
else if (d_stat == 1) //check 6 seconds of preamble separation
{
preamble_diff = abs(d_sample_counter - d_preamble_index);
if (abs(preamble_diff - 6000) < 1)
{
d_GPS_FSM.Event_gps_word_preamble();
d_flag_preamble = true;
d_preamble_index = d_sample_counter; //record the preamble sample stamp (t_P)
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;// - d_preamble_duration_seconds; //record the PRN start sample index associated to the preamble
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
LOG(INFO) <<" Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
}
}
}
}
else
{
if (d_stat == 1)
{
preamble_diff = d_sample_counter - d_preamble_index;
if (preamble_diff > 6001)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff;
d_stat = 0; //lost of frame sync
d_flag_frame_sync = false;
flag_TOW_set = false;
}
}
}
//******* SYMBOL TO BIT *******
d_symbol_accumulator += in[0][d_samples_per_bit*8 - 1].Prompt_I; // accumulate the input value in d_symbol_accumulator
d_symbol_accumulator_counter++;
if (d_symbol_accumulator_counter == 20)
{
if (d_symbol_accumulator > 0)
{ //symbol to bit
d_GPS_frame_4bytes += 1; //insert the telemetry bit in LSB
}
d_symbol_accumulator = 0;
d_symbol_accumulator_counter = 0;
//******* bits to words ******
d_frame_bit_index++;
if (d_frame_bit_index == 30)
{
d_frame_bit_index = 0;
// parity check
// Each word in wordbuff is composed of:
// Bits 0 to 29 = the GPS data word
// Bits 30 to 31 = 2 LSBs of the GPS word ahead.
// prepare the extended frame [-2 -1 0 ... 30]
if (d_prev_GPS_frame_4bytes & 0x00000001)
{
d_GPS_frame_4bytes = d_GPS_frame_4bytes | 0x40000000;
}
if (d_prev_GPS_frame_4bytes & 0x00000002)
{
d_GPS_frame_4bytes = d_GPS_frame_4bytes | 0x80000000;
}
/* Check that the 2 most recently logged words pass parity. Have to first
invert the data bits according to bit 30 of the previous word. */
if(d_GPS_frame_4bytes & 0x40000000)
{
d_GPS_frame_4bytes ^= 0x3FFFFFC0; // invert the data bits (using XOR)
}
if (gps_l2_m_telemetry_decoder_cc::gps_word_parityCheck(d_GPS_frame_4bytes))
{
memcpy(&d_GPS_FSM.d_GPS_frame_4bytes, &d_GPS_frame_4bytes, sizeof(char)*4);
d_GPS_FSM.d_preamble_time_ms = d_preamble_time_seconds*1000.0;
d_GPS_FSM.Event_gps_word_valid();
d_flag_parity = true;
}
else
{
d_GPS_FSM.Event_gps_word_invalid();
d_flag_parity = false;
}
d_prev_GPS_frame_4bytes = d_GPS_frame_4bytes; // save the actual frame
d_GPS_frame_4bytes = d_GPS_frame_4bytes & 0;
}
else
{
d_GPS_frame_4bytes <<= 1; //shift 1 bit left the telemetry word
}
}
// output the frame
consume_each(1); //one by one
Gnss_Synchro current_synchro_data; //structure to save the synchronization information and send the output object to the next block
//1. Copy the current tracking output
current_synchro_data = in[0][0];
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_GPS_FSM.d_nav.d_TOW > 0)
//update TOW at the preamble instant (todo: check for valid d_TOW)
// JAVI: 30/06/2014
// TOW, in GPS, is referred to the START of the SUBFRAME, that is, THE FIRST SYMBOL OF THAT SUBFRAME, NOT THE PREAMBLE.
// thus, no correction should be done. d_TOW_at_Preamble should be renamed to d_TOW_at_subframe_start.
// Sice we detected the preable, then, we are in the last symbol of that preamble, or just at the start of the first subframe symbol.
{
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + GPS_SUBFRAME_SECONDS; //we decoded the current TOW when the last word of the subframe arrive, so, we have a lag of ONE SUBFRAME
d_TOW_at_current_symbol = d_TOW_at_Preamble;//GPS_L1_CA_CODE_PERIOD;// + (double)GPS_CA_PREAMBLE_LENGTH_BITS/(double)GPS_CA_TELEMETRY_RATE_BITS_SECOND;
Prn_timestamp_at_preamble_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
if (flag_TOW_set == false)
{
flag_TOW_set = true;
}
}
else
{
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GPS_L1_CA_CODE_PERIOD;
}
current_synchro_data.d_TOW = d_TOW_at_Preamble;
current_synchro_data.d_TOW_at_current_symbol = d_TOW_at_current_symbol;
current_synchro_data.d_TOW_hybrid_at_current_symbol = current_synchro_data.d_TOW_at_current_symbol; // to be used in the hybrid configuration
current_synchro_data.Flag_valid_word = (d_flag_frame_sync == true and d_flag_parity == true and flag_TOW_set == true);
current_synchro_data.Flag_preamble = d_flag_preamble;
current_synchro_data.Prn_timestamp_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
current_synchro_data.Prn_timestamp_at_preamble_ms = Prn_timestamp_at_preamble_ms;
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
tmp_double = d_TOW_at_current_symbol;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_synchro_data.Prn_timestamp_ms;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = d_TOW_at_Preamble;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
//todo: implement averaging
d_average_count++;
if (d_average_count == d_decimation_output_factor)
{
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
//std::cout<<"GPS L2 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1;
}
else
{
return 0;
}
}
void gps_l2_m_telemetry_decoder_cc::set_decimation(int decimation)
{
d_decimation_output_factor = decimation;
}
void gps_l2_m_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
d_GPS_FSM.i_satellite_PRN = d_satellite.get_PRN();
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void gps_l2_m_telemetry_decoder_cc::set_channel(int channel)
{
d_channel = channel;
d_GPS_FSM.i_channel_ID = channel;
DLOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel
<< " Log file: " << d_dump_filename.c_str();
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}

