First version of Galileo E1 DLL PLL Very Early Minus Late Tracking. Added some functions in Matlab to analyze the results.

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@234 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Luis Esteve 2012-08-28 13:38:33 +00:00
parent 2bb7afc0ee
commit 45d7220dae
23 changed files with 2021 additions and 27 deletions

View File

@ -32,7 +32,8 @@
#include "galileo_e1_signal_processing.h"
void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn,
void
galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn,
unsigned int _chip_shift)
{
std::string _galileo_signal = _Signal;
@ -71,7 +72,8 @@ void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn,
}
void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn,
void
galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn,
unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
@ -91,7 +93,8 @@ void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn,
}
void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn,
void
galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn,
unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
@ -110,7 +113,8 @@ void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn,
}
}
void galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
void
galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
{
std::string _galileo_signal = _Signal;
const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
@ -142,9 +146,9 @@ void galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
return;
}
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest,
char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs,
unsigned int _chip_shift)
void
galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
@ -162,12 +166,19 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest,
_codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
std::complex<float> _signal_E1[_codeLength];
if (_fs != 12 * _codeFreqBasis)
{
std::complex<float> _signal_E1[_codeLength];
galileo_e1_gen(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
galileo_e1_gen(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
resampler(_signal_E1, _dest, 12 * _codeFreqBasis, _fs, _codeLength,
_samplesPerCode); //resamples code to fs
resampler(_signal_E1, _dest, 12 * _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
}
else
{
galileo_e1_gen(_dest, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
}
}
else
@ -177,13 +188,20 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest,
_codeLength = 2 * Galileo_E1_B_CODE_LENGTH_CHIPS;
std::complex<float> _signal_E1[_codeLength];
if (_fs != 2 * _codeFreqBasis)
{
std::complex<float> _signal_E1[_codeLength];
galileo_e1_sinboc_11_gen(_signal_E1, primary_code_E1_chips,
_codeLength); //generate sinboc(1,1) 2 samples per chip
resampler(_signal_E1, _dest, 2 * _codeFreqBasis, _fs, _codeLength,
_samplesPerCode); //resamples code to fs
galileo_e1_sinboc_11_gen(_signal_E1, primary_code_E1_chips,
_codeLength); //generate sinboc(1,1) 2 samples per chip
resampler(_signal_E1, _dest, 2 * _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
}
else
{
galileo_e1_sinboc_11_gen(_dest, primary_code_E1_chips,
_codeLength); //generate sinboc(1,1) 2 samples per chip }
}
}
}

View File

@ -0,0 +1,170 @@
/*!
* \file galileo_e1_dll_pll_veml_tracking.cc
* \brief Interface of an adapter of a DLL+PLL VEML (Very Early Minus Late)
* tracking loop block for Galileo E1 to a TrackingInterface
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e1_dll_pll_veml_tracking.h"
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
#include "configuration_interface.h"
#ifdef GNSS_SDR_USE_BOOST_ROUND
#include <boost/math/special_functions/round.hpp>
#endif
#include <gnuradio/gr_io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
using google::LogMessage;
GalileoE1DllPllVemlTracking::GalileoE1DllPllVemlTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
gr_msg_queue_sptr queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue)
{
DLOG(INFO) << "role " << role;
//DLOG(INFO) << "vector length " << vector_length;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
float very_early_late_space_chips;
item_type = configuration->property(role + ".item_type",default_item_type);
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.15);
very_early_late_space_chips = configuration->property(role + ".very_early_late_space_chips", 0.6);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
#ifdef GNSS_SDR_USE_BOOST_ROUND
vector_length = round(fs_in / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS));
#else
vector_length = std::round(fs_in / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS));
#endif
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = galileo_e1_dll_pll_veml_make_tracking_cc(
f_if,
fs_in,
vector_length,
queue_,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
early_late_space_chips,
very_early_late_space_chips);
}
else
{
LOG_AT_LEVEL(WARNING) << item_type << " unknown tracking item type.";
}
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GalileoE1DllPllVemlTracking::~GalileoE1DllPllVemlTracking()
{
}
void GalileoE1DllPllVemlTracking::start_tracking()
{
tracking_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GalileoE1DllPllVemlTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
/*
* Set tracking channel internal queue
*/
void GalileoE1DllPllVemlTracking::set_channel_queue(
concurrent_queue<int> *channel_internal_queue)
{
channel_internal_queue_ = channel_internal_queue;
tracking_->set_channel_queue(channel_internal_queue_);
}
void GalileoE1DllPllVemlTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GalileoE1DllPllVemlTracking::connect(gr_top_block_sptr top_block)
{
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GalileoE1DllPllVemlTracking::disconnect(gr_top_block_sptr top_block)
{
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr_basic_block_sptr GalileoE1DllPllVemlTracking::get_left_block()
{
return tracking_;
}
gr_basic_block_sptr GalileoE1DllPllVemlTracking::get_right_block()
{
return tracking_;
}

View File

@ -0,0 +1,113 @@
/*!
* \file galileo_e1_dll_pll_veml_tracking.h
* \brief Interface of an adapter of a DLL+PLL VEML (Very Early Minus Late)
* tracking loop block for Galileo E1 to a TrackingInterface
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_H_
#define GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_H_
#include "tracking_interface.h"
#include "galileo_e1_dll_pll_veml_tracking_cc.h"
#include <gnuradio/gr_msg_queue.h>
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GalileoE1DllPllVemlTracking : public TrackingInterface
{
public:
GalileoE1DllPllVemlTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
gr_msg_queue_sptr queue);
virtual ~GalileoE1DllPllVemlTracking();
std::string role()
{
return role_;
}
std::string implementation()
{
return "Galileo_E1_DLL_PLL_VEML_Tracking";
}
size_t item_size()
{
return item_size_;
}
void connect(gr_top_block_sptr top_block);
void disconnect(gr_top_block_sptr top_block);
gr_basic_block_sptr get_left_block();
gr_basic_block_sptr get_right_block();
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
/*!
* \brief Set tracking channel internal queue
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
void start_tracking();
private:
galileo_e1_dll_pll_veml_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
gr_msg_queue_sptr queue_;
concurrent_queue<int> *channel_internal_queue_;
};
#endif // GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_H_

View File

@ -2,4 +2,5 @@ project : build-dir ../../../../build ;
obj gps_l1_ca_dll_pll_tracking : gps_l1_ca_dll_pll_tracking.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_dll_fll_pll_tracking : gps_l1_ca_dll_fll_pll_tracking.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_tcp_connector_tracking : gps_l1_ca_tcp_connector_tracking.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_tcp_connector_tracking : gps_l1_ca_tcp_connector_tracking.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj galileo_e1_dll_pll_veml_tracking : galileo_e1_dll_pll_veml_tracking.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;

