1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 04:00:34 +00:00

Add unit-test for glonass pcps acquisition

This commit is contained in:
Gastd 2017-07-10 20:53:06 -03:00
parent 2691cce2e3
commit 442656ad86
2 changed files with 853 additions and 0 deletions

View File

@ -0,0 +1,616 @@
#include <ctime>
#include <iostream>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "configuration_interface.h"
#include "gnss_synchro.h"
#include "glonass_l1_ca_pcps_acquisition.h"
#include "signal_generator.h"
#include "signal_generator_c.h"
#include "fir_filter.h"
#include "gen_signal_source.h"
#include "gnss_sdr_valve.h"
#include "boost/shared_ptr.hpp"
#include "pass_through.h"
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx;
typedef boost::shared_ptr<GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx> GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr;
GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(concurrent_queue<int>& queue);
class GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx : public gr::block
{
private:
friend GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(concurrent_queue<int>& queue);
void msg_handler_events(pmt::pmt_t msg);
GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(concurrent_queue<int>& queue);
concurrent_queue<int>& channel_internal_queue;
public:
int rx_message;
~GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(); //!< Default destructor
};
GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(concurrent_queue<int>& queue)
{
return GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_sptr(new GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(queue));
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
long int message = pmt::to_long(msg);
rx_message = message;
channel_internal_queue.push(rx_message);
}
catch(boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx(concurrent_queue<int>& queue) :
gr::block("GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue)
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::msg_handler_events, this, _1));
rx_message = 0;
}
GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx::~GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx()
{}
// ###########################################################
class GlonassL1CaPcpsAcquisitionGSoC2017Test: public ::testing::Test
{
protected:
GlonassL1CaPcpsAcquisitionGSoC2017Test()
{
item_size = sizeof(gr_complex);
stop = false;
message = 0;
gnss_synchro = Gnss_Synchro();
acquisition = 0;
init();
}
~GlonassL1CaPcpsAcquisitionGSoC2017Test()
{
}
void init();
void config_1();
void config_2();
void start_queue();
void wait_message();
void process_message();
void stop_queue();
concurrent_queue<int> channel_internal_queue;
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
GlonassL1CaPcpsAcquisition *acquisition;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
bool stop;
int message;
boost::thread ch_thread;
unsigned int integration_time_ms = 0;
unsigned int fs_in = 0;
double expected_delay_chips = 0.0;
double expected_doppler_hz = 0.0;
float max_doppler_error_hz = 0.0;
float max_delay_error_chips = 0.0;
unsigned int num_of_realizations = 0;
unsigned int realization_counter;
unsigned int detection_counter;
unsigned int correct_estimation_counter;
unsigned int acquired_samples;
unsigned int mean_acq_time_us;
double mse_doppler;
double mse_delay;
double Pd;
double Pfa_p;
double Pfa_a;
};
void GlonassL1CaPcpsAcquisitionGSoC2017Test::init()
{
message = 0;
realization_counter = 0;
detection_counter = 0;
correct_estimation_counter = 0;
acquired_samples = 0;
mse_doppler = 0;
mse_delay = 0;
mean_acq_time_us = 0;
Pd = 0;
Pfa_p = 0;
Pfa_a = 0;
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_1()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'R';
std::string signal = "1G";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 1;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "1");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.noise_flag", "false");
config->set_property("SignalSource.data_flag", "false");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::config_2()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'R';
std::string signal = "1G";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 100;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "4");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.system_1", "G");
config->set_property("SignalSource.PRN_1", "15");
config->set_property("SignalSource.CN0_dB_1", "44");
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
config->set_property("SignalSource.noise_flag", "true");
config->set_property("SignalSource.data_flag", "true");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GLONASS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::start_queue()
{
stop = false;
ch_thread = boost::thread(&GlonassL1CaPcpsAcquisitionGSoC2017Test::wait_message, this);
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::wait_message()
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
while (!stop)
{
acquisition->reset();
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1e6 + tv.tv_usec;
channel_internal_queue.wait_and_pop(message);
gettimeofday(&tv, NULL);
end = tv.tv_sec *1e6 + tv.tv_usec;
mean_acq_time_us += (end-begin);
process_message();
}
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::process_message()
{
if (message == 1)
{
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = std::abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);
if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz))
{
correct_estimation_counter++;
}
}
realization_counter++;
std::cout << "Progress: " << round((float)realization_counter/num_of_realizations*100) << "% \r" << std::flush;
if (realization_counter == num_of_realizations)
{
mse_delay /= num_of_realizations;
mse_doppler /= num_of_realizations;
Pd = (double)correct_estimation_counter / (double)num_of_realizations;
Pfa_a = (double)detection_counter / (double)num_of_realizations;
Pfa_p = (double)(detection_counter - correct_estimation_counter) / (double)num_of_realizations;
mean_acq_time_us /= num_of_realizations;
stop_queue();
top_block->stop();
}
}
void GlonassL1CaPcpsAcquisitionGSoC2017Test::stop_queue()
{
stop = true;
}
TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, Instantiate)
{
config_1();
acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
delete acquisition;
}
TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ConnectAndRun)
{
int nsamples = floor(fs_in*integration_time_ms*1e-3);
struct timeval tv;
long long int begin = 0;
long long int end = 0;
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
config_1();
acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx> msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1e6 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec *1e6 + tv.tv_usec;
}) << "Failure running the top_block."<< std::endl;
std::cout << "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
delete acquisition;
}
TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResults)
{
config_1();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx> msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(500);
}) << "Failure setting doppler_step."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(0.5);
}) << "Failure setting threshold."<< std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting acquisition to the top_block."<< std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1);
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
if (i == 0)
{
EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
if (message == 1)
{
EXPECT_EQ((unsigned int) 1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation.";
}
}
else if (i == 1)
{
EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL.";
}
#ifdef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.timed_join(boost::posix_time::seconds(1));
}) << "Failure while waiting the queue to stop" << std::endl;
#endif
#ifndef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
}) << "Failure while waiting the queue to stop" << std::endl;
#endif
}
delete acquisition;
}
TEST_F(GlonassL1CaPcpsAcquisitionGSoC2017Test, ValidationOfResultsProbabilities)
{
config_2();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = new GlonassL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx> msg_rx = GlonassL1CaPcpsAcquisitionGSoC2017Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting acquisition to the top_block."<< std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1);
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
if (i == 0)
{
std::cout << "Estimated probability of detection = " << Pd << std::endl;
std::cout << "Estimated probability of false alarm (satellite present) = " << Pfa_p << std::endl;
std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; }
else if (i == 1)
{
std::cout << "Estimated probability of false alarm (satellite absent) = " << Pfa_a << std::endl;
std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
}
#ifdef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.timed_join(boost::posix_time::seconds(1));
}) << "Failure while waiting the queue to stop" << std::endl;
#endif
#ifndef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
}) << "Failure while waiting the queue to stop" << std::endl;
#endif
}
delete acquisition;
}

View File

@ -0,0 +1,237 @@
#include <ctime>
#include <cstdlib>
#include <iostream>
#include <boost/chrono.hpp>
#include <boost/make_shared.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "glonass_l1_ca_pcps_acquisition.h"
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GlonassL1CaPcpsAcquisitionTest_msg_rx;
typedef boost::shared_ptr<GlonassL1CaPcpsAcquisitionTest_msg_rx> GlonassL1CaPcpsAcquisitionTest_msg_rx_sptr;
GlonassL1CaPcpsAcquisitionTest_msg_rx_sptr GlonassL1CaPcpsAcquisitionTest_msg_rx_make();
class GlonassL1CaPcpsAcquisitionTest_msg_rx : public gr::block
{
private:
friend GlonassL1CaPcpsAcquisitionTest_msg_rx_sptr GlonassL1CaPcpsAcquisitionTest_msg_rx_make();
void msg_handler_events(pmt::pmt_t msg);
GlonassL1CaPcpsAcquisitionTest_msg_rx();
public:
int rx_message;
~GlonassL1CaPcpsAcquisitionTest_msg_rx(); //!< Default destructor
};
GlonassL1CaPcpsAcquisitionTest_msg_rx_sptr GlonassL1CaPcpsAcquisitionTest_msg_rx_make()
{
return GlonassL1CaPcpsAcquisitionTest_msg_rx_sptr(new GlonassL1CaPcpsAcquisitionTest_msg_rx());
}
void GlonassL1CaPcpsAcquisitionTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
long int message = pmt::to_long(msg);
rx_message = message;
}
catch(boost::bad_any_cast& e)
{
std::cout << "msg_handler_telemetry Bad any cast!" << std::endl;
rx_message = 0;
}
}
GlonassL1CaPcpsