mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-20 22:17:03 +00:00
Add two step acquisition funcionality
This commit is contained in:
parent
bc6a568414
commit
44635a41b3
@ -88,11 +88,13 @@ pcps_acquisition::pcps_acquisition(
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_num_doppler_bins_step_two = 4;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 0;
|
||||
d_code_phase = 0;
|
||||
d_doppler_step_two = 0.0;
|
||||
d_doppler_center_step_two = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_channel = 0;
|
||||
if (it_size == sizeof(gr_complex))
|
||||
@ -133,7 +135,8 @@ pcps_acquisition::pcps_acquisition(
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
d_gnss_synchro = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
d_grid_doppler_wipeoffs = nullptr;
|
||||
d_grid_doppler_wipeoffs_step_two = nullptr;
|
||||
d_blocking = blocking;
|
||||
d_worker_active = false;
|
||||
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
@ -146,6 +149,7 @@ pcps_acquisition::pcps_acquisition(
|
||||
d_data_buffer_sc = nullptr;
|
||||
}
|
||||
grid_ = arma::fmat();
|
||||
d_step_two = false;
|
||||
}
|
||||
|
||||
|
||||
@ -159,6 +163,14 @@ pcps_acquisition::~pcps_acquisition()
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
if (d_num_doppler_bins_step_two > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins_step_two; i++)
|
||||
{
|
||||
volk_gnsssdr_free(d_grid_doppler_wipeoffs_step_two[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs_step_two;
|
||||
}
|
||||
volk_gnsssdr_free(d_fft_codes);
|
||||
volk_gnsssdr_free(d_magnitude);
|
||||
delete d_ifft;
|
||||
@ -249,13 +261,18 @@ void pcps_acquisition::init()
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
|
||||
d_grid_doppler_wipeoffs_step_two = new gr_complex*[d_num_doppler_bins_step_two];
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
}
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins_step_two; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs_step_two[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
}
|
||||
|
||||
d_worker_active = false;
|
||||
|
||||
if (d_dump)
|
||||
@ -270,12 +287,21 @@ void pcps_acquisition::update_grid_doppler_wipeoffs()
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
//CHECK IF CALLING MALLOC IS NEEDED!!!
|
||||
//d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_acquisition::update_grid_doppler_wipeoffs_step2()
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins_step_two; doppler_index++)
|
||||
{
|
||||
float doppler = (static_cast<float>(doppler_index) - static_cast<float>(d_num_doppler_bins_step_two) / 2.0) * d_doppler_step_two;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size, d_doppler_center_step_two + doppler);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_acquisition::set_state(int state)
|
||||
{
|
||||
@ -354,10 +380,17 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
|
||||
*/
|
||||
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
if (!d_active || d_worker_active)
|
||||
if (!d_active or d_worker_active)
|
||||
{
|
||||
d_sample_counter += d_fft_size * ninput_items[0];
|
||||
consume_each(ninput_items[0]);
|
||||
if (d_step_two)
|
||||
{
|
||||
d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
|
||||
update_grid_doppler_wipeoffs_step2();
|
||||
d_state = 0;
|
||||
d_active = true;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -414,7 +447,6 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex* in = d_data_buffer; //Get the input samples pointer
|
||||
@ -445,10 +477,12 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
if (!d_step_two)
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
@ -494,7 +528,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
if (d_test_statistics < (d_mag / d_input_power) or !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
@ -548,19 +582,94 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins_step_two; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
float doppler = d_doppler_center_step_two + (static_cast<float>(doppler_index) - static_cast<float>(d_num_doppler_bins_step_two) / 2.0) * d_doppler_step_two;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = (d_bit_transition_flag ? effective_fft_size : 0);
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (!d_use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) or !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
lk.lock();
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
if (d_step_two)
|
||||
{
|
||||
send_positive_acquisition();
|
||||
d_step_two = false;
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_step_two = true; // Clear input buffer and make small grid acquisition
|
||||
d_state = 0;
|
||||
}
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 0;
|
||||
d_active = false;
|
||||
d_step_two = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
@ -568,16 +677,25 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
d_active = false;
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
if (d_step_two)
|
||||
{
|
||||
send_positive_acquisition();
|
||||
d_step_two = false;
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_step_two = true; // Clear input buffer and make small grid acquisition
|
||||
d_state = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 0; // Negative acquisition
|
||||
d_active = false;
|
||||
d_step_two = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
|
@ -98,6 +98,7 @@ private:
|
||||
|
||||
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
|
||||
void update_grid_doppler_wipeoffs();
|
||||
void update_grid_doppler_wipeoffs_step2();
|
||||
bool is_fdma();
|
||||
|
||||
void acquisition_core(unsigned long int samp_count);
|
||||
@ -113,6 +114,7 @@ private:
|
||||
bool d_worker_active;
|
||||
bool d_blocking;
|
||||
bool d_cshort;
|
||||
bool d_step_two;
|
||||
float d_threshold;
|
||||
float d_mag;
|
||||
float d_input_power;
|
||||
@ -127,14 +129,17 @@ private:
|
||||
unsigned int d_channel;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
float d_doppler_step_two;
|
||||
float d_doppler_center_step_two;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned int d_num_doppler_bins;
|
||||
unsigned int d_code_phase;
|
||||
unsigned int d_num_doppler_bins_step_two;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
gr_complex** d_grid_doppler_wipeoffs_step_two;
|
||||
gr_complex* d_fft_codes;
|
||||
gr_complex* d_data_buffer;
|
||||
lv_16sc_t* d_data_buffer_sc;
|
||||
@ -234,6 +239,7 @@ public:
|
||||
{
|
||||
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
|
||||
d_doppler_step = doppler_step;
|
||||
d_doppler_step_two = static_cast<float>(d_doppler_step) / 2.0;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -430,6 +430,7 @@ void dll_pll_veml_tracking::start_tracking()
|
||||
|
||||
long int acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);
|
||||
double acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / d_fs_in;
|
||||
std::cout << "ACQ to TRK diff seconds = " << acq_trk_diff_seconds << std::endl;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples;
|
||||
DLOG(INFO) << "Number of seconds between Acquisition and Tracking = " << acq_trk_diff_seconds;
|
||||
// Doppler effect Fd = (C / (C + Vr)) * F
|
||||
|
Loading…
Reference in New Issue
Block a user