View File

@ -0,0 +1,152 @@
/*!
* \file gps_l2_m_telemetry_decoder_cc.h
* \brief Interface of a NAV message demodulator block based on
* Kay Borre book MATLAB-based GPS receiver
* \author Javier Arribas, 2015. jarribas(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L2_M_TELEMETRY_DECODER_CC_H
#define GNSS_SDR_GPS_L2_M_TELEMETRY_DECODER_CC_H
#include <fstream>
#include <string>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include "GPS_L1_CA.h"
#include "gps_l1_ca_subframe_fsm.h"
#include "concurrent_queue.h"
#include "gnss_satellite.h"
class gps_l2_m_telemetry_decoder_cc;
typedef boost::shared_ptr<gps_l2_m_telemetry_decoder_cc> gps_l2_m_telemetry_decoder_cc_sptr;
gps_l2_m_telemetry_decoder_cc_sptr
gps_l2_m_make_telemetry_decoder_cc(Gnss_Satellite satellite, long if_freq, long fs_in, unsigned
int vector_length, boost::shared_ptr<gr::msg_queue> queue, bool dump);
/*!
* \brief This class implements a block that decodes the NAV data defined in IS-GPS-200E
*
*/
class gps_l2_m_telemetry_decoder_cc : public gr::block
{
public:
~gps_l2_m_telemetry_decoder_cc();
void set_satellite(Gnss_Satellite satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
/*!
* \brief Set decimation factor to average the GPS synchronization estimation output from the tracking module.
*/
void set_decimation(int decimation);
/*!
* \brief Set the satellite data queue
*/
void set_ephemeris_queue(concurrent_queue<Gps_Ephemeris> *ephemeris_queue){d_GPS_FSM.d_ephemeris_queue = ephemeris_queue;} //!< Set the ephemeris data queue
void set_iono_queue(concurrent_queue<Gps_Iono> *iono_queue){d_GPS_FSM.d_iono_queue = iono_queue;} //!< Set the iono data queue
void set_almanac_queue(concurrent_queue<Gps_Almanac> *almanac_queue){d_GPS_FSM.d_almanac_queue = almanac_queue;} //!< Set the almanac data queue
void set_utc_model_queue(concurrent_queue<Gps_Utc_Model> *utc_model_queue){d_GPS_FSM.d_utc_model_queue = utc_model_queue;} //!< Set the UTC model data queue
/*!
* \brief This is where all signal processing takes place
*/
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
/*!
* \brief Function which tells the scheduler how many input items
* are required to produce noutput_items output items.
*/
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend gps_l2_m_telemetry_decoder_cc_sptr
gps_l2_m_make_telemetry_decoder_cc(Gnss_Satellite satellite, long if_freq, long fs_in,unsigned
int vector_length, boost::shared_ptr<gr::msg_queue> queue, bool dump);
gps_l2_m_telemetry_decoder_cc(Gnss_Satellite satellite, long if_freq, long fs_in, unsigned
int vector_length, boost::shared_ptr<gr::msg_queue> queue, bool dump);
bool gps_word_parityCheck(unsigned int gpsword);
// constants
unsigned short int d_preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS];
// class private vars
signed int *d_preambles_symbols;
unsigned int d_samples_per_bit;
long unsigned int d_sample_counter;
long unsigned int d_preamble_index;
unsigned int d_stat;
bool d_flag_frame_sync;
// symbols
double d_symbol_accumulator;
short int d_symbol_accumulator_counter;
//bits and frame
unsigned short int d_frame_bit_index;
unsigned int d_GPS_frame_4bytes;
unsigned int d_prev_GPS_frame_4bytes;
bool d_flag_parity;
bool d_flag_preamble;
int d_word_number;
// output averaging and decimation
int d_average_count;
int d_decimation_output_factor;
long d_fs_in;
//double d_preamble_duration_seconds;
// navigation message vars
Gps_Navigation_Message d_nav;
GpsL1CaSubframeFsm d_GPS_FSM;
boost::shared_ptr<gr::msg_queue> d_queue;
unsigned int d_vector_length;
bool d_dump;
Gnss_Satellite d_satellite;
int d_channel;
//std::deque<double> d_prn_start_sample_history;
double d_preamble_time_seconds;
double d_TOW_at_Preamble;
double d_TOW_at_current_symbol;
double Prn_timestamp_at_preamble_ms;
bool flag_TOW_set;
std::string d_dump_filename;
std::ofstream d_dump_file;
};
#endif

