1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-11-14 14:17:11 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into tracking_debug

This commit is contained in:
Javier Arribas
2019-06-17 09:53:14 +02:00
20 changed files with 310 additions and 247 deletions

View File

@@ -138,6 +138,11 @@ Rtklib_Pvt::Rtklib_Pvt(ConfigurationInterface* configuration,
pvt_output_parameters.rtcm_msg_rate_ms[k] = rtcm_MT1097_rate_ms;
}
pvt_output_parameters.kml_rate_ms = bc::lcm(configuration->property(role + ".kml_rate_ms", pvt_output_parameters.kml_rate_ms), pvt_output_parameters.output_rate_ms);
pvt_output_parameters.gpx_rate_ms = bc::lcm(configuration->property(role + ".gpx_rate_ms", pvt_output_parameters.gpx_rate_ms), pvt_output_parameters.output_rate_ms);
pvt_output_parameters.geojson_rate_ms = bc::lcm(configuration->property(role + ".geojson_rate_ms", pvt_output_parameters.geojson_rate_ms), pvt_output_parameters.output_rate_ms);
pvt_output_parameters.nmea_rate_ms = bc::lcm(configuration->property(role + ".nmea_rate_ms", pvt_output_parameters.nmea_rate_ms), pvt_output_parameters.output_rate_ms);
// Infer the type of receiver
/*
* TYPE | RECEIVER

View File

@@ -178,6 +178,11 @@ rtklib_pvt_gs::rtklib_pvt_gs(uint32_t nchannels,
std::string kml_dump_filename;
kml_dump_filename = d_dump_filename;
d_kml_output_enabled = conf_.kml_output_enabled;
d_kml_rate_ms = conf_.kml_rate_ms;
if (d_kml_rate_ms == 0)
{
d_kml_output_enabled = false;
}
if (d_kml_output_enabled)
{
d_kml_dump = std::make_shared<Kml_Printer>(conf_.kml_output_path);
@@ -192,6 +197,11 @@ rtklib_pvt_gs::rtklib_pvt_gs(uint32_t nchannels,
std::string gpx_dump_filename;
gpx_dump_filename = d_dump_filename;
d_gpx_output_enabled = conf_.gpx_output_enabled;
d_gpx_rate_ms = conf_.gpx_rate_ms;
if (d_gpx_rate_ms == 0)
{
d_gpx_output_enabled = false;
}
if (d_gpx_output_enabled)
{
d_gpx_dump = std::make_shared<Gpx_Printer>(conf_.gpx_output_path);
@@ -206,6 +216,11 @@ rtklib_pvt_gs::rtklib_pvt_gs(uint32_t nchannels,
std::string geojson_dump_filename;
geojson_dump_filename = d_dump_filename;
d_geojson_output_enabled = conf_.geojson_output_enabled;
d_geojson_rate_ms = conf_.geojson_rate_ms;
if (d_geojson_rate_ms == 0)
{
d_geojson_output_enabled = false;
}
if (d_geojson_output_enabled)
{
d_geojson_printer = std::make_shared<GeoJSON_Printer>(conf_.geojson_output_path);
@@ -218,6 +233,12 @@ rtklib_pvt_gs::rtklib_pvt_gs(uint32_t nchannels,
// initialize nmea_printer
d_nmea_output_file_enabled = (conf_.nmea_output_file_enabled or conf_.flag_nmea_tty_port);
d_nmea_rate_ms = conf_.nmea_rate_ms;
if (d_nmea_rate_ms == 0)
{
d_nmea_output_file_enabled = false;
}
if (d_nmea_output_file_enabled)
{
d_nmea_printer = std::make_shared<Nmea_Printer>(conf_.nmea_dump_filename, conf_.nmea_output_file_enabled, conf_.flag_nmea_tty_port, conf_.nmea_dump_devname, conf_.nmea_output_file_path);
@@ -1799,19 +1820,31 @@ int rtklib_pvt_gs::work(int noutput_items, gr_vector_const_void_star& input_item
}
if (d_kml_output_enabled)
{
d_kml_dump->print_position(d_pvt_solver, false);
if (current_RX_time_ms % d_kml_rate_ms == 0)
{
d_kml_dump->print_position(d_pvt_solver, false);
}
}
if (d_gpx_output_enabled)
{
d_gpx_dump->print_position(d_pvt_solver, false);
if (current_RX_time_ms % d_gpx_rate_ms == 0)
{
d_gpx_dump->print_position(d_pvt_solver, false);
}
}
if (d_geojson_output_enabled)
{
d_geojson_printer->print_position(d_pvt_solver, false);
if (current_RX_time_ms % d_geojson_rate_ms == 0)
{
d_geojson_printer->print_position(d_pvt_solver, false);
}
}
if (d_nmea_output_file_enabled)
{
d_nmea_printer->Print_Nmea_Line(d_pvt_solver, false);
if (current_RX_time_ms % d_nmea_rate_ms == 0)
{
d_nmea_printer->Print_Nmea_Line(d_pvt_solver, false);
}
}
/*