View File

@ -0,0 +1,681 @@
/*!
* \file galileo_e1_dll_pll_veml_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL bump-jump tracking
* block
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gnss_synchro.h"
#include "galileo_e1_dll_pll_veml_tracking_cc.h"
#include "galileo_e1_signal_processing.h"
#include "tracking_discriminators.h"
#include "CN_estimators.h"
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
#include "control_message_factory.h"
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <sstream>
#include <cmath>
#include "math.h"
#include <gnuradio/gr_io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 200
using google::LogMessage;
galileo_e1_dll_pll_veml_tracking_cc_sptr
galileo_e1_dll_pll_veml_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
gr_msg_queue_sptr queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
float very_early_late_space_chips)
{
return galileo_e1_dll_pll_veml_tracking_cc_sptr(new galileo_e1_dll_pll_veml_tracking_cc(if_freq,
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips, very_early_late_space_chips));
}
void galileo_e1_dll_pll_veml_tracking_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = (int)d_vector_length*2; //set the required available samples in each call
}
galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
gr_msg_queue_sptr queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
float very_early_late_space_chips):
gr_block ("galileo_e1_dll_pll_veml_tracking_cc", gr_make_io_signature (1, 1, sizeof(gr_complex)),
gr_make_io_signature(1, 1, sizeof(Gnss_Synchro)))
{
d_debug_counter = 0;
this->set_relative_rate(1.0/vector_length);
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_code_loop_filter=Tracking_2nd_DLL_filter(0.004);
d_carrier_loop_filter=Tracking_2nd_PLL_filter(0.004);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
d_very_early_late_spc_chips = very_early_late_space_chips; // Define very-early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
// int d_ca_code_size = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4);
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)];
// std::cout << "d_ca_code_size = " << d_ca_code_size << std::endl;
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
*/
// todo: do something if posix_memalign fails
// Get space for the resampled early / prompt / late local replicas
if (posix_memalign((void**)&d_very_early_code, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
if (posix_memalign((void**)&d_early_code, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
if (posix_memalign((void**)&d_prompt_code, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
if (posix_memalign((void**)&d_late_code, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
if (posix_memalign((void**)&d_very_late_code, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
// space for carrier wipeoff and signal baseband vectors
if (posix_memalign((void**)&d_carr_sign, 16, d_vector_length * sizeof(gr_complex) * 2) == 0){};
// correlator outputs (scalar)
if (posix_memalign((void**)&d_Very_Early, 16, sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_Early, 16, sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_Prompt, 16, sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_Late, 16, sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_Very_Late, 16, sizeof(gr_complex)) == 0){};
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_hz = Galileo_E1_CODE_CHIP_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// define phase step
d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips]
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
d_last_seg = 0;
d_current_prn_length_samples = (int)d_vector_length;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = 20;
systemName["G"] = std::string("GPS");
systemName["R"] = std::string("GLONASS");
systemName["S"] = std::string("SBAS");
systemName["E"] = std::string("Galileo");
systemName["C"] = std::string("Compass");
}
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
{
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
// std::cout << "d_acq_code_phase_samples = " << d_acq_code_phase_samples << std::endl;
// std::cout << "d_acq_carrier_doppler_hz = " << d_acq_carrier_doppler_hz << std::endl;
// std::cout << "d_acq_sample_stamp = " << d_acq_sample_stamp << std::endl;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //initialize the carrier filter
d_code_loop_filter.initialize(d_acq_code_phase_samples); //initialize the code filter
// generate local reference ALWAYS starting at chip 2 (2 samples per chip)
// std::cout << "PRN = " << d_acquisition_gnss_synchro->PRN << std::endl;
// std::cout << "Signal = " << d_acquisition_gnss_synchro->Signal << std::endl;
// std::cout << "fs_gen = " << 2*Galileo_E1_CODE_CHIP_RATE_HZ << std::endl;
galileo_e1_code_gen_complex_sampled(&d_ca_code[2],d_acquisition_gnss_synchro->Signal, false, d_acquisition_gnss_synchro->PRN, 2*Galileo_E1_CODE_CHIP_RATE_HZ, 0);
// std::cout << "Local code generated." << std::endl;
// for(int i=0;i<25; i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
// for(int i=(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS-6);i<(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+4); i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
//
// int index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS);
d_ca_code[0] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS)];
// std::cout << "d_ca_code[0] = d_ca_code[" << index <<"]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+1);
d_ca_code[1] = d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+1)];
// std::cout << "d_ca_code[1] = d_ca_code[" << index <<"]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+2);
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+2)] = d_ca_code[2];
// std::cout << "d_ca_code[" << index <<"] = d_ca_code[2]" << std::endl;
// index = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+3);
d_ca_code[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS+3)] = d_ca_code[3];
// std::cout << "d_ca_code[" << index <<"] = d_ca_code[3]" << std::endl;
// for(int i=0;i<25; i++) std::cout << d_ca_code[i];
// std::cout << std::endl;
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carr_phase_rad = 0;
d_next_rem_code_phase_samples = 0;
d_acc_carrier_phase_rad = 0;
d_code_phase_samples = d_acq_code_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_next_prn_length_samples = d_vector_length;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0,1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
DLOG(INFO) << "Start tracking for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " received" << std::endl;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
std::cout << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples << std::endl;
}
void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
{
double tcode_half_chips;
float rem_code_phase_half_chips;
int associated_chip_index;
int code_length_half_chips = (int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS);
double code_phase_step_chips;
double code_phase_step_half_chips;
int early_late_spc_samples;
int very_early_late_spc_samples;
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
code_phase_step_chips = ((double)d_code_freq_hz) / ((double)d_fs_in);
code_phase_step_half_chips = (2.0*(double)d_code_freq_hz) / ((double)d_fs_in);
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_hz / d_fs_in);
tcode_half_chips = -(double)rem_code_phase_half_chips;
early_late_spc_samples=round(d_early_late_spc_chips/code_phase_step_chips);
very_early_late_spc_samples=round(d_very_early_late_spc_chips/code_phase_step_chips);
epl_loop_length_samples=d_current_prn_length_samples+very_early_late_spc_samples*2;
// if(d_debug_counter<10){
// std::cout << std::endl;
// std::cout << "======= DEBUG " << d_debug_counter << " ========" << std::endl << std::endl;
// std::cout << "rem_code_phase_half_chips = " << rem_code_phase_half_chips << std::endl;
// std::cout << "code_phase_step_chips = " << code_phase_step_chips << std::endl;
// std::cout << "code_phase_step_half_chips = " << code_phase_step_half_chips << std::endl;
// std::cout << "early_late_spc_samples = " << early_late_spc_samples << std::endl;
// std::cout << "very_early_late_spc_samples = " << very_early_late_spc_samples << std::endl;
// std::cout << "d_current_prn_length_samples = " << d_current_prn_length_samples << std::endl;
// std::cout << "epl_loop_length_samples = " << epl_loop_length_samples << std::endl << std::endl;
// }
for (int i=0; i<epl_loop_length_samples; i++)
{
associated_chip_index = 2 + round(fmod(tcode_half_chips - 2*d_very_early_late_spc_chips, code_length_half_chips));
// if(d_debug_counter<4 && ((i<10)||(i==100)||(498<i && i<501)||(i==1000)||(i==5000)||(i==10000)||(i==20000)||(i==32000))) {
// std::cout << "tcode_half_chips = " << tcode_half_chips << ", i = " << i << ", associated_chip_index = " << associated_chip_index << std::endl;
// //std::cout << "tcode_half_chips - 2*d_very_early_late_spc_chips = " << tcode_half_chips - 2*d_very_early_late_spc_chips << ", i = " << i << ", associated_chip_index = " << associated_chip_index << std::endl;
// }
d_very_early_code[i] = d_ca_code[associated_chip_index];
tcode_half_chips = tcode_half_chips + code_phase_step_half_chips;
}