View File

@ -0,0 +1,154 @@
/*!
* \file gps_l2_m_dll_pll_tracking.cc
* \brief Implementation of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l2_m_dll_pll_tracking.h"
#include <glog/logging.h>
#include "GPS_L2C.h"
#include "configuration_interface.h"
using google::LogMessage;
GpsL2MDllPllTracking::GpsL2MDllPllTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue)
{
LOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
item_type = configuration->property(role + ".item_type", default_item_type);
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
vector_length = std::round(fs_in / (GPS_L2_M_CODE_RATE_HZ / GPS_L2_M_CODE_LENGTH_CHIPS));
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l2_m_dll_pll_make_tracking_cc(
f_if,
fs_in,
vector_length,
queue_,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
early_late_space_chips);
}
else
{
LOG(WARNING) << item_type << " unknown tracking item type.";
}
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GpsL2MDllPllTracking::~GpsL2MDllPllTracking()
{}
void GpsL2MDllPllTracking::start_tracking()
{
tracking_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GpsL2MDllPllTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
/*
* Set tracking channel internal queue
*/
void GpsL2MDllPllTracking::set_channel_queue(
concurrent_queue<int> *channel_internal_queue)
{
channel_internal_queue_ = channel_internal_queue;
tracking_->set_channel_queue(channel_internal_queue_);
}
void GpsL2MDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GpsL2MDllPllTracking::connect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GpsL2MDllPllTracking::disconnect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GpsL2MDllPllTracking::get_left_block()
{
return tracking_;
}
gr::basic_block_sptr GpsL2MDllPllTracking::get_right_block()
{
return tracking_;
}

View File

@ -0,0 +1,114 @@
/*!
* \file gps_l2_m_dll_pll_tracking.h
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_gps_l2_m_dll_pll_tracking_H_
#define GNSS_SDR_gps_l2_m_dll_pll_tracking_H_
#include <string>
#include <gnuradio/msg_queue.h>
#include "tracking_interface.h"
#include "gps_l2_m_dll_pll_tracking_cc.h"
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GpsL2MDllPllTracking : public TrackingInterface
{
public:
GpsL2MDllPllTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue);
virtual ~GpsL2MDllPllTracking();
std::string role()
{
return role_;
}
//! Returns "gps_l2_m_dll_pll_tracking"
std::string implementation()
{
return "gps_l2_m_dll_pll_tracking";
}
size_t item_size()
{
return item_size_;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
/*!
* \brief Set tracking channel internal queue
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
void start_tracking();
private:
gps_l2_m_dll_pll_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
boost::shared_ptr<gr::msg_queue> queue_;
concurrent_queue<int> *channel_internal_queue_;
};
#endif // GNSS_SDR_gps_l2_m_dll_pll_tracking_H_