View File

@@ -106,6 +106,11 @@ private:
int32_t d_rtcm_MT1097_rate_ms; // Galileo MSM7. The type 7 Multiple Signal Message format for Europes Galileo system
int32_t d_rtcm_MSM_rate_ms;
int32_t d_kml_rate_ms;
int32_t d_gpx_rate_ms;
int32_t d_geojson_rate_ms;
int32_t d_nmea_rate_ms;
int32_t d_last_status_print_seg; // for status printer
uint32_t d_nchannels;

View File

@@ -35,6 +35,10 @@ Pvt_Conf::Pvt_Conf()
type_of_receiver = 0U;
output_rate_ms = 0;
display_rate_ms = 0;
kml_rate_ms = 1000;
gpx_rate_ms = 1000;
geojson_rate_ms = 1000;
nmea_rate_ms = 1000;
rinex_version = 0;
rinexobs_rate_ms = 0;

View File

@@ -41,6 +41,10 @@ public:
uint32_t type_of_receiver;
int32_t output_rate_ms;
int32_t display_rate_ms;
int32_t kml_rate_ms;
int32_t gpx_rate_ms;
int32_t geojson_rate_ms;
int32_t nmea_rate_ms;
int32_t rinex_version;
int32_t rinexobs_rate_ms;

View File

@@ -95,7 +95,11 @@ if((CMAKE_CXX_COMPILER_ID STREQUAL "GNU") AND NOT WIN32)
set(CMAKE_CXX_STANDARD 14)
else()
if(${FILESYSTEM_FOUND})
set(CMAKE_CXX_STANDARD 17)
if(CMAKE_VERSION VERSION_LESS 3.12)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 20)
endif()
set(CMAKE_CXX_STANDARD_REQUIRED ON)
else()
set(CMAKE_CXX_STANDARD 14)
@@ -134,7 +138,11 @@ if(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(CMAKE_CXX_STANDARD 14)
else()
if(${FILESYSTEM_FOUND})
set(CMAKE_CXX_STANDARD 17)
if(CMAKE_VERSION VERSION_LESS 3.12)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 20)
endif()
set(CMAKE_CXX_STANDARD_REQUIRED ON)
else()
set(CMAKE_CXX_STANDARD 14)

View File

@@ -33,7 +33,6 @@ set(TRACKING_LIB_SOURCES
cpu_multicorrelator.cc
cpu_multicorrelator_real_codes.cc
cpu_multicorrelator_16sc.cc
nonlinear_tracking.cc
lock_detectors.cc
tcp_communication.cc
tcp_packet_data.cc
@@ -51,7 +50,6 @@ set(TRACKING_LIB_HEADERS
cpu_multicorrelator.h
cpu_multicorrelator_real_codes.h
cpu_multicorrelator_16sc.h
nonlinear_tracking.h
lock_detectors.h
tcp_communication.h
tcp_packet_data.h
@@ -65,6 +63,12 @@ set(TRACKING_LIB_HEADERS
exponential_smoother.h
)
if(ARMADILLO_VERSION_STRING VERSION_GREATER 7.400)
# sqrtmat_sympd() requires 7.400
set(TRACKING_LIB_SOURCES ${TRACKING_LIB_SOURCES} nonlinear_tracking.cc)
set(TRACKING_LIB_HEADERS ${TRACKING_LIB_HEADERS} nonlinear_tracking.h)
endif()
if(ENABLE_FPGA)
set(TRACKING_LIB_SOURCES ${TRACKING_LIB_SOURCES} fpga_multicorrelator.cc dll_pll_conf_fpga.cc)
set(TRACKING_LIB_HEADERS ${TRACKING_LIB_HEADERS} fpga_multicorrelator.h dll_pll_conf_fpga.h)