memcpy(d_early_code,&d_very_early_code[very_early_late_spc_samples-early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_prompt_code,&d_very_early_code[very_early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_late_code,&d_very_early_code[2*very_early_late_spc_samples-early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
memcpy(d_very_late_code,&d_very_early_code[2*very_early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
}
void galileo_e1_dll_pll_veml_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
phase_step_rad = (float)GPS_TWO_PI*d_carrier_doppler_hz / (float)d_fs_in;
phase_rad = d_rem_carr_phase_rad;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
d_carr_sign[i] = gr_complex(cos(phase_rad), sin(phase_rad));
phase_rad += phase_step_rad;
}
d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
}
galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
{
d_dump_file.close();
free(d_very_early_code);
free(d_early_code);
free(d_prompt_code);
free(d_late_code);
free(d_very_late_code);
free(d_carr_sign);
free(d_Very_Early);
free(d_Early);
free(d_Prompt);
free(d_Late);
free(d_Very_Late);
delete[] d_ca_code;
delete[] d_Prompt_buffer;
}
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error;
float carr_nco;
float code_error;
float code_nco;
if (d_enable_tracking == true)
{
/*
* Receiver signal alignment
*/
if (d_pull_in == true)
{
int samples_offset;
float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_next_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_next_prn_length_samples);
// std::cout<<"acq_trk_shif_correction="<<acq_trk_shif_correction_samples<< std::endl;
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / (double)d_fs_in);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false;
// std::cout << "samples_offset=" << samples_offset << std::endl;
d_debug_counter++;
consume_each(samples_offset); //shift input to perform alignement with local replica
return 1;
}
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignement
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
// if(d_debug_counter == 1) {
// for (int i=0; i<10; i++) std::cout << "in["<<i<<"] = "<< in[i] << std::endl;
// }
// Update the prn length based on code freq (variable) and
// sampling frequency (fixed)
// variable code PRN sample block size
d_current_prn_length_samples = d_next_prn_length_samples;
update_local_code();
update_local_carrier();
// perform Early, Prompt and Late correlation
d_correlator.Carrier_wipeoff_and_VEPL_volk(d_current_prn_length_samples,
in,
d_carr_sign,
d_very_early_code,
d_early_code,
d_prompt_code,
d_late_code,
d_very_late_code,
d_Very_Early,
d_Early,
d_Prompt,
d_Late,
d_Very_Late,
is_unaligned());
// Compute PLL error and update carrier NCO
carr_error = pll_cloop_two_quadrant_atan(*d_Prompt) / (float)GPS_TWO_PI;
// Implement carrier loop filter and generate NCO command
carr_nco = d_carrier_loop_filter.get_carrier_nco(carr_error);
// Modify carrier freq based on NCO command
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_nco;
//std::cout << "d_carrier_doppler_hz = " << d_carrier_doppler_hz << std::endl;
// Compute DLL error and update code NCO
code_error = dll_nc_vemlp_normalized(*d_Very_Early, *d_Early, *d_Late, *d_Very_Late);
// Implement code loop filter and generate NCO command
code_nco = d_code_loop_filter.get_code_nco(code_error);
// Modify code freq based on NCO command
d_code_freq_hz = Galileo_E1_CODE_CHIP_RATE_HZ - code_nco;
// Update the phase step based on code freq (variable) and
// sampling frequency (fixed)
d_code_phase_step_chips = d_code_freq_hz / (float)d_fs_in; //[chips]
// variable code PRN sample block size
float T_chip_seconds;
float T_prn_seconds;
float T_prn_samples;
float K_blk_samples;
T_chip_seconds = 1 / d_code_freq_hz;
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * d_fs_in;
d_rem_code_phase_samples = d_next_rem_code_phase_samples;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples;
d_next_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_next_rem_code_phase_samples = K_blk_samples - d_next_prn_length_samples; //rounding error
// if(d_debug_counter<10){
// std::cout << std::endl;
// std::cout << "----- LOOP RESULTS -----" << std::endl;
// std::cout << "carr_error = " << carr_error << std::endl;
// std::cout << "carr_nco = " << carr_nco << std::endl;
// std::cout << "d_carrier_doppler_hz = " << d_carrier_doppler_hz << std::endl;
// std::cout << "code_error = " << code_error << std::endl;
// std::cout << "code_nco = " << code_nco << std::endl;
// std::cout << "d_code_freq_hz = " << d_code_freq_hz << std::endl;
// std::cout << "d_code_phase_step_chips = " << d_code_phase_step_chips << std::endl;
// std::cout << "d_rem_code_phase_samples = " << d_rem_code_phase_samples << std::endl;
// }
/*!
* \todo Improve the lock detection algorithm!
*/
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
d_CN0_SNV_dB_Hz = galileo_e1_CN0_SNV(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in);
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// ###### TRACKING UNLOCK NOTIFICATION #####
if (std::abs(d_carrier_lock_test) > d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Channel " << d_channel << " loss of lock!" << std::endl ;
//tracking_message = 3; //loss of lock
//d_channel_internal_queue->push(tracking_message);
ControlMessageFactory* cmf = new ControlMessageFactory();
if (d_queue != gr_msg_queue_sptr()) {
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
delete cmf;
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
//std::cout<<"d_carrier_lock_fail_counter"<<d_carrier_lock_fail_counter<<"\r\n";
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = (double)(*d_Prompt).imag();
current_synchro_data.Prompt_Q = (double)(*d_Prompt).real();
// Tracking_timestamp_secs is aligned with the PRN start sample
current_synchro_data.Tracking_timestamp_secs=((double)d_sample_counter+(double)d_next_prn_length_samples+(double)d_next_rem_code_phase_samples)/(double)d_fs_in;
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs=0;
current_synchro_data.Carrier_phase_rads = (double)d_acc_carrier_phase_rad;
current_synchro_data.CN0_dB_hz = (double)d_CN0_SNV_dB_Hz;
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
}
}
}
else
{
*d_Early = gr_complex(0,0);
*d_Prompt = gr_complex(0,0);
*d_Late = gr_complex(0,0);
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
//std::cout<<output_items.size()<<std::endl;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
*out[0] = current_synchro_data;
}
if(d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL;
float tmp_float;
double tmp_double;
prompt_I = (*d_Prompt).imag();
prompt_Q = (*d_Prompt).real();
tmp_VE = std::abs<float>(*d_Very_Early);
tmp_E = std::abs<float>(*d_Early);
tmp_P = std::abs<float>(*d_Prompt);
tmp_L = std::abs<float>(*d_Late);
tmp_VL = std::abs<float>(*d_Very_Late);
try
{
// EPR
d_dump_file.write((char*)&tmp_VE, sizeof(float));
d_dump_file.write((char*)&tmp_E, sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float));
d_dump_file.write((char*)&tmp_L, sizeof(float));
d_dump_file.write((char*)&tmp_VL, sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write((char*)&prompt_I, sizeof(float));
d_dump_file.write((char*)&prompt_Q, sizeof(float));
// PRN start sample stamp
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
// carrier and code frequency
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
d_dump_file.write((char*)&d_code_freq_hz, sizeof(float));
//PLL commands
d_dump_file.write((char*)&carr_error, sizeof(float));
d_dump_file.write((char*)&carr_nco, sizeof(float));
//DLL commands
d_dump_file.write((char*)&code_error, sizeof(float));
d_dump_file.write((char*)&code_nco, sizeof(float));
// CN0 and carrier lock test
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_double=(double)(d_sample_counter+d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// if(d_debug_counter < 10){
// std::cout << std::endl;
// std::cout << "d_debug_counter = " << d_debug_counter << std::endl;
// std::cout << "VE = " << tmp_VE << ", E = " << tmp_E << ", P = "<< tmp_P << ", L = " << tmp_L << ", VL = " << tmp_VL << std::endl << std::endl;
// }
}
catch (std::ifstream::failure e)
{
std::cout << "Exception writing trk dump file " << e.what() << std::endl;
}
}
// if(d_current_prn_length_samples!=d_vector_length)
// std::cout << "d_current_prn_length_samples = " << d_current_prn_length_samples << std::endl;
consume_each(d_current_prn_length_samples); // this is necesary in gr_block derivates
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
d_debug_counter++;
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void galileo_e1_dll_pll_veml_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG_AT_LEVEL(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump==true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
std::cout << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (std::ifstream::failure e)
{
std::cout << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl;
}
}
}
}
void galileo_e1_dll_pll_veml_tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
{
d_channel_internal_queue = channel_internal_queue;
}
void galileo_e1_dll_pll_veml_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
// Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
//DLOG(INFO) << "Tracking code phase set to " << d_acq_code_phase_samples;
//DLOG(INFO) << "Tracking carrier doppler set to " << d_acq_carrier_doppler_hz;
//DLOG(INFO) << "Tracking Satellite set to " << d_satellite;
}