View File

@ -509,8 +509,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
LOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
std::cout << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
@ -519,8 +519,8 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
LOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
std::cout<< "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]"<< std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
}
}

View File

@ -0,0 +1,657 @@
/*!
* \file gps_l2_m_dll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l2_m_dll_pll_tracking_cc.h"
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "gps_l2c_signal.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GPS_L2C.h"
#include "control_message_factory.h"
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85
using google::LogMessage;
gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l2_m_dll_pll_tracking_cc_sptr(new gps_l2_m_dll_pll_tracking_cc(if_freq,
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void gps_l2_m_dll_pll_tracking_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) :
gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
// DLL/PLL filter initialization
d_carrier_loop_filter=Tracking_2nd_PLL_filter(GPS_L2_M_PERIOD);
d_code_loop_filter=Tracking_2nd_DLL_filter(GPS_L2_M_PERIOD);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L2_M_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
// Get space for the resampled early / prompt / late local replicas
d_early_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_prompt_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
d_late_code = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
// space for carrier wipeoff and signal baseband vectors
d_carr_sign = static_cast<gr_complex*>(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment()));
// correlator outputs (scalar)
d_Early = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Prompt = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
d_Late = static_cast<gr_complex*>(volk_malloc(sizeof(gr_complex), volk_get_alignment()));
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
d_last_seg = 0;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
set_relative_rate(1.0/((double)d_vector_length*2));
//set_min_output_buffer((long int)300);
LOG(INFO)<<"d_vector_length"<<d_vector_length<<std::endl;
}
void gps_l2_m_dll_pll_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l2c_m_code_gen_complex(&d_ca_code[1], d_acquisition_gnss_synchro->PRN);
d_ca_code[0] = d_ca_code[static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS)];
d_ca_code[static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) + 1] = d_ca_code[1];
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0;
d_acc_carrier_phase_rad = 0;
d_acc_code_phase_secs = 0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0,1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
void gps_l2_m_dll_pll_tracking_cc::update_local_code()
{
double tcode_chips;
double rem_code_phase_chips;
int associated_chip_index;
int code_length_chips = static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS);
double code_phase_step_chips;
int early_late_spc_samples;
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
tcode_chips = -rem_code_phase_chips;
// Alternative EPL code generation (40% of speed improvement!)
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples * 2;
for (int i = 0; i < epl_loop_length_samples; i++)
{
associated_chip_index = 1 + round(fmod(tcode_chips - d_early_late_spc_chips, code_length_chips));
d_early_code[i] = d_ca_code[associated_chip_index];
tcode_chips = tcode_chips + code_phase_step_chips;
}
memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_late_code, &d_early_code[early_late_spc_samples * 2], d_current_prn_length_samples * sizeof(gr_complex));
}
void gps_l2_m_dll_pll_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_rad = d_rem_carr_phase_rad;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase_rad), -sin(phase_rad));
phase_rad += phase_step_rad;
}
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
}
gps_l2_m_dll_pll_tracking_cc::~gps_l2_m_dll_pll_tracking_cc()
{
d_dump_file.close();
volk_free(d_prompt_code);
volk_free(d_late_code);
volk_free(d_early_code);
volk_free(d_carr_sign);
volk_free(d_Early);
volk_free(d_Prompt);
volk_free(d_Late);
volk_free(d_ca_code);
delete[] d_Prompt_buffer;
}
int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
if (d_enable_tracking == true)
{
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
//std::cout<<" samples_offset="<<samples_offset<<"\r\n";
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
*out[0] = current_synchro_data;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
}
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Generate local code and carrier replicas (using \hat{f}_d(k-1))
update_local_code();
update_local_carrier();
// perform carrier wipe-off and compute Early, Prompt and Late correlation
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
in,
d_carr_sign,
d_early_code,
d_prompt_code,
d_late_code,
d_Early,
d_Prompt,
d_Late);
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
{
const int samples_available = ninput_items[0];
d_sample_counter = d_sample_counter + samples_available;
LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter;
consume_each(samples_available);
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_timestamp_secs = static_cast<double>(d_sample_counter) / static_cast<double>(d_fs_in);
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.Code_phase_secs = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_tracking = false;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
return 1;
}
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
if (d_queue != gr::msg_queue::sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
// Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!)
//compute remnant code phase samples BEFORE the Tracking timestamp
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "GPS L2C M Tracking CH " << d_channel << ": Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]"<< std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "GPS L2C M Tracking CH " << d_channel << ": Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]"<<std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
}
}
}
else
{
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
}
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
}
if(d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_float;
double tmp_double;
prompt_I = (*d_Prompt).real();
prompt_Q = (*d_Prompt).imag();
tmp_E = std::abs<float>(*d_Early);
tmp_P = std::abs<float>(*d_Prompt);
tmp_L = std::abs<float>(*d_Late);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
//LOG(INFO)<<"GPS L2 tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void gps_l2_m_dll_pll_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (std::ifstream::failure e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
}
}
}
}
void gps_l2_m_dll_pll_tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
{
d_channel_internal_queue = channel_internal_queue;
}
void gps_l2_m_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@ -0,0 +1,187 @@
/*!
* \file gps_l2_m_dll_pll_tracking_cc.h
* \brief Interface of a code DLL + carrier PLL tracking block
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
#define GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
#include <fstream>
#include <queue>
#include <map>
#include <string>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include "concurrent_queue.h"
#include "gps_sdr_signal_processing.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "correlator.h"
class gps_l2_m_dll_pll_tracking_cc;
typedef boost::shared_ptr<gps_l2_m_dll_pll_tracking_cc>
gps_l2_m_dll_pll_tracking_cc_sptr;
gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class gps_l2_m_dll_pll_tracking_cc: public gr::block
{
public:
~gps_l2_m_dll_pll_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
gps_l2_m_dll_pll_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
void update_local_code();
void update_local_carrier();
// tracking configuration vars
boost::shared_ptr<gr::msg_queue> d_queue;
concurrent_queue<int> *d_channel_internal_queue;
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
int d_last_seg;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
gr_complex* d_ca_code;
gr_complex* d_early_code;
gr_complex* d_late_code;
gr_complex* d_prompt_code;
gr_complex* d_carr_sign;
gr_complex *d_Early;
gr_complex *d_Prompt;
gr_complex *d_Late;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
//PRN period in samples
int d_current_prn_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
};
#endif //GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H

