1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Fix building and warnings

This commit is contained in:
Carles Fernandez 2018-08-08 09:29:34 +02:00
parent 856eaf1881
commit 4854cafe5d
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D

View File

@ -32,12 +32,12 @@
#include "hybrid_observables_cc.h" #include "hybrid_observables_cc.h"
#include "display.h" #include "display.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include <armadillo>
#include <glog/logging.h> #include <glog/logging.h>
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include <matio.h> #include <matio.h>
#include <algorithm> #include <algorithm>
#include <cmath> #include <cmath>
#include <cstdlib>
#include <iostream> #include <iostream>
#include <limits> #include <limits>
@ -59,15 +59,11 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro))) gr::io_signature::make(nchannels_out, nchannels_out, sizeof(Gnss_Synchro)))
{ {
d_dump = dump; d_dump = dump;
d_nchannels = nchannels_out; d_nchannels_out = nchannels_out;
d_nchannels_in = nchannels_in;
d_dump_filename = dump_filename; d_dump_filename = dump_filename;
T_rx_s = 0.0; T_rx_clock_step_samples = 0;
T_rx_step_ms = 1; // 1 ms d_gnss_synchro_history = new Gnss_circular_deque<Gnss_Synchro>(500, d_nchannels_out);
max_delta = 1.5; // 1.5 s
d_latency = 0.5; // 300 ms
valid_channels.resize(d_nchannels, false);
d_num_valid_channels = 0;
d_gnss_synchro_history = new Gnss_circular_deque<Gnss_Synchro>(static_cast<unsigned int>(max_delta * 1000.0), d_nchannels);
// ############# ENABLE DATA FILE LOG ################# // ############# ENABLE DATA FILE LOG #################
if (d_dump) if (d_dump)
@ -88,7 +84,12 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
} }
} }
T_rx_TOW_ms = 0; T_rx_TOW_ms = 0;
T_rx_TOW_offset_ms = 0;
T_rx_TOW_set = false; T_rx_TOW_set = false;
//rework
d_Rx_clock_buffer.resize(10); //10*20ms= 200 ms of data in buffer
d_Rx_clock_buffer.clear(); // Clear all the elements in the buffer
} }
@ -120,7 +121,7 @@ int hybrid_observables_cc::save_matfile()
// READ DUMP FILE // READ DUMP FILE
std::ifstream::pos_type size; std::ifstream::pos_type size;
int number_of_double_vars = 7; int number_of_double_vars = 7;
int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels; int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels_out;
std::ifstream dump_file; std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try try
@ -144,15 +145,15 @@ int hybrid_observables_cc::save_matfile()
{ {
return 1; return 1;
} }
double **RX_time = new double *[d_nchannels]; double **RX_time = new double *[d_nchannels_out];
double **TOW_at_current_symbol_s = new double *[d_nchannels]; double **TOW_at_current_symbol_s = new double *[d_nchannels_out];
double **Carrier_Doppler_hz = new double *[d_nchannels]; double **Carrier_Doppler_hz = new double *[d_nchannels_out];
double **Carrier_phase_cycles = new double *[d_nchannels]; double **Carrier_phase_cycles = new double *[d_nchannels_out];
double **Pseudorange_m = new double *[d_nchannels]; double **Pseudorange_m = new double *[d_nchannels_out];
double **PRN = new double *[d_nchannels]; double **PRN = new double *[d_nchannels_out];
double **Flag_valid_pseudorange = new double *[d_nchannels]; double **Flag_valid_pseudorange = new double *[d_nchannels_out];
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels_out; i++)
{ {
RX_time[i] = new double[num_epoch]; RX_time[i] = new double[num_epoch];
TOW_at_current_symbol_s[i] = new double[num_epoch]; TOW_at_current_symbol_s[i] = new double[num_epoch];
@ -169,7 +170,7 @@ int hybrid_observables_cc::save_matfile()
{ {
for (long int i = 0; i < num_epoch; i++) for (long int i = 0; i < num_epoch; i++)
{ {
for (unsigned int chan = 0; chan < d_nchannels; chan++) for (unsigned int chan = 0; chan < d_nchannels_out; chan++)
{ {
dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double)); dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double)); dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double));
@ -186,7 +187,7 @@ int hybrid_observables_cc::save_matfile()
catch (const std::ifstream::failure &e) catch (const std::ifstream::failure &e)
{ {
std::cerr << "Problem reading dump file:" << e.what() << std::endl; std::cerr << "Problem reading dump file:" << e.what() << std::endl;
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels_out; i++)
{ {
delete[] RX_time[i]; delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i]; delete[] TOW_at_current_symbol_s[i];
@ -207,17 +208,17 @@ int hybrid_observables_cc::save_matfile()
return 1; return 1;
} }
double *RX_time_aux = new double[d_nchannels * num_epoch]; double *RX_time_aux = new double[d_nchannels_out * num_epoch];
double *TOW_at_current_symbol_s_aux = new double[d_nchannels * num_epoch]; double *TOW_at_current_symbol_s_aux = new double[d_nchannels_out * num_epoch];
double *Carrier_Doppler_hz_aux = new double[d_nchannels * num_epoch]; double *Carrier_Doppler_hz_aux = new double[d_nchannels_out * num_epoch];
double *Carrier_phase_cycles_aux = new double[d_nchannels * num_epoch]; double *Carrier_phase_cycles_aux = new double[d_nchannels_out * num_epoch];
double *Pseudorange_m_aux = new double[d_nchannels * num_epoch]; double *Pseudorange_m_aux = new double[d_nchannels_out * num_epoch];
double *PRN_aux = new double[d_nchannels * num_epoch]; double *PRN_aux = new double[d_nchannels_out * num_epoch];
double *Flag_valid_pseudorange_aux = new double[d_nchannels * num_epoch]; double *Flag_valid_pseudorange_aux = new double[d_nchannels_out * num_epoch];
unsigned int k = 0; unsigned int k = 0;
for (long int j = 0; j < num_epoch; j++) for (long int j = 0; j < num_epoch; j++)
{ {
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels_out; i++)
{ {
RX_time_aux[k] = RX_time[i][j]; RX_time_aux[k] = RX_time[i][j];
TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j]; TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j];
@ -242,7 +243,7 @@ int hybrid_observables_cc::save_matfile()
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL) if (reinterpret_cast<long *>(matfp) != NULL)
{ {
size_t dims[2] = {static_cast<size_t>(d_nchannels), static_cast<size_t>(num_epoch)}; size_t dims[2] = {static_cast<size_t>(d_nchannels_out), static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA); matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar); Mat_VarFree(matvar);
@ -273,7 +274,7 @@ int hybrid_observables_cc::save_matfile()
} }
Mat_Close(matfp); Mat_Close(matfp);
for (unsigned int i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels_out; i++)
{ {
delete[] RX_time[i]; delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i]; delete[] TOW_at_current_symbol_s[i];
@ -302,174 +303,166 @@ int hybrid_observables_cc::save_matfile()
} }
bool hybrid_observables_cc::interpolate_data(Gnss_Synchro &out, const unsigned int &ch, const double &ti) double hybrid_observables_cc::compute_T_rx_s(const Gnss_Synchro &a)
{ {
if ((ti < d_gnss_synchro_history->front(ch).RX_time) or (ti > d_gnss_synchro_history->back(ch).RX_time)) return ((static_cast<double>(a.Tracking_sample_counter) + a.Code_phase_samples) / static_cast<double>(a.fs));
}
bool hybrid_observables_cc::interp_trk_obs(Gnss_Synchro &interpolated_obs, const unsigned int &ch, const unsigned long int &rx_clock)
{
int nearest_element = -1;
long int abs_diff;
long int old_abs_diff = std::numeric_limits<long int>::max();
for (unsigned int i = 0; i < d_gnss_synchro_history->size(ch); i++)
{ {
return false; abs_diff = labs(rx_clock - d_gnss_synchro_history->at(ch, i).Tracking_sample_counter);
if (old_abs_diff > abs_diff)
{
old_abs_diff = abs_diff;
nearest_element = i;
}
}
if (nearest_element != -1 and nearest_element != static_cast<int>(d_gnss_synchro_history->size(ch)))
{
if ((static_cast<double>(old_abs_diff) / static_cast<double>(d_gnss_synchro_history->at(ch, nearest_element).fs)) < 0.02)
{
int neighbor_element;
if (rx_clock > d_gnss_synchro_history->at(ch, nearest_element).Tracking_sample_counter)
{
neighbor_element = nearest_element + 1;
}
else
{
neighbor_element = nearest_element - 1;
}
if (neighbor_element < static_cast<int>(d_gnss_synchro_history->size(ch)) and neighbor_element >= 0)
{
int t1_idx;
int t2_idx;
if (rx_clock > d_gnss_synchro_history->at(ch, nearest_element).Tracking_sample_counter)
{
//std::cout << "S1= " << d_gnss_synchro_history->at(ch, nearest_element).Tracking_sample_counter
// << " Si=" << rx_clock << " S2=" << d_gnss_synchro_history->at(ch, neighbor_element).Tracking_sample_counter << std::endl;
t1_idx = nearest_element;
t2_idx = neighbor_element;
}
else
{
//std::cout << "inv S1= " << d_gnss_synchro_history->at(ch, neighbor_element).Tracking_sample_counter
// << " Si=" << rx_clock << " S2=" << d_gnss_synchro_history->at(ch, nearest_element).Tracking_sample_counter << std::endl;
t1_idx = neighbor_element;
t2_idx = nearest_element;
} }
find_interp_elements(ch, ti);
// 1st: copy the nearest gnss_synchro data for that channel // 1st: copy the nearest gnss_synchro data for that channel
out = d_gnss_synchro_history->at(ch, 0); interpolated_obs = d_gnss_synchro_history->at(ch, nearest_element);
// 2nd: Linear interpolation: y(t) = y(t1) + (y(t2) - y(t1)) * (t - t1) / (t2 - t1) // 2nd: Linear interpolation: y(t) = y(t1) + (y(t2) - y(t1)) * (t - t1) / (t2 - t1)
double T_rx_s = static_cast<double>(rx_clock) / static_cast<double>(interpolated_obs.fs);
double time_factor = (T_rx_s - d_gnss_synchro_history->at(ch, t1_idx).RX_time) /
(d_gnss_synchro_history->at(ch, t2_idx).RX_time -
d_gnss_synchro_history->at(ch, t1_idx).RX_time);
// CARRIER PHASE INTERPOLATION // CARRIER PHASE INTERPOLATION
out.Carrier_phase_rads = d_gnss_synchro_history->at(ch, 0).Carrier_phase_rads + (d_gnss_synchro_history->at(ch, 1).Carrier_phase_rads - d_gnss_synchro_history->at(ch, 0).Carrier_phase_rads) * (ti - d_gnss_synchro_history->at(ch, 0).RX_time) / (d_gnss_synchro_history->at(ch, 1).RX_time - d_gnss_synchro_history->at(ch, 0).RX_time); interpolated_obs.Carrier_phase_rads = d_gnss_synchro_history->at(ch, t1_idx).Carrier_phase_rads + (d_gnss_synchro_history->at(ch, t2_idx).Carrier_phase_rads - d_gnss_synchro_history->at(ch, t1_idx).Carrier_phase_rads) * time_factor;
// CARRIER DOPPLER INTERPOLATION // CARRIER DOPPLER INTERPOLATION
out.Carrier_Doppler_hz = d_gnss_synchro_history->at(ch, 0).Carrier_Doppler_hz + (d_gnss_synchro_history->at(ch, 1).Carrier_Doppler_hz - d_gnss_synchro_history->at(ch, 0).Carrier_Doppler_hz) * (ti - d_gnss_synchro_history->at(ch, 0).RX_time) / (d_gnss_synchro_history->at(ch, 1).RX_time - d_gnss_synchro_history->at(ch, 0).RX_time); interpolated_obs.Carrier_Doppler_hz = d_gnss_synchro_history->at(ch, t1_idx).Carrier_Doppler_hz + (d_gnss_synchro_history->at(ch, t2_idx).Carrier_Doppler_hz - d_gnss_synchro_history->at(ch, t1_idx).Carrier_Doppler_hz) * time_factor;
// TOW INTERPOLATION // TOW INTERPOLATION
out.interp_TOW_ms = static_cast<double>(d_gnss_synchro_history->at(ch, 0).TOW_at_current_symbol_ms) + (static_cast<double>(d_gnss_synchro_history->at(ch, 1).TOW_at_current_symbol_ms) - static_cast<double>(d_gnss_synchro_history->at(ch, 0).TOW_at_current_symbol_ms)) * (ti - d_gnss_synchro_history->at(ch, 0).RX_time) / (d_gnss_synchro_history->at(ch, 1).RX_time - d_gnss_synchro_history->at(ch, 0).RX_time); interpolated_obs.interp_TOW_ms = static_cast<double>(d_gnss_synchro_history->at(ch, t1_idx).TOW_at_current_symbol_ms) + (static_cast<double>(d_gnss_synchro_history->at(ch, t2_idx).TOW_at_current_symbol_ms) - static_cast<double>(d_gnss_synchro_history->at(ch, t1_idx).TOW_at_current_symbol_ms)) * time_factor;
//
// std::cout << "Rx samplestamp: " << T_rx_s << " Channel " << ch << " interp buff idx " << nearest_element
// << " ,diff: " << old_abs_diff << " samples (" << static_cast<double>(old_abs_diff) / static_cast<double>(d_gnss_synchro_history->at(ch, nearest_element).fs) << " s)\n";
return true; return true;
}
double hybrid_observables_cc::compute_T_rx_s(const Gnss_Synchro &a)
{
if (a.Flag_valid_word)
{
return ((static_cast<double>(a.Tracking_sample_counter) + a.Code_phase_samples) / static_cast<double>(a.fs));
} }
else else
{ {
return 0.0; return false;
}
}
void hybrid_observables_cc::find_interp_elements(const unsigned int &ch, const double &ti)
{
unsigned int closest = 0;
double dif = std::numeric_limits<double>::max();
double dt = 0.0;
for (unsigned int i = 0; i < d_gnss_synchro_history->size(ch); i++)
{
dt = std::fabs(ti - d_gnss_synchro_history->at(ch, i).RX_time);
if (dt < dif)
{
closest = i;
dif = dt;
}
else
{
break;
}
}
if (ti > d_gnss_synchro_history->at(ch, closest).RX_time)
{
while (closest > 0)
{
d_gnss_synchro_history->pop_front(ch);
closest--;
} }
} }
else else
{ {
while (closest > 1) // std::cout << "ALERT: Channel " << ch << " interp buff idx " << nearest_element
{ // << " ,diff: " << old_abs_diff << " samples (" << static_cast<double>(old_abs_diff) / static_cast<double>(d_gnss_synchro_history->at(ch, nearest_element).fs) << " s)\n";
d_gnss_synchro_history->pop_front(ch); // usleep(1000);
closest--; return false;
} }
} }
}
void hybrid_observables_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required)
{
for (unsigned int i = 0; i < d_nchannels; i++)
{
ninput_items_required[i] = 0;
}
ninput_items_required[d_nchannels] = noutput_items;
}
void hybrid_observables_cc::clean_history(unsigned int pos)
{
while (d_gnss_synchro_history->size(pos) > 0)
{
if ((T_rx_s - d_gnss_synchro_history->front(pos).RX_time) > max_delta)
{
d_gnss_synchro_history->pop_front(pos);
}
else else
{ {
return; return false;
} }
}
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
{
for (int n = 0; n < static_cast<int>(int)(d_nchannels_in) - 1; n++)
{
ninput_items_required[n] = 0;
} }
//last input channel is the sample counter, triggered each ms
ninput_items_required[d_nchannels_in - 1] = 1;
} }
void hybrid_observables_cc::correct_TOW_and_compute_prange(std::vector<Gnss_Synchro> &data) void hybrid_observables_cc::update_TOW(std::vector<Gnss_Synchro> &data)
{ {
//1. Set the TOW using the minimum TOW in the observables.
// this will be the receiver time.
//2. If the TOW is set, it must be incremented by the desired receiver time step.
// the time step must match the observables timer block (connected to the las input channel)
std::vector<Gnss_Synchro>::iterator it; std::vector<Gnss_Synchro>::iterator it;
// if (!T_rx_TOW_set)
/////////////////////// DEBUG ////////////////////////// // {
// Logs if there is a pseudorange difference between //unsigned int TOW_ref = std::numeric_limits<unsigned int>::max();
// signals of the same satellite higher than a threshold unsigned int TOW_ref = 0;
////////////////////////////////////////////////////////
#ifndef NDEBUG
std::vector<Gnss_Synchro>::iterator it2;
double thr_ = 250.0 / SPEED_OF_LIGHT; // Maximum pseudorange difference = 250 meters
for (it = data.begin(); it != (data.end() - 1); it++)
{
for (it2 = it + 1; it2 != data.end(); it2++)
{
if (it->PRN == it2->PRN and it->System == it2->System)
{
double tow_dif_ = std::fabs(it->TOW_at_current_symbol_ms - it2->TOW_at_current_symbol_ms);
if (tow_dif_ > thr_ * 1000.0)
{
DLOG(INFO) << "System " << it->System << ". Signals " << it->Signal << " and " << it2->Signal
<< ". TOW difference in PRN " << it->PRN
<< " = " << tow_dif_ * 1e3 << "[ms]. Equivalent to " << tow_dif_ * SPEED_OF_LIGHT
<< " meters in pseudorange";
std::cout << TEXT_RED << "System " << it->System << ". Signals " << it->Signal << " and " << it2->Signal
<< ". TOW difference in PRN " << it->PRN
<< " = " << tow_dif_ * 1e3 << "[ms]. Equivalent to " << tow_dif_ * SPEED_OF_LIGHT
<< " meters in pseudorange" << TEXT_RESET << std::endl;
}
}
}
}
#endif
if (!T_rx_TOW_set)
{
unsigned int TOW_ref = std::numeric_limits<unsigned int>::lowest();
for (it = data.begin(); it != data.end(); it++) for (it = data.begin(); it != data.end(); it++)
{
if (it->Flag_valid_word)
{ {
if (it->TOW_at_current_symbol_ms > TOW_ref) if (it->TOW_at_current_symbol_ms > TOW_ref)
{ {
TOW_ref = it->TOW_at_current_symbol_ms; TOW_ref = it->TOW_at_current_symbol_ms;
T_rx_TOW_set = true;
}
} }
} }
T_rx_TOW_ms = TOW_ref; T_rx_TOW_ms = TOW_ref;
T_rx_TOW_set = true; //}
} // else
else // {
{ // T_rx_TOW_ms += T_rx_step_ms;
T_rx_TOW_ms += T_rx_step_ms; // //todo: check what happens during the week rollover
//todo: check what happens during the week rollover // if (T_rx_TOW_ms >= 604800000)
if (T_rx_TOW_ms >= 604800000) // {
{ // T_rx_TOW_ms = T_rx_TOW_ms % 604800000;
T_rx_TOW_ms = T_rx_TOW_ms % 604800000; // }
} // }
} // std::cout << "T_rx_TOW_ms: " << T_rx_TOW_ms << std::endl;
}
void hybrid_observables_cc::compute_pranges(std::vector<Gnss_Synchro> &data)
{
std::vector<Gnss_Synchro>::iterator it;
for (it = data.begin(); it != data.end(); it++) for (it = data.begin(); it != data.end(); it++)
{
if (it->Flag_valid_word)
{ {
double traveltime_s = (static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms + GPS_STARTOFFSET_ms) / 1000.0; double traveltime_s = (static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms + GPS_STARTOFFSET_ms) / 1000.0;
//todo: check what happens during the week rollover (TOW rollover at 604800000s)
//std::cout.precision(17); it->RX_time = (static_cast<double>(T_rx_TOW_ms) + GPS_STARTOFFSET_ms) / 1000.0;
//std::cout << "Diff T_rx_TOW_ms - interp_TOW_ms: " << static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms << std::endl;
it->RX_time = (T_rx_TOW_ms + GPS_STARTOFFSET_ms) / 1000.0;
it->Pseudorange_m = traveltime_s * SPEED_OF_LIGHT; it->Pseudorange_m = traveltime_s * SPEED_OF_LIGHT;
it->Flag_valid_pseudorange = true;
//debug code
// std::cout.precision(17);
// std::cout << "[" << it->Channel_ID << "] interp_TOW_ms: " << it->interp_TOW_ms << std::endl;
// std::cout << "[" << it->Channel_ID << "] Diff T_rx_TOW_ms - interp_TOW_ms: " << static_cast<double>(T_rx_TOW_ms) - it->interp_TOW_ms << std::endl;
// std::cout << "[" << it->Channel_ID << "] Pseudorange_m: " << it->Pseudorange_m << std::endl;
} }
}
// usleep(1000);
} }
@ -480,156 +473,105 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
unsigned int i; //push receiver clock into history buffer (connected to the last of the input channels)
unsigned int returned_elements = 0; //The clock buffer gives time to the channels to compute the tracking observables
int total_input_items = 0; if (ninput_items[d_nchannels_in - 1] > 0)
for (i = 0; i < d_nchannels; i++)
{ {
total_input_items += ninput_items[i]; d_Rx_clock_buffer.push_back(in[d_nchannels_in - 1][0].Tracking_sample_counter);
if (T_rx_clock_step_samples == 0)
{
T_rx_clock_step_samples = std::round(static_cast<double>(in[d_nchannels_in - 1][0].fs) * 1e-3); // 1 ms
std::cout << "Observables clock step samples set to " << T_rx_clock_step_samples << std::endl;
usleep(1000000);
} }
for (int epoch = 0; epoch < ninput_items[d_nchannels]; epoch++)
{
T_rx_s += (static_cast<double>(T_rx_step_ms) / 1000.0);
////////////////////////////////////////////////////////////////////////// //consume one item from the clock channel (last of the input channels)
if ((total_input_items == 0) and (d_num_valid_channels == 0)) consume(d_nchannels_in - 1, 1);
{
consume(d_nchannels, epoch + 1);
return returned_elements;
} }
////////////////////////////////////////////////////////////////////////// //push the tracking observables into buffers to allow the observable interpolation at the desired Rx clock
for (unsigned int n = 0; n < d_nchannels_out; n++)
if (total_input_items > 0 and epoch == 0)
{ {
for (i = 0; i < d_nchannels; i++) // push the valid tracking Gnss_Synchros to their corresponding deque
for (int m = 0; m < ninput_items[n]; m++)
{ {
if (ninput_items[i] > 0) if (in[n][m].Flag_valid_word)
{ {
// Add the new Gnss_Synchros to their corresponding deque if (d_gnss_synchro_history->size(n) > 0)
for (int aux = 0; aux < ninput_items[i]; aux++)
{ {
if (in[i][aux].Flag_valid_word)
{
d_gnss_synchro_history->push_back(i, in[i][aux]);
d_gnss_synchro_history->back(i).RX_time = compute_T_rx_s(in[i][aux]);
// Check if the last Gnss_Synchro comes from the same satellite as the previous ones // Check if the last Gnss_Synchro comes from the same satellite as the previous ones
if (d_gnss_synchro_history->size(i) > 1) if (d_gnss_synchro_history->front(n).PRN != in[n][m].PRN)
{ {
if (d_gnss_synchro_history->front(i).PRN != d_gnss_synchro_history->back(i).PRN) d_gnss_synchro_history->clear(n);
{
d_gnss_synchro_history->clear(i);
} }
} }
d_gnss_synchro_history->push_back(n, in[n][m]);
d_gnss_synchro_history->back(n).RX_time = compute_T_rx_s(in[n][m]);
} }
} }
consume(i, ninput_items[i]); consume(n, ninput_items[n]);
}
}
} }
for (i = 0; i < d_nchannels; i++) if (d_Rx_clock_buffer.size() == d_Rx_clock_buffer.capacity())
{ {
if (d_gnss_synchro_history->size(i) > 2) std::vector<Gnss_Synchro> epoch_data;
int n_valid = 0;
for (unsigned int n = 0; n < d_nchannels_out; n++)
{ {
valid_channels[i] = true; Gnss_Synchro interpolated_gnss_synchro;
if (!interp_trk_obs(interpolated_gnss_synchro, n, d_Rx_clock_buffer.front() + T_rx_TOW_offset_ms * T_rx_clock_step_samples))
{
//produce an empty observation
interpolated_gnss_synchro = Gnss_Synchro();
interpolated_gnss_synchro.Flag_valid_pseudorange = false;
interpolated_gnss_synchro.Flag_valid_word = false;
interpolated_gnss_synchro.Flag_valid_acquisition = false;
interpolated_gnss_synchro.fs = 0;
interpolated_gnss_synchro.Channel_ID = n;
} }
else else
{ {
valid_channels[i] = false; n_valid++;
} }
}
d_num_valid_channels = valid_channels.count();
// Check if there is any valid channel after reading the new incoming Gnss_Synchro data
if (d_num_valid_channels == 0)
{
consume(d_nchannels, epoch + 1);
return returned_elements;
}
for (i = 0; i < d_nchannels; i++) // Discard observables with T_rx higher than the threshold
{
if (valid_channels[i])
{
clean_history(i);
if (d_gnss_synchro_history->size(i) < 2)
{
valid_channels[i] = false;
}
}
}
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
d_num_valid_channels = valid_channels.count();
double T_rx_s_out = T_rx_s - d_latency;
if ((d_num_valid_channels == 0) or (T_rx_s_out < 0.0))
{
consume(d_nchannels, epoch + 1);
return returned_elements;
}
std::vector<Gnss_Synchro> epoch_data;
for (i = 0; i < d_nchannels; i++)
{
if (valid_channels[i])
{
Gnss_Synchro interpolated_gnss_synchro; // empty set, it is required to COPY the nearest in the interpolation history = d_gnss_synchro_history->back(i);
if (interpolate_data(interpolated_gnss_synchro, i, T_rx_s_out))
{
epoch_data.push_back(interpolated_gnss_synchro); epoch_data.push_back(interpolated_gnss_synchro);
} }
else if (n_valid > 0)
{ {
valid_channels[i] = false; update_TOW(epoch_data);
} if (T_rx_TOW_ms % 20 != 0)
}
}
d_num_valid_channels = valid_channels.count();
if (d_num_valid_channels == 0)
{ {
consume(d_nchannels, epoch + 1); T_rx_TOW_offset_ms = T_rx_TOW_ms % 20;
return returned_elements; }
} }
correct_TOW_and_compute_prange(epoch_data); if (n_valid > 0) compute_pranges(epoch_data);
std::vector<Gnss_Synchro>::iterator it = epoch_data.begin();
for (i = 0; i < d_nchannels; i++) for (unsigned int n = 0; n < d_nchannels_out; n++)
{ {
if (valid_channels[i]) out[n][0] = epoch_data.at(n);
{
out[i][epoch] = (*it);
out[i][epoch].Flag_valid_pseudorange = true;
it++;
}
else
{
out[i][epoch] = Gnss_Synchro();
out[i][epoch].Flag_valid_pseudorange = false;
}
} }
if (d_dump) if (d_dump)
{ {
// MULTIPLEXED FILE RECORDING - Record results to file // MULTIPLEXED FILE RECORDING - Record results to file
try try
{ {
double tmp_double; double tmp_double;
for (i = 0; i < d_nchannels; i++) for (unsigned int i = 0; i < d_nchannels_out; i++)
{ {
tmp_double = out[i][epoch].RX_time; tmp_double = out[i][0].RX_time;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = out[i][epoch].interp_TOW_ms / 1000.0; tmp_double = out[i][0].interp_TOW_ms / 1000.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = out[i][epoch].Carrier_Doppler_hz; tmp_double = out[i][0].Carrier_Doppler_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = out[i][epoch].Carrier_phase_rads / GPS_TWO_PI; tmp_double = out[i][0].Carrier_phase_rads / GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = out[i][epoch].Pseudorange_m; tmp_double = out[i][0].Pseudorange_m;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(out[i][epoch].PRN); tmp_double = static_cast<double>(out[i][0].PRN);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(out[i][epoch].Flag_valid_pseudorange); tmp_double = static_cast<double>(out[i][0].Flag_valid_pseudorange);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
} }
} }
@ -639,9 +581,10 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
d_dump = false; d_dump = false;
} }
} }
return 1;
returned_elements++; }
else
{
return 0;
} }
consume(d_nchannels, ninput_items[d_nchannels]);
return returned_elements;
} }