View File

@ -0,0 +1,206 @@
/*!
* \file galileo_e1_dll_pll_veml_trakcing_cc.h
* \brief Implementation of a code DLL + carrier PLL bump-jump tracking
* block
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_CC_H
#define GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_CC_H
#include <fstream>
#include <queue>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/gr_block.h>
#include <gnuradio/gr_msg_queue.h>
#include "concurrent_queue.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "correlator.h"
class galileo_e1_dll_pll_veml_tracking_cc;
typedef boost::shared_ptr<galileo_e1_dll_pll_veml_tracking_cc>
galileo_e1_dll_pll_veml_tracking_cc_sptr;
galileo_e1_dll_pll_veml_tracking_cc_sptr
galileo_e1_dll_pll_veml_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
gr_msg_queue_sptr queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
float very_early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL bump-jump tracking loop block
*/
class galileo_e1_dll_pll_veml_tracking_cc: public gr_block
{
public:
~galileo_e1_dll_pll_veml_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend galileo_e1_dll_pll_veml_tracking_cc_sptr
galileo_e1_dll_pll_veml_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
gr_msg_queue_sptr queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
float very_early_late_space_chips);
galileo_e1_dll_pll_veml_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
gr_msg_queue_sptr queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips,
float very_early_late_space_chips);
void update_local_code();
void update_local_carrier();
// tracking configuration vars
gr_msg_queue_sptr d_queue;
concurrent_queue<int> *d_channel_internal_queue;
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
int d_last_seg;
long d_if_freq;
long d_fs_in;
float d_early_late_spc_chips;
float d_very_early_late_spc_chips;
float d_code_phase_step_chips;
gr_complex* d_ca_code;
gr_complex* d_very_early_code;
gr_complex* d_early_code;
gr_complex* d_prompt_code;
gr_complex* d_late_code;
gr_complex* d_very_late_code;
gr_complex* d_carr_sign;
gr_complex *d_Very_Early;
gr_complex *d_Early;
gr_complex *d_Prompt;
gr_complex *d_Late;
gr_complex *d_Very_Late;
// remaining code phase and carrier phase between tracking loops
float d_rem_code_phase_samples;
float d_next_rem_code_phase_samples;
float d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
float d_code_freq_hz;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
//PRN period in samples
int d_current_prn_length_samples;
int d_next_prn_length_samples;
//double d_sample_counter_seconds;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
//debug
int d_debug_counter;
};
#endif //GNSS_SDR_GALILEO_E1_DLL_PLL_VEML_TRACKING_CC_H

View File

@ -2,4 +2,5 @@ project : build-dir ../../../../build ;
obj gps_l1_ca_dll_pll_tracking_cc : gps_l1_ca_dll_pll_tracking_cc.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_dll_fll_pll_tracking_cc : gps_l1_ca_dll_fll_pll_tracking_cc.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_tcp_connector_tracking_cc : gps_l1_ca_tcp_connector_tracking_cc.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj gps_l1_ca_tcp_connector_tracking_cc : gps_l1_ca_tcp_connector_tracking_cc.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;
obj galileo_e1_dll_pll_veml_tracking_cc : galileo_e1_dll_pll_veml_tracking_cc.cc : <toolset>darwin:<define>GNSS_SDR_USE_BOOST_ROUND ;

View File

@ -42,6 +42,7 @@
*/
#include "CN_estimators.h"
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
#include <gnuradio/gr_complex.h>
#include <math.h>
@ -87,6 +88,47 @@ float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in)
return SNR_dB_Hz;
}
/*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the receiver bandwidth and the PRN code gain, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}),
* \f}
* where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length.
*
*/
float galileo_e1_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in)
{
// estimate CN0 using buffered values
// MATLAB CODE
// Psig=((1/N)*sum(abs(imag(x((n-N+1):n)))))^2;
// Ptot=(1/N)*sum(abs(x((n-N+1):n)).^2);
// SNR_SNV(count)=Psig/(Ptot-Psig);
// CN0_SNV_dB=10*log10(SNR_SNV)+10*log10(BW)-10*log10(PRN_length);
float SNR, SNR_dB_Hz;
float tmp_abs_imag;
float Psig, Ptot;
Psig = 0;
Ptot = 0;
for (int i=0; i<length; i++)
{
tmp_abs_imag = std::abs(Prompt_buffer[i].imag());
Psig += tmp_abs_imag;
Ptot += Prompt_buffer[i].imag() * Prompt_buffer[i].imag() + Prompt_buffer[i].real() * Prompt_buffer[i].real();
}
Psig = Psig / (float)length;
Psig = Psig * Psig;
SNR = Psig / (Ptot / (float)length - Psig);
SNR_dB_Hz = 10 * log10(SNR) + 10 * log10(fs_in/2) - 10 * log10(Galileo_E1_B_CODE_LENGTH_CHIPS);
return SNR_dB_Hz;
}
/*
* The Carrier Phase Lock Detector block uses the normalised estimate of the cosine of twice the carrier phase error is given by
* \f{equation}

View File

@ -56,6 +56,7 @@
* Applications, pp.28-30, August 2008.
*/
float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in);
float galileo_e1_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in);
/*! \brief A carrier lock detector
*