View File

@ -84,6 +84,7 @@
#include "galileo_e5a_dll_pll_tracking.h"
#include "gps_l2_m_dll_pll_tracking.h"
#include "gps_l1_ca_telemetry_decoder.h"
#include "gps_l2_m_telemetry_decoder.h"
#include "galileo_e1b_telemetry_decoder.h"
#include "galileo_e5a_telemetry_decoder.h"
#include "sbas_l1_telemetry_decoder.h"
@ -256,16 +257,15 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_GPS(
std::string acq, std::string trk, std::string tlm, int channel,
boost::shared_ptr<gr::msg_queue> queue)
{
std::stringstream stream;
stream << channel;
std::string id = stream.str();
LOG(INFO) << "Instantiating Channel " << id << " with Acquisition Implementation: "
LOG(INFO) << "Instantiating Channel " << channel << " with Acquisition Implementation: "
<< acq << ", Tracking Implementation: " << trk << ", Telemetry Decoder implementation: " << tlm;
std::unique_ptr<GNSSBlockInterface> pass_through_ = GetBlock(configuration, "Channel", "Pass_Through", 1, 1, queue);
std::unique_ptr<AcquisitionInterface> acq_ = GetAcqBlock(configuration, "Acquisition_GPS", acq, 1, 1, queue);
std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_GPS", trk, 1, 1, queue);
std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_GPS", tlm, 1, 1, queue);
std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_GPS" +boost::lexical_cast<std::string>(channel), trk, 1, 1, queue);
std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_GPS"+boost::lexical_cast<std::string>(channel) , tlm, 1, 1, queue);
std::unique_ptr<GNSSBlockInterface> channel_(new Channel(configuration.get(), channel, pass_through_.release(),
acq_.release(),
@ -345,6 +345,14 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
tracking_implementation = tracking_implementation_specific;
}
std::string telemetry_decoder_implementation_specific = configuration->property(
"TelemetryDecoder_GPS" + boost::lexical_cast<std::string>(i) + ".implementation",
default_implementation);
if(telemetry_decoder_implementation_specific.compare(default_implementation) != 0)
{
telemetry_decoder = telemetry_decoder_implementation_specific;
}
channels->push_back(std::move(GetChannel_GPS(configuration,
acquisition_implementation, tracking_implementation, telemetry_decoder, channel_absolute_id, queue)));
channel_absolute_id++;
@ -988,6 +996,7 @@ std::unique_ptr<TelemetryDecoderInterface> GNSSBlockFactory::GetTlmBlock(
{
std::unique_ptr<TelemetryDecoderInterface> block;
std::cout<<"implementation tlm="<<implementation<<std::endl;
// TELEMETRY DECODERS ----------------------------------------------------------
if (implementation.compare("GPS_L1_CA_Telemetry_Decoder") == 0)
{
@ -1013,6 +1022,12 @@ std::unique_ptr<TelemetryDecoderInterface> GNSSBlockFactory::GetTlmBlock(
out_streams, queue));
block = std::move(block_);
}
else if (implementation.compare("GPS_L2_M_Telemetry_Decoder") == 0)
{
std::unique_ptr<TelemetryDecoderInterface> block_(new GpsL2MTelemetryDecoder(configuration.get(), role, in_streams,
out_streams, queue));
block = std::move(block_);
}
else
{
// Log fatal. This causes execution to stop.

1
src/tests/data/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/gps_l2c_m_prn7_5msps.dat

View File

@ -0,0 +1,167 @@
/*!
* \file gps_l2_m_dll_pll_tracking_test.cc
* \brief This class implements a tracking test for Galileo_E5a_DLL_PLL_Tracking
* implementation based on some input parameters.
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <ctime>
#include <iostream>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/blocks/skiphead.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "tracking_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gps_l2_m_dll_pll_tracking.h"
class GpsL2MDllPllTrackingTest: public ::testing::Test
{
protected:
GpsL2MDllPllTrackingTest()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
stop = false;
message = 0;
}
~GpsL2MDllPllTrackingTest()
{}
void init();
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
concurrent_queue<int> channel_internal_queue;
bool stop;
int message;
};
void GpsL2MDllPllTrackingTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "2S";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 15;
config->set_property("GNSS-SDR.internal_fs_hz", "4000000");
config->set_property("Tracking_GPS.item_type", "gr_complex");
config->set_property("Tracking_GPS.dump", "true");
config->set_property("Tracking_GPS.dump_filename", "../data/L2m_tracking_ch_");
config->set_property("Tracking_GPS.implementation", "GPS_L2_M_DLL_PLL_Tracking");
config->set_property("Tracking_GPS.early_late_space_chips", "0.5");
config->set_property("Tracking_GPS.order", "2");
config->set_property("Tracking_GPS.pll_bw_hz", "2");
config->set_property("Tracking_GPS.dll_bw_hz", "0.5");
}
TEST_F(GpsL2MDllPllTrackingTest, ValidationOfResults)
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
int fs_in = 4000000;
int nsamples = fs_in*30;
init();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<TrackingInterface> tracking = std::make_shared<GpsL2MDllPllTracking>(config.get(), "Tracking_GPS", 1, 1, queue);
//REAL
gnss_synchro.Acq_delay_samples = 2004;
gnss_synchro.Acq_doppler_hz = 2980;//1200;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
tracking->set_channel_queue(&channel_internal_queue);
}) << "Failure setting channel_internal_queue." << std::endl;
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
ASSERT_NO_THROW( {
//gr::analog::sig_source_c::sptr source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
std::string path = std::string(TEST_PATH);
//std::string file = path + "signal_samples/GSoC_CTTC_capture_2012_07_26_4Msps_4ms.dat";
std::string file = "/datalogger/signals/Fraunhofer/L125_III1b_210s_L2_resampled.bin";
//std::string file = "/home/gnss/git/gnss-sdr/src/tests/data/gps_l2c_m_prn7_5msps.dat";
const char * file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, valve, 0);
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
}) << "Failure connecting the blocks of tracking test." << std::endl;
tracking->start_tracking();
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec *1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
std::cout << "Tracked " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
}

View File

@ -0,0 +1,275 @@
/*!
* \file gps_l1_ca_pcps_acquisition_test.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsAcquisition class based on some input parameters.
* \author Javier Arribas, 2015 (jarribas@cttc.es)
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <ctime>
#include <cstdlib>
#include <iostream>
#include <boost/chrono.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/blocks/interleaved_short_to_complex.h>
#include <gnuradio/blocks/char_to_short.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gps_l2_m_pcps_acquisition.h"
#include "GPS_L2C.h"
class GpsL2MPcpsAcquisitionTest: public ::testing::Test
{
protected:
GpsL2MPcpsAcquisitionTest()
{
//queue = gr::msg_queue::make(0);
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
stop = false;
message = 0;
sampling_freqeuncy_hz = 0;
nsamples=0;
}
~GpsL2MPcpsAcquisitionTest()
{}
void init();
void start_queue();
void wait_message();
void stop_queue();
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
concurrent_queue<int> channel_internal_queue;
bool stop;
int message;
boost::thread ch_thread;
int sampling_freqeuncy_hz;
int nsamples;
};
void GpsL2MPcpsAcquisitionTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "2S";
strcpy(gnss_synchro.Signal,signal.c_str());
gnss_synchro.PRN = 15;
sampling_freqeuncy_hz = 4000000;
nsamples=round((double)sampling_freqeuncy_hz*GPS_L2_M_PERIOD)*2;
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(sampling_freqeuncy_hz));
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.dump", "true");
config->set_property("Acquisition.implementation", "GPS_L2_M_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "10");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition.pfa", "0.0");
}
void GpsL2MPcpsAcquisitionTest::start_queue()
{
ch_thread = boost::thread(&GpsL2MPcpsAcquisitionTest::wait_message, this);
}
void GpsL2MPcpsAcquisitionTest::wait_message()
{
while (!stop)
{
channel_internal_queue.wait_and_pop(message);
stop_queue();
}
}
void GpsL2MPcpsAcquisitionTest::stop_queue()
{
stop = true;
}
TEST_F(GpsL2MPcpsAcquisitionTest, Instantiate)
{
init();
queue = gr::msg_queue::make(0);
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1, queue);
}
TEST_F(GpsL2MPcpsAcquisitionTest, ConnectAndRun)
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
init();
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1, queue);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(sampling_freqeuncy_hz, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
std::cout << "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
}
TEST_F(GpsL2MPcpsAcquisitionTest, ValidationOfResults)
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
double expected_delay_samples = 2004;
double expected_doppler_hz = 3000;
init();
start_queue();
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1, queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_channel_queue(&channel_internal_queue);
}) << "Failure setting channel_internal_queue." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(0.001);
}) << "Failure setting threshold." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(5000);
}) << "Failure setting doppler_max." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(10);
}) << "Failure setting doppler_step." << std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
//std::string file = path + "signal_samples/GSoC_CTTC_capture_2012_07_26_4Msps_4ms.dat";
//std::string file = "/home/gnss/git/gnss-sdr/src/tests/data/gps_l2c_m_prn7_5msps.dat";
std::string file = "/datalogger/signals/Fraunhofer/L125_III1b_210s_L2_resampled.bin";
const char * file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
//gr::blocks::interleaved_short_to_complex::sptr gr_interleaved_short_to_complex_ = gr::blocks::interleaved_short_to_complex::make();
//gr::blocks::char_to_short::sptr gr_char_to_short_ = gr::blocks::char_to_short::make();
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
//top_block->connect(file_source, 0, gr_char_to_short_, 0);
//top_block->connect(gr_char_to_short_, 0, gr_interleaved_short_to_complex_ , 0);
top_block->connect(file_source, 0, valve , 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->init();
}) << "Failure set_state and init acquisition test" << std::endl;
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
stop_queue();
unsigned long int Acq_samplestamp_samples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquisition process runtime duration: " << (end - begin) << " microseconds" << std::endl;
std::cout << "gnss_synchro.Acq_doppler_hz = " << gnss_synchro.Acq_doppler_hz << " Hz" << std::endl;
std::cout << "gnss_synchro.Acq_delay_samples = " << gnss_synchro.Acq_delay_samples << " Samples" << std::endl;
ASSERT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = (float)(delay_error_samples * 1023 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 200) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
ch_thread.join();
}