1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 13:10:35 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-08-09 22:19:10 +02:00
commit 4b21954be3
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
3 changed files with 465 additions and 407 deletions

View File

@ -71,9 +71,9 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
volk_gnsssdr_free(result_aux); volk_gnsssdr_free(result_aux);
} }
#endif /* LV_HAVE_GENERIC */ #endif /* LV_HAVE_GENERIC */
#ifdef LV_HAVE_SSE3 #ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points) static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
{ {
@ -104,6 +104,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* res
#endif #endif
#ifdef LV_HAVE_SSE3 #ifdef LV_HAVE_SSE3
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points) static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
{ {
@ -133,122 +134,128 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* res
} }
#endif #endif
//
//
//#ifdef LV_HAVE_SSE4_1 #ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points) static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{ {
// int code_length_chips = 2046; int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3; int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234; float rem_code_phase_chips = -0.8234;
// unsigned int n; float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++) float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// { for (n = 0; n < num_out_vectors; n++)
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); {
// } result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// for (n = 0; n < num_out_vectors; n++)
// { for (n = 0; n < num_out_vectors; n++)
// volk_gnsssdr_free(result_aux[n]); {
// } volk_gnsssdr_free(result_aux[n]);
// volk_gnsssdr_free(result_aux); }
//} volk_gnsssdr_free(result_aux);
// }
//#endif
// #endif
//#ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{ #ifdef LV_HAVE_SSE4_1
// int code_length_chips = 2046; static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); {
// int num_out_vectors = 3; int code_length_chips = 2046;
// float rem_code_phase_chips = -0.234; float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// unsigned int n; int num_out_vectors = 3;
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; float rem_code_phase_chips = -0.8234;
// float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment()); unsigned int n;
// for (n = 0; n < num_out_vectors; n++) float shifts_chips[3] = {-0.1, 0.0, 0.1};
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// } for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// for (n = 0; n < num_out_vectors; n++)
// { memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// volk_gnsssdr_free(result_aux[n]);
// } for (n = 0; n < num_out_vectors; n++)
// volk_gnsssdr_free(result_aux); {
//} volk_gnsssdr_free(result_aux[n]);
// }
//#endif volk_gnsssdr_free(result_aux);
// }
//#ifdef LV_HAVE_AVX
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points) #endif
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); #ifdef LV_HAVE_AVX
// int num_out_vectors = 3; static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points)
// float rem_code_phase_chips = -0.234; {
// unsigned int n; int code_length_chips = 2046;
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment()); float rem_code_phase_chips = -0.8234;
// for (n = 0; n < num_out_vectors; n++) float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// { unsigned int n;
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); float shifts_chips[3] = {-0.1, 0.0, 0.1};
// }
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); for (n = 0; n < num_out_vectors; n++)
// {
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points); result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// for (n = 0; n < num_out_vectors; n++)
// { volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// volk_gnsssdr_free(result_aux[n]);
// } memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// volk_gnsssdr_free(result_aux);
//} for (n = 0; n < num_out_vectors; n++)
//#endif {
// volk_gnsssdr_free(result_aux[n]);
// }
//#ifdef LV_HAVE_AVX volk_gnsssdr_free(result_aux);
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_avx(float* result, const float* local_code, unsigned int num_points) }
//{ #endif
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3; #ifdef LV_HAVE_AVX
// float rem_code_phase_chips = -0.234; static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_avx(float* result, const float* local_code, unsigned int num_points)
// unsigned int n; {
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment()); int num_out_vectors = 3;
// for (n = 0; n < num_out_vectors; n++) float rem_code_phase_chips = -0.8234;
// { float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); unsigned int n;
// } float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points); {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++) }
// {
// volk_gnsssdr_free(result_aux[n]); volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// }
// volk_gnsssdr_free(result_aux); memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//}
//#endif for (n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif
// //
//#ifdef LV_HAVE_NEONV7 //#ifdef LV_HAVE_NEONV7
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_neon(float* result, const float* local_code, unsigned int num_points) //static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_neon(float* result, const float* local_code, unsigned int num_points)

View File

@ -276,296 +276,346 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** resu
} }
#endif #endif
//
//
//#ifdef LV_HAVE_SSE4_1 #ifdef LV_HAVE_SSE4_1
//#include <smmintrin.h> #include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{ {
// float** _result = result; float** _result = result;
// const unsigned int quarterPoints = num_points / 4; const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap; // int current_correlator_tap;
// unsigned int n; unsigned int n;
// unsigned int k; unsigned int k;
// const __m128 fours = _mm_set1_ps(4.0f); unsigned int current_correlator_tap;
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// __VOLK_ATTR_ALIGNED(16) const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// int local_code_chip_index[4]; const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// int local_code_chip_index_;
// __VOLK_ATTR_ALIGNED(16)
// const __m128i zeros = _mm_setzero_si128(); int local_code_chip_index[4];
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); int local_code_chip_index_;
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); const __m128i zeros = _mm_setzero_si128();
// __m128i local_code_chip_index_reg, aux_i, negatives, i; const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, c, cTrunc, base;
// { __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// for (n = 0; n < quarterPoints; n++)
// { for (n = 0; n < quarterPoints; n++)
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); {
// aux = _mm_add_ps(aux, aux2); aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// // floor indexnn = _mm_mul_ps(indexn, indexn);
// aux = _mm_floor_ps(aux); aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// aux = _mm_add_ps(aux, aux3);
// // fmod aux = _mm_add_ps(aux, aux2);
// c = _mm_div_ps(aux, code_length_chips_reg_f); // floor
// i = _mm_cvttps_epi32(c); aux = _mm_floor_ps(aux);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); // Correct negative shift
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); c = _mm_div_ps(aux, code_length_chips_reg_f);
// aux3 = _mm_add_ps(c, ones);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); i = _mm_cvttps_epi32(aux3);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); cTrunc = _mm_cvtepi32_ps(i);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// for (k = 0; k < 4; ++k) negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// { aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// }
// indexn = _mm_add_ps(indexn, fours); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// }
// for (n = quarterPoints * 4; n < num_points; n++) for (k = 0; k < 4; ++k)
// { {
// // resample code for current tap _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); }
// //Take into account that in multitap correlators, the shifts can be negative! indexn = _mm_add_ps(indexn, fours);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); }
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; for (n = quarterPoints * 4; n < num_points; n++)
// } {
// } // resample code for first tap
//} local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// // Take into account that in multitap correlators, the shifts can be negative!
//#endif if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[0][n] = local_code[local_code_chip_index_];
//#ifdef LV_HAVE_SSE4_1 }
//#include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) // adjacent correlators
//{ unsigned int shift_samples = 0;
// float** _result = result; for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// const unsigned int quarterPoints = num_points / 4; {
shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
}
}
#endif
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
float** _result = result;
const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap; // int current_correlator_tap;
// unsigned int n; unsigned int n;
// unsigned int k; unsigned int k;
// const __m128 fours = _mm_set1_ps(4.0f); unsigned int current_correlator_tap;
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// __VOLK_ATTR_ALIGNED(16) const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// int local_code_chip_index[4]; const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// int local_code_chip_index_;
// __VOLK_ATTR_ALIGNED(16)
// const __m128i zeros = _mm_setzero_si128(); int local_code_chip_index[4];
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); int local_code_chip_index_;
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); const __m128i zeros = _mm_setzero_si128();
// __m128i local_code_chip_index_reg, aux_i, negatives, i; const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, c, cTrunc, base;
// { __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// for (n = 0; n < quarterPoints; n++)
// { for (n = 0; n < quarterPoints; n++)
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); {
// aux = _mm_add_ps(aux, aux2); aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// // floor indexnn = _mm_mul_ps(indexn, indexn);
// aux = _mm_floor_ps(aux); aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// aux = _mm_add_ps(aux, aux3);
// // fmod aux = _mm_add_ps(aux, aux2);
// c = _mm_div_ps(aux, code_length_chips_reg_f); // floor
// i = _mm_cvttps_epi32(c); aux = _mm_floor_ps(aux);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); // Correct negative shift
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); c = _mm_div_ps(aux, code_length_chips_reg_f);
// aux3 = _mm_add_ps(c, ones);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); i = _mm_cvttps_epi32(aux3);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); cTrunc = _mm_cvtepi32_ps(i);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// for (k = 0; k < 4; ++k) negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// { aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// }
// indexn = _mm_add_ps(indexn, fours); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// }
// for (n = quarterPoints * 4; n < num_points; n++) for (k = 0; k < 4; ++k)
// { {
// // resample code for current tap _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); }
// //Take into account that in multitap correlators, the shifts can be negative! indexn = _mm_add_ps(indexn, fours);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); }
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; for (n = quarterPoints * 4; n < num_points; n++)
// } {
// } // resample code for first tap
//} local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// // Take into account that in multitap correlators, the shifts can be negative!
//#endif if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[0][n] = local_code[local_code_chip_index_];
//#ifdef LV_HAVE_AVX }
//#include <immintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) // adjacent correlators
//{ unsigned int shift_samples = 0;
// float** _result = result; for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// const unsigned int avx_iters = num_points / 8; {
// int current_correlator_tap; shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
// unsigned int n; memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
// unsigned int k; memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
// const __m256 eights = _mm256_set1_ps(8.0f); }
// const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips); }
// const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
// #endif
// __VOLK_ATTR_ALIGNED(32)
// int local_code_chip_index[8];
// int local_code_chip_index_; #ifdef LV_HAVE_AVX
// #include <immintrin.h>
// const __m256 zeros = _mm256_setzero_ps(); static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
// const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips); {
// const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f); float** _result = result;
// const unsigned int avx_iters = num_points / 8;
// __m256i local_code_chip_index_reg, i; int current_correlator_tap;
// __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn; unsigned int n;
// unsigned int k;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) const __m256 eights = _mm256_set1_ps(8.0f);
// { const __m256 ones = _mm256_set1_ps(1.0f);
// shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]); const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
// aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
// indexn = n0; const __m256 code_phase_rate_step_chips_reg = _mm256_set1_ps(code_phase_rate_step_chips);
// for (n = 0; n < avx_iters; n++)
// { __VOLK_ATTR_ALIGNED(32)
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0); int local_code_chip_index[8];
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3); int local_code_chip_index_;
// aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm256_add_ps(aux, aux2); const __m256 zeros = _mm256_setzero_ps();
// // floor const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
// aux = _mm256_floor_ps(aux); const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
//
// // fmod __m256i local_code_chip_index_reg, i;
// c = _mm256_div_ps(aux, code_length_chips_reg_f); __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn, indexnn;
// i = _mm256_cvttps_epi32(c);
// cTrunc = _mm256_cvtepi32_ps(i); shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[0]);
// base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); indexn = n0;
// for (n = 0; n < avx_iters; n++)
// // no negatives {
// c = _mm256_cvtepi32_ps(local_code_chip_index_reg); __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[0][8 * n + 7], 1, 0);
// negatives = _mm256_cmp_ps(c, zeros, 0x01); __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3);
// aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm256_add_ps(c, aux3); indexnn = _mm256_mul_ps(indexn, indexn);
// local_code_chip_index_reg = _mm256_cvttps_epi32(aux); aux3 = _mm256_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// aux = _mm256_add_ps(aux, aux3);
// _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); aux = _mm256_add_ps(aux, aux2);
// for (k = 0; k < 8; ++k) // floor
// { aux = _mm256_floor_ps(aux);
// _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
// } // Correct negative shift
// indexn = _mm256_add_ps(indexn, eights); c = _mm256_div_ps(aux, code_length_chips_reg_f);
// } aux3 = _mm256_add_ps(c, ones);
// } i = _mm256_cvttps_epi32(aux3);
// _mm256_zeroupper(); cTrunc = _mm256_cvtepi32_ps(i);
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
// { local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base));
// for (n = avx_iters * 8; n < num_points; n++)
// { c = _mm256_cvtepi32_ps(local_code_chip_index_reg);
// // resample code for current tap negatives = _mm256_cmp_ps(c, zeros, 0x01);
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives);
// //Take into account that in multitap correlators, the shifts can be negative! aux = _mm256_add_ps(c, aux3);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); local_code_chip_index_reg = _mm256_cvttps_epi32(aux);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
// } for (k = 0; k < 8; ++k)
// } {
//} _result[0][n * 8 + k] = local_code[local_code_chip_index[k]];
// }
//#endif indexn = _mm256_add_ps(indexn, eights);
// }
//
//#ifdef LV_HAVE_AVX _mm256_zeroupper();
//#include <immintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) for (n = avx_iters * 8; n < num_points; n++)
//{ {
// float** _result = result; // resample code for first tap
// const unsigned int avx_iters = num_points / 8; local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// int current_correlator_tap; // Take into account that in multitap correlators, the shifts can be negative!
// unsigned int n; if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// unsigned int k; local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// const __m256 eights = _mm256_set1_ps(8.0f); _result[0][n] = local_code[local_code_chip_index_];
// const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips); }
// const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
// // adjacent correlators
// __VOLK_ATTR_ALIGNED(32) unsigned int shift_samples = 0;
// int local_code_chip_index[8]; for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// int local_code_chip_index_; {
// shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
// const __m256 zeros = _mm256_setzero_ps(); memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
// const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips); memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
// const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f); }
// }
// __m256i local_code_chip_index_reg, i;
// __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn; #endif
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// { #ifdef LV_HAVE_AVX
// shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]); #include <immintrin.h>
// aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
// indexn = n0; {
// for (n = 0; n < avx_iters; n++) float** _result = result;
// { const unsigned int avx_iters = num_points / 8;
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0); int current_correlator_tap;
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3); unsigned int n;
// aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); unsigned int k;
// aux = _mm256_add_ps(aux, aux2); const __m256 eights = _mm256_set1_ps(8.0f);
// // floor const __m256 ones = _mm256_set1_ps(1.0f);
// aux = _mm256_floor_ps(aux); const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
// const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
// // fmod const __m256 code_phase_rate_step_chips_reg = _mm256_set1_ps(code_phase_rate_step_chips);
// c = _mm256_div_ps(aux, code_length_chips_reg_f);
// i = _mm256_cvttps_epi32(c); __VOLK_ATTR_ALIGNED(32)
// cTrunc = _mm256_cvtepi32_ps(i); int local_code_chip_index[8];
// base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); int local_code_chip_index_;
// local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base));
// const __m256 zeros = _mm256_setzero_ps();
// // no negatives const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
// c = _mm256_cvtepi32_ps(local_code_chip_index_reg); const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
// negatives = _mm256_cmp_ps(c, zeros, 0x01);
// aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); __m256i local_code_chip_index_reg, i;
// aux = _mm256_add_ps(c, aux3); __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn, indexnn;
// local_code_chip_index_reg = _mm256_cvttps_epi32(aux);
// shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[0]);
// _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// for (k = 0; k < 8; ++k) indexn = n0;
// { for (n = 0; n < avx_iters; n++)
// _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]]; {
// } __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[0][8 * n + 7], 1, 0);
// indexn = _mm256_add_ps(indexn, eights); __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3);
// } aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
// } indexnn = _mm256_mul_ps(indexn, indexn);
// _mm256_zeroupper(); aux3 = _mm256_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) aux = _mm256_add_ps(aux, aux3);
// { aux = _mm256_add_ps(aux, aux2);
// for (n = avx_iters * 8; n < num_points; n++) // floor
// { aux = _mm256_floor_ps(aux);
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); // Correct negative shift
// //Take into account that in multitap correlators, the shifts can be negative! c = _mm256_div_ps(aux, code_length_chips_reg_f);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); aux3 = _mm256_add_ps(c, ones);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips; i = _mm256_cvttps_epi32(aux3);
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; cTrunc = _mm256_cvtepi32_ps(i);
// } base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
// } local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base));
//}
// c = _mm256_cvtepi32_ps(local_code_chip_index_reg);
//#endif negatives = _mm256_cmp_ps(c, zeros, 0x01);
aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives);
aux = _mm256_add_ps(c, aux3);
local_code_chip_index_reg = _mm256_cvttps_epi32(aux);
_mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
for (k = 0; k < 8; ++k)
{
_result[0][n * 8 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm256_add_ps(indexn, eights);
}
_mm256_zeroupper();
for (n = avx_iters * 8; n < num_points; n++)
{
// resample code for first tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
_result[0][n] = local_code[local_code_chip_index_];
}
// adjacent correlators
unsigned int shift_samples = 0;
for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
}
}
#endif
// //
// //
//#ifdef LV_HAVE_NEONV7 //#ifdef LV_HAVE_NEONV7

View File

@ -184,6 +184,7 @@ acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
d_doppler_step = doppler_step_; d_doppler_step = doppler_step_;
d_samples_per_code = samples_per_code_; d_samples_per_code = samples_per_code_;
d_num_doppler_bins = 0; d_num_doppler_bins = 0;
num_dwells = 0;
acquisition_dump_reader(basename, acquisition_dump_reader(basename,
sat_, sat_,