View File

@@ -4,7 +4,7 @@
*
* Cubature_Filter implements the functionality of the Cubature Kalman
* Filter, which uses multidimensional cubature rules to estimate the
* time evolution of a nonlinear system. Unscented_filter implements
* time evolution of a nonlinear system. UnscentedFilter implements
* an Unscented Kalman Filter which uses Unscented Transform rules to
* perform a similar estimation.
*
@@ -44,7 +44,7 @@
/***************** CUBATURE KALMAN FILTER *****************/
Cubature_filter::Cubature_filter()
CubatureFilter::CubatureFilter()
{
int nx = 1;
x_pred_out = arma::zeros(nx, 1);
@@ -55,7 +55,7 @@ Cubature_filter::Cubature_filter()
}
Cubature_filter::Cubature_filter(int nx)
CubatureFilter::CubatureFilter(int nx)
{
x_pred_out = arma::zeros(nx, 1);
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
@@ -65,7 +65,7 @@ Cubature_filter::Cubature_filter(int nx)
}
Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
CubatureFilter::CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
@@ -75,10 +75,10 @@ Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x
}
Cubature_filter::~Cubature_filter() = default;
CubatureFilter::~CubatureFilter() = default;
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
void CubatureFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
@@ -91,7 +91,7 @@ void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x
/*
* Perform the prediction step of the cubature Kalman filter
*/
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
void CubatureFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_post.n_elem;
@@ -133,7 +133,7 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma
/*
* Perform the update step of the cubature Kalman filter
*/
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
void CubatureFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_pred.n_elem;
@@ -178,25 +178,25 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec&
}
arma::mat Cubature_filter::get_x_pred() const
arma::mat CubatureFilter::get_x_pred() const
{
return x_pred_out;
}
arma::mat Cubature_filter::get_P_x_pred() const
arma::mat CubatureFilter::get_P_x_pred() const
{
return P_x_pred_out;
}
arma::mat Cubature_filter::get_x_est() const
arma::mat CubatureFilter::get_x_est() const
{
return x_est;
}
arma::mat Cubature_filter::get_P_x_est() const
arma::mat CubatureFilter::get_P_x_est() const
{
return P_x_est;
}
@@ -205,7 +205,7 @@ arma::mat Cubature_filter::get_P_x_est() const
/***************** UNSCENTED KALMAN FILTER *****************/
Unscented_filter::Unscented_filter()
UnscentedFilter::UnscentedFilter()
{
int nx = 1;
x_pred_out = arma::zeros(nx, 1);
@@ -216,7 +216,7 @@ Unscented_filter::Unscented_filter()
}
Unscented_filter::Unscented_filter(int nx)
UnscentedFilter::UnscentedFilter(int nx)
{
x_pred_out = arma::zeros(nx, 1);
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
@@ -226,7 +226,7 @@ Unscented_filter::Unscented_filter(int nx)
}
Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
UnscentedFilter::UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
@@ -236,10 +236,10 @@ Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P
}
Unscented_filter::~Unscented_filter() = default;
UnscentedFilter::~UnscentedFilter() = default;
void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
void UnscentedFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
@@ -252,7 +252,7 @@ void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_
/*
* Perform the prediction step of the Unscented Kalman filter
*/
void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
void UnscentedFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
{
// Compute number of sigma points
int nx = x_post.n_elem;
@@ -307,7 +307,7 @@ void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::m
/*
* Perform the update step of the Unscented Kalman filter
*/
void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
void UnscentedFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
{
// Compute number of sigma points
int nx = x_pred.n_elem;
@@ -364,25 +364,25 @@ void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec
}
arma::mat Unscented_filter::get_x_pred() const
arma::mat UnscentedFilter::get_x_pred() const
{
return x_pred_out;
}
arma::mat Unscented_filter::get_P_x_pred() const
arma::mat UnscentedFilter::get_P_x_pred() const
{
return P_x_pred_out;
}
arma::mat Unscented_filter::get_x_est() const
arma::mat UnscentedFilter::get_x_est() const
{
return x_est;
}
arma::mat Unscented_filter::get_P_x_est() const
arma::mat UnscentedFilter::get_P_x_est() const
{
return P_x_est;
}

View File

@@ -2,9 +2,9 @@
* \file nonlinear_tracking.h
* \brief Interface of a library for nonlinear tracking algorithms
*
* Cubature_Filter implements the functionality of the Cubature Kalman
* CubatureFilter implements the functionality of the Cubature Kalman
* Filter, which uses multidimensional cubature rules to estimate the
* time evolution of a nonlinear system. Unscented_filter implements
* time evolution of a nonlinear system. UnscentedFilter implements
* an Unscented Kalman Filter which uses Unscented Transform rules to
* perform a similar estimation.
*
@@ -47,29 +47,29 @@
#include <gnuradio/gr_complex.h>
// Abstract model function
class Model_Function
class ModelFunction
{
public:
Model_Function(){};
virtual arma::vec operator()(arma::vec input) = 0;
virtual ~Model_Function() = default;
ModelFunction(){};
virtual arma::vec operator()(const arma::vec& input) = 0;
virtual ~ModelFunction() = default;
};
class Cubature_filter
class CubatureFilter
{
public:
// Constructors and destructors
Cubature_filter();
Cubature_filter(int nx);
Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
~Cubature_filter();
CubatureFilter();
CubatureFilter(int nx);
CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
~CubatureFilter();
// Reinitialization function
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
// Prediction and estimation
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
// Getters
arma::mat get_x_pred() const;
@@ -84,21 +84,21 @@ private:
arma::mat P_x_est;
};
class Unscented_filter
class UnscentedFilter
{
public:
// Constructors and destructors
Unscented_filter();
Unscented_filter(int nx);
Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
~Unscented_filter();
UnscentedFilter();
UnscentedFilter(int nx);
UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
~UnscentedFilter();
// Reinitialization function
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
// Prediction and estimation
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
// Getters
arma::mat get_x_pred() const;