View File

@ -109,6 +109,39 @@ void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples,const gr
}
}
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* VE_code,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* VL_code,gr_complex* VE_out,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,gr_complex* VL_out,bool input_vector_aligned)
{
gr_complex* bb_signal;
gr_complex* input_aligned;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&bb_signal, 16, signal_length_samples * sizeof(gr_complex)) == 0) {};
if (input_vector_aligned==false)
{
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_multiply_32fc_a(bb_signal, input_aligned, carrier, signal_length_samples);
}else{
//use directly the input vector
volk_32fc_x2_multiply_32fc_a(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(VE_out, bb_signal, VE_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_dot_prod_32fc_a(VL_out, bb_signal, VL_code, signal_length_samples * sizeof(gr_complex));
free(bb_signal);
if (input_vector_aligned==false)
{
free(input_aligned);
}
}
void Correlator::cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a()
{
//

View File

@ -51,6 +51,7 @@ class Correlator
public:
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,bool input_vector_aligned);
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples,const gr_complex* input, gr_complex* carrier,gr_complex* VE_code,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code,gr_complex* VL_code,gr_complex* VE_out,gr_complex* E_out, gr_complex* P_out, gr_complex* L_out,gr_complex* VL_out,bool input_vector_aligned);
Correlator();
~Correlator();
private:

View File

@ -77,7 +77,11 @@ float Tracking_2nd_DLL_filter::get_code_nco(float DLL_discriminator)
return code_nco;
}
Tracking_2nd_DLL_filter::Tracking_2nd_DLL_filter (float pdi_code)
{
d_pdi_code = pdi_code;// Summation interval for code
d_dlldampingratio = 0.7;
}
Tracking_2nd_DLL_filter::Tracking_2nd_DLL_filter ()
{
@ -85,7 +89,6 @@ Tracking_2nd_DLL_filter::Tracking_2nd_DLL_filter ()
d_dlldampingratio = 0.7;
}
Tracking_2nd_DLL_filter::~Tracking_2nd_DLL_filter ()
{}

View File

@ -62,6 +62,7 @@ public:
void set_DLL_BW(float dll_bw_hz); //! Set DLL filter bandwidth [Hz]
void initialize(float d_acq_code_phase_samples); //! Start tracking with acquisition information
float get_code_nco(float DLL_discriminator); //! Numerically controlled oscillator
Tracking_2nd_DLL_filter(float pdi_code);
Tracking_2nd_DLL_filter();
~Tracking_2nd_DLL_filter();
};

View File

@ -77,6 +77,12 @@ float Tracking_2nd_PLL_filter::get_carrier_nco(float PLL_discriminator)
return carr_nco;
}
Tracking_2nd_PLL_filter::Tracking_2nd_PLL_filter (float pdi_carr)
{
//--- PLL variables --------------------------------------------------------
d_pdi_carr = pdi_carr;// Summation interval for carrier
d_plldampingratio=0.65;
}
Tracking_2nd_PLL_filter::Tracking_2nd_PLL_filter ()

View File

@ -63,6 +63,7 @@ public:
void set_PLL_BW(float pll_bw_hz); //! Set PLL loop bandwidth [Hz]
void initialize(float d_acq_carrier_doppler_hz);
float get_carrier_nco(float PLL_discriminator);
Tracking_2nd_PLL_filter(float pdi_carr);
Tracking_2nd_PLL_filter();
~Tracking_2nd_PLL_filter();
};

View File

@ -3,11 +3,12 @@
* \brief Implementation of a library with a set of code tracking
* and carrier tracking discriminators that is used by the tracking algorithms.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
* Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -91,8 +92,8 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
* \f{equation}
* error=\frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{ES}^2,Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2,Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
*/
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
{
@ -101,3 +102,19 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
P_late = std::abs(late_s1);
return (P_early - P_late) / ((P_early + P_late));
}
/*
* DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator:
* \f{equation}
* error=\frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
*/
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1)
{
float P_early, P_late;
P_early = std::sqrt(std::norm(very_early_s1)+std::norm(early_s1));
P_late = std::sqrt(std::norm(very_late_s1)+std::norm(late_s1));
return (P_early - P_late) / ((P_early + P_late));
}

View File

@ -3,13 +3,14 @@
* \brief Interface of a library with a set of code tracking and carrier
* tracking discriminators.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
* Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Library with a set of code tracking and carrier tracking discriminators
* that is used by the tracking algorithms.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -84,4 +85,16 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
/*! \brief DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator
*
* DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator:
* \f{equation}
* error=\frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
*/
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
#endif

View File

@ -0,0 +1,241 @@
/*!
* \file galileo_e1_dll_pll_veml_tracking_internal_test.cc
* \brief This class implements a tracking test based on some input parameters.
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <gtest/gtest.h>
#include <sys/time.h>
#include <iostream>
#include <gnuradio/gr_top_block.h>
#include <gnuradio/gr_file_source.h>
#include <gnuradio/gr_sig_source_c.h>
#include <gnuradio/gr_msg_queue.h>
#include <gnuradio/gr_null_sink.h>
#include <gnuradio/gr_skiphead.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "galileo_e1_dll_pll_veml_tracking.h"
class GalileoE1DllPllVemlTrackingInternalTest: public ::testing::Test {
protected:
GalileoE1DllPllVemlTrackingInternalTest() {
queue = gr_make_msg_queue(0);
top_block = gr_make_top_block("Tracking test");
factory = new GNSSBlockFactory();
config = new InMemoryConfiguration();
item_size = sizeof(gr_complex);
stop = false;
message = 0;
}
~GalileoE1DllPllVemlTrackingInternalTest() {
delete factory;
delete config;
}
void init();
void start_queue();
void wait_message();
void stop_queue();
gr_msg_queue_sptr queue;
gr_top_block_sptr top_block;
GNSSBlockFactory* factory;
InMemoryConfiguration* config;
Gnss_Synchro gnss_synchro;
size_t item_size;
concurrent_queue<int> channel_internal_queue;
bool stop;
int message;
boost::thread ch_thread;
};
void GalileoE1DllPllVemlTrackingInternalTest::init(){
gnss_synchro.Channel_ID=0;
gnss_synchro.System = 'E';
std::string signal = "1B";
signal.copy(gnss_synchro.Signal,2,0);
gnss_synchro.PRN=11;
config->set_property("GNSS-SDR.internal_fs_hz", "8000000");
config->set_property("Tracking.item_type", "gr_complex");
config->set_property("Tracking.dump", "true");
config->set_property("Tracking.dump_filename", "../data/veml_tracking_ch_");
config->set_property("Tracking.implementation", "Galileo_E1_DLL_PLL_Tracking");
config->set_property("Tracking.early_late_space_chips", "0.15");
config->set_property("Tracking.very_early_late_space_chips", "0.6");
config->set_property("Tracking.pll_bw_hz", "30.0");
config->set_property("Tracking.dll_bw_hz", "2.0");
}
void GalileoE1DllPllVemlTrackingInternalTest::start_queue()
{
ch_thread = boost::thread(&GalileoE1DllPllVemlTrackingInternalTest::wait_message, this);
}
void GalileoE1DllPllVemlTrackingInternalTest::wait_message()
{
while (!stop)
{
channel_internal_queue.wait_and_pop(message);
stop_queue();
}
}
void GalileoE1DllPllVemlTrackingInternalTest::stop_queue()
{
stop = true;
}
TEST_F(GalileoE1DllPllVemlTrackingInternalTest, Instantiate)
{
init();
GalileoE1DllPllVemlTracking *tracking = new GalileoE1DllPllVemlTracking(config, "Tracking", 1, 1, queue);
EXPECT_STREQ("Galileo_E1_DLL_PLL_VEML_Tracking", tracking->implementation().c_str());
delete tracking;
}
//TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ConnectAndRun)
//{
// int fs_in = 8000000;
// int nsamples = 80000000;
// struct timeval tv;
// long long int begin;
// long long int end;
//
// init();
// GalileoE1DllPllVemlTracking *tracking = new GalileoE1DllPllVemlTracking(config, "Tracking", 1, 1, queue);
//
// ASSERT_NO_THROW( {
// tracking->connect(top_block);
//
// gr_sig_source_c_sptr source = gr_make_sig_source_c(fs_in,GR_SIN_WAVE, 1000, 1, gr_complex(0));
// gr_block_sptr valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
// gr_null_sink_sptr sink = gr_make_null_sink(sizeof(Gnss_Synchro));
// top_block->connect(source, 0, valve, 0);
// top_block->connect(valve, 0, tracking->get_left_block(), 0);
// top_block->connect(tracking->get_right_block(), 0, sink, 0);
//
// }) << "Failure connecting the blocks of tracking test."<< std::endl;
//
// EXPECT_NO_THROW( {
// gettimeofday(&tv, NULL);
// begin = tv.tv_sec *1000000 + tv.tv_usec;
// top_block->run(); // Start threads and wait
// gettimeofday(&tv, NULL);
// end = tv.tv_sec *1000000 + tv.tv_usec;
// }) << "Failure running he top_block."<< std::endl;
//
// delete tracking;
// std::cout << "Processed " << nsamples << " samples in " << (end-begin) << " microseconds" << std::endl;
//
//}
TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ValidationOfResults)
{
struct timeval tv;
long long int begin;
long long int end;
// int num_samples = 40000000; // 4 Msps
// unsigned int skiphead_sps = 24000000; // 4 Msps
int num_samples = 80000000; // 8 Msps
unsigned int skiphead_sps = 8000000; // 8 Msps
init();
GalileoE1DllPllVemlTracking *tracking = new GalileoE1DllPllVemlTracking(config, "Tracking", 1, 1, queue);
// gnss_synchro.Acq_delay_samples=1753; // 4 Msps
// gnss_synchro.Acq_doppler_hz=-9500; // 4 Msps
gnss_synchro.Acq_delay_samples=17256; // 8 Msps
gnss_synchro.Acq_doppler_hz=-8750; // 8 Msps
gnss_synchro.Acq_samplestamp_samples=0;
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel."<< std::endl;
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
ASSERT_NO_THROW( {
tracking->set_channel_queue(&channel_internal_queue);
}) << "Failure setting channel_internal_queue."<< std::endl;
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block."<< std::endl;
ASSERT_NO_THROW( {
std::string file = "/media/DATA/Proyectos/Signals/cttc_2012_07_26/cp_cttc_2012_07_26_n6_8Msps.dat";
// std::string file = "/media/DATA/Proyectos/Signals/cttc_2012_07_26/cp_cttc_2012_07_26_n4_4Msps.dat";
// std::string file = "/media/DATA/Proyectos/Signals/prueba.dat";
// std::string file = "../data/resampler.dat";
const char * file_name = file.c_str();
gr_file_source_sptr file_source = gr_make_file_source(sizeof(gr_complex),file_name,false);
gr_skiphead_sptr skip_head = gr_make_skiphead(sizeof(gr_complex), skiphead_sps);
gr_block_sptr valve = gnss_sdr_make_valve(sizeof(gr_complex), num_samples, queue);
gr_null_sink_sptr sink = gr_make_null_sink(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, skip_head, 0);
top_block->connect(skip_head, 0, valve, 0);
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
}) << "Failure connecting the blocks of tracking test."<< std::endl;
tracking->start_tracking();
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec *1000000 + tv.tv_usec;
}) << "Failure running he top_block."<< std::endl;
std::cout << "Tracked " << num_samples << " samples in " << (end-begin) << " microseconds" << std::endl;
delete tracking;
}

View File

@ -49,9 +49,11 @@ exe run_tests : test_main.cc
../algorithms/tracking/adapters//gps_l1_ca_dll_pll_tracking
../algorithms/tracking/adapters//gps_l1_ca_dll_fll_pll_tracking
../algorithms/tracking/adapters//gps_l1_ca_tcp_connector_tracking
../algorithms/tracking/adapters//galileo_e1_dll_pll_veml_tracking
../algorithms/tracking/gnuradio_blocks//gps_l1_ca_dll_pll_tracking_cc
../algorithms/tracking/gnuradio_blocks//gps_l1_ca_dll_fll_pll_tracking_cc
../algorithms/tracking/gnuradio_blocks//gps_l1_ca_tcp_connector_tracking_cc
../algorithms/tracking/gnuradio_blocks//galileo_e1_dll_pll_veml_tracking_cc
../algorithms/tracking/libs//tracking_discriminators
../algorithms/tracking/libs//CN_estimators
../algorithms/tracking/libs//tracking_FLL_PLL_filter

View File

@ -64,10 +64,9 @@
#include "gnss_block/gps_l1_ca_pcps_acquisition_test.cc"
#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc"
#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc"
//#include "gnss_block/gps_l1_ca_dll_pll_tracking_test.cc"
//#include "gnss_block/galileo_e1_dll_pll_veml_tracking_test.cc"
#include "gnss_block/file_output_filter_test.cc"
#include "gnss_block/gnss_block_factory_test.cc"
//#include "gnss_block/direct_resampler_conditioner_test.cc"
concurrent_queue<Gps_Navigation_Message> global_gps_nav_msg_queue;

View File

@ -0,0 +1,93 @@
% /*!
% * \file galileo_l1_ca_dll_pll_vml_plot_sample_64bits.m
% * \brief Read GNSS-SDR Tracking dump binary file using the provided
% function and plot some internal variables
% * \author Javier Arribas, 2011. jarribas(at)cttc.es
% * -------------------------------------------------------------------------
% *
% * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
% *
% * GNSS-SDR is a software defined Global Navigation
% * Satellite Systems receiver
% *
% * This file is part of GNSS-SDR.
% *
% * GNSS-SDR is free software: you can redistribute it and/or modify
% * it under the terms of the GNU General Public License as published by
% * the Free Software Foundation, either version 3 of the License, or
% * at your option) any later version.
% *
% * GNSS-SDR is distributed in the hope that it will be useful,
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * GNU General Public License for more details.
% *
% * You should have received a copy of the GNU General Public License
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
close all;
clear all;
samplingFreq = 64e6/8; %[Hz]
channels=1;
%path='/home/javier/workspace/gnss-sdr/trunk/install/';
path='/home/luis/dev/gnss-sdr/trunk/data/';
clear PRN_absolute_sample_start;
for N=1:1:channels
tracking_log_path=[path 'veml_tracking_ch_' num2str(N-1) '.dat'];
GNSS_tracking(N)= galileo_e1_dll_pll_veml_read_tracking_dump(tracking_log_path);
end
% GNSS-SDR format conversion to MATLAB GPS receiver
for N=1:1:channels
trackResults(N).status='T'; %fake track
trackResults(N).codeFreq=GNSS_tracking(N).code_freq_hz.';
trackResults(N).carrFreq=GNSS_tracking(N).carrier_doppler_hz.';
trackResults(N).dllDiscr = GNSS_tracking(N).code_error.';
trackResults(N).dllDiscrFilt = GNSS_tracking(N).code_nco.';
trackResults(N).pllDiscr = GNSS_tracking(N).carr_error.';
trackResults(N).pllDiscrFilt = GNSS_tracking(N).carr_nco.';
trackResults(N).I_P=GNSS_tracking(N).prompt_I.';
trackResults(N).Q_P=GNSS_tracking(N).prompt_Q.';
trackResults(N).I_VE= GNSS_tracking(N).VE.';
trackResults(N).I_E= GNSS_tracking(N).E.';
trackResults(N).I_L = GNSS_tracking(N).L.';
trackResults(N).I_VL = GNSS_tracking(N).VL.';
trackResults(N).Q_VE = zeros(1,length(GNSS_tracking(N).VE));
trackResults(N).Q_E = zeros(1,length(GNSS_tracking(N).E));
trackResults(N).Q_L =zeros(1,length(GNSS_tracking(N).L));
trackResults(N).Q_VL =zeros(1,length(GNSS_tracking(N).VL));
trackResults(N).PRN=N; %fake PRN
% Use original MATLAB tracking plot function
settings.numberOfChannels=channels;
settings.msToProcess=length(GNSS_tracking(N).E)*4;
plotVEMLTracking(N,trackResults,settings)
end
% for N=1:1:channels
% % figure;
% % plot([GNSS_tracking(N).E,GNSS_tracking(N).P,GNSS_tracking(N).L],'-*');
% % title(['Early, Prompt, and Late correlator absolute value output for channel ' num2str(N)']);
% % figure;
% % plot(GNSS_tracking(N).prompt_I,GNSS_tracking(N).prompt_Q,'+');
% % title(['Navigation constellation plot for channel ' num2str(N)]);
% % figure;
% %
% % plot(GNSS_tracking(N).prompt_Q,'r');
% % hold on;
% % plot(GNSS_tracking(N).prompt_I);
% % title(['Navigation symbols I(red) Q(blue) for channel ' num2str(N)]);
% %
% figure;
% t=0:4:length(GNSS_tracking(N).carrier_doppler_hz)*4-1;
% t=t/1000;
% plot(t,GNSS_tracking(N).carrier_doppler_hz/1000);
% xlabel('Time(s)');ylabel('Doppler(KHz)');title(['Doppler frequency channel ' num2str(N)]);
% end

View File

@ -0,0 +1,192 @@
% /*!
% * \file galileo_e1_dll_pll_veml_read_tracking_dump.m
% * \brief Read GNSS-SDR Tracking dump binary file into MATLAB.
% * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
% * -------------------------------------------------------------------------
% *
% * Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
% *
% * GNSS-SDR is a software defined Global Navigation
% * Satellite Systems receiver
% *
% * This file is part of GNSS-SDR.
% *
% * GNSS-SDR is free software: you can redistribute it and/or modify
% * it under the terms of the GNU General Public License as published by
% * the Free Software Foundation, either version 3 of the License, or
% * at your option) any later version.
% *
% * GNSS-SDR is distributed in the hope that it will be useful,
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * GNU General Public License for more details.
% *
% * You should have received a copy of the GNU General Public License
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
function [GNSS_tracking] = galileo_e1_dll_pll_veml_read_tracking_dump (filename, count)
%% usage: galileo_e1_dll_pll_veml_read_tracking_dump (filename, [count])
%%
%% open GNSS-SDR tracking binary log file .dat and return the contents
%%
m = nargchk (1,2,nargin);
num_float_vars=17;
num_unsigned_long_int_vars=1;
num_double_vars=1;
double_size_bytes=8;
unsigned_long_int_size_bytes=8;
float_size_bytes=4;
skip_bytes_each_read=float_size_bytes*num_float_vars+unsigned_long_int_size_bytes*num_unsigned_long_int_vars+double_size_bytes*num_double_vars;
bytes_shift=0;
if (m)
usage (m);
end
if (nargin < 2)
count = Inf;
end
%loops_counter = fread (f, count, 'uint32',4*12);
f = fopen (filename, 'rb');
if (f < 0)
else
v1 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v2 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v3 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v4 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v5 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v6 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v7 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v8 = fread (f, count, 'uint64',skip_bytes_each_read-unsigned_long_int_size_bytes);
bytes_shift=bytes_shift+unsigned_long_int_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v9 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v10 = fread (f, count, '*float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v11 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v12 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v13 = fread (f, count, '*float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v14 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v15 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v16 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v17 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v18 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v19 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
fclose (f);
%%%%%%%% output vars %%%%%%%%
% // EPR
% d_dump_file.write((char*)&tmp_VE, sizeof(float));
% d_dump_file.write((char*)&tmp_E, sizeof(float));
% d_dump_file.write((char*)&tmp_P, sizeof(float));
% d_dump_file.write((char*)&tmp_L, sizeof(float));
% d_dump_file.write((char*)&tmp_VL, sizeof(float));
% // PROMPT I and Q (to analyze navigation symbols)
% d_dump_file.write((char*)&prompt_I, sizeof(float));
% d_dump_file.write((char*)&prompt_Q, sizeof(float));
% // PRN start sample stamp
% //tmp_float=(float)d_sample_counter;
% d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
% // accumulated carrier phase
% d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
%
% // carrier and code frequency
% d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
% d_dump_file.write((char*)&d_code_freq_hz, sizeof(float));
%
% //PLL commands
% d_dump_file.write((char*)&carr_error, sizeof(float));
% d_dump_file.write((char*)&carr_nco, sizeof(float));
%
% //DLL commands
% d_dump_file.write((char*)&code_error, sizeof(float));
% d_dump_file.write((char*)&code_nco, sizeof(float));
%
% // CN0 and carrier lock test
% d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
% d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
%
% // AUX vars (for debug purposes)
% tmp_float = d_rem_code_phase_samples;
% d_dump_file.write((char*)&tmp_float, sizeof(float));
% tmp_double=(double)(d_sample_counter+d_current_prn_length_samples);
% d_dump_file.write((char*)&tmp_double, sizeof(double));
VE=v1;
E=v2;
P=v3;
L=v4;
VL=v5;
prompt_I=v6;
prompt_Q=v7;
PRN_start_sample=v8;
acc_carrier_phase_rad=v9;
carrier_doppler_hz=v10;
code_freq_hz=v11;
carr_error=v12;
carr_nco=v13;
code_error=v14;
code_nco=v15;
CN0_SNV_dB_Hz=v16;
carrier_lock_test=v17;
var1=v18;
var2=v19;
GNSS_tracking.VE=VE;
GNSS_tracking.E=E;
GNSS_tracking.P=P;
GNSS_tracking.L=L;
GNSS_tracking.VL=VL;
GNSS_tracking.prompt_I=prompt_I;
GNSS_tracking.prompt_Q=prompt_Q;
GNSS_tracking.PRN_start_sample=PRN_start_sample;
GNSS_tracking.acc_carrier_phase_rad=acc_carrier_phase_rad;
GNSS_tracking.carrier_doppler_hz=carrier_doppler_hz;
GNSS_tracking.code_freq_hz=code_freq_hz;
GNSS_tracking.carr_error=carr_error;
GNSS_tracking.carr_nco=carr_nco;
GNSS_tracking.code_error=code_error;
GNSS_tracking.code_nco=code_nco;
GNSS_tracking.CN0_SNV_dB_Hz=CN0_SNV_dB_Hz;
GNSS_tracking.carrier_lock_test=carrier_lock_test;
GNSS_tracking.var1=var1;
GNSS_tracking.var2=var2;
end

View File

@ -0,0 +1,159 @@
function plotVEMLTracking(channelList, trackResults, settings)
%This function plots the tracking results for the given channel list.
%
%plotTracking(channelList, trackResults, settings)
%
% Inputs:
% channelList - list of channels to be plotted.
% trackResults - tracking results from the tracking function.
% settings - receiver settings.
%--------------------------------------------------------------------------
% SoftGNSS v3.0
%
% Copyright (C) Darius Plausinaitis
% Written by Darius Plausinaitis
%--------------------------------------------------------------------------
%This program is free software; you can redistribute it and/or
%modify it under the terms of the GNU General Public License
%as published by the Free Software Foundation; either version 2
%of the License, or (at your option) any later version.
%
%This program is distributed in the hope that it will be useful,
%but WITHOUT ANY WARRANTY; without even the implied warranty of
%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%GNU General Public License for more details.
%
%You should have received a copy of the GNU General Public License
%along with this program; if not, write to the Free Software
%Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
%USA.
%--------------------------------------------------------------------------
%CVS record:
%$Id: plotTracking.m,v 1.5.2.23 2006/08/14 14:45:14 dpl Exp $
% Protection - if the list contains incorrect channel numbers
channelList = intersect(channelList, 1:settings.numberOfChannels);
%=== For all listed channels ==============================================
for channelNr = channelList
%% Select (or create) and clear the figure ================================
% The number 200 is added just for more convenient handling of the open
% figure windows, when many figures are closed and reopened.
% Figures drawn or opened by the user, will not be "overwritten" by
% this function.
figure(channelNr +200);
clf(channelNr +200);
set(channelNr +200, 'Name', ['Channel ', num2str(channelNr), ...
' (PRN ', ...
num2str(trackResults(channelNr).PRN), ...
') results']);
%% Draw axes ==============================================================
% Row 1
handles(1, 1) = subplot(3, 3, 1);
handles(1, 2) = subplot(3, 3, [2 3]);
% Row 2
handles(2, 1) = subplot(3, 3, 4);
handles(2, 2) = subplot(3, 3, [5 6]);
% Row 3
handles(3, 1) = subplot(3, 3, 7);
handles(3, 2) = subplot(3, 3, 8);
handles(3, 3) = subplot(3, 3, 9);
%% Plot all figures =======================================================
timeAxisInSeconds = (1:4:settings.msToProcess)/1000;
%----- Discrete-Time Scatter Plot ---------------------------------
plot(handles(1, 1), trackResults(channelNr).I_P,...
trackResults(channelNr).Q_P, ...
'.');
grid (handles(1, 1));
axis (handles(1, 1), 'equal');
title (handles(1, 1), 'Discrete-Time Scatter Plot');
xlabel(handles(1, 1), 'I prompt');
ylabel(handles(1, 1), 'Q prompt');
%----- Nav bits ---------------------------------------------------
plot (handles(1, 2), timeAxisInSeconds, ...
trackResults(channelNr).I_P);
grid (handles(1, 2));
title (handles(1, 2), 'Bits of the navigation message');
xlabel(handles(1, 2), 'Time (s)');
axis (handles(1, 2), 'tight');
%----- PLL discriminator unfiltered--------------------------------
plot (handles(2, 1), timeAxisInSeconds, ...
trackResults(channelNr).pllDiscr, 'r');
grid (handles(2, 1));
axis (handles(2, 1), 'tight');
xlabel(handles(2, 1), 'Time (s)');
ylabel(handles(2, 1), 'Amplitude');
title (handles(2, 1), 'Raw PLL discriminator');
%----- Correlation ------------------------------------------------
plot(handles(2, 2), timeAxisInSeconds, ...
[sqrt(trackResults(channelNr).I_VE.^2 + ...
trackResults(channelNr).Q_VE.^2)', ...
sqrt(trackResults(channelNr).I_E.^2 + ...
trackResults(channelNr).Q_E.^2)', ...
sqrt(trackResults(channelNr).I_P.^2 + ...
trackResults(channelNr).Q_P.^2)', ...
sqrt(trackResults(channelNr).I_L.^2 + ...
trackResults(channelNr).Q_L.^2)', ...
sqrt(trackResults(channelNr).I_VL.^2 + ...
trackResults(channelNr).Q_VL.^2)'], ...
'-*');
grid (handles(2, 2));
title (handles(2, 2), 'Correlation results');
xlabel(handles(2, 2), 'Time (s)');
axis (handles(2, 2), 'tight');
hLegend = legend(handles(2, 2), '$\sqrt{I_{VE}^2 + Q_{VE}^2}$', ...
'$\sqrt{I_{E}^2 + Q_{E}^2}$', ...
'$\sqrt{I_{P}^2 + Q_{P}^2}$', ...
'$\sqrt{I_{L}^2 + Q_{L}^2}$', ...
'$\sqrt{I_{VL}^2 + Q_{VL}^2}$');
%set interpreter from tex to latex. This will draw \sqrt correctly
set(hLegend, 'Interpreter', 'Latex');
%----- PLL discriminator filtered----------------------------------
plot (handles(3, 1), timeAxisInSeconds, ...
trackResults(channelNr).pllDiscrFilt, 'b');
grid (handles(3, 1));
axis (handles(3, 1), 'tight');
xlabel(handles(3, 1), 'Time (s)');
ylabel(handles(3, 1), 'Amplitude');
title (handles(3, 1), 'Filtered PLL discriminator');
%----- DLL discriminator unfiltered--------------------------------
plot (handles(3, 2), timeAxisInSeconds, ...
trackResults(channelNr).dllDiscr, 'r');
grid (handles(3, 2));
axis (handles(3, 2), 'tight');
xlabel(handles(3, 2), 'Time (s)');
ylabel(handles(3, 2), 'Amplitude');
title (handles(3, 2), 'Raw DLL discriminator');
%----- DLL discriminator filtered----------------------------------
plot (handles(3, 3), timeAxisInSeconds, ...
trackResults(channelNr).dllDiscrFilt, 'b');
grid (handles(3, 3));
axis (handles(3, 3), 'tight');
xlabel(handles(3, 3), 'Time (s)');
ylabel(handles(3, 3), 'Amplitude');
title (handles(3, 3), 'Filtered DLL discriminator');
end % for channelNr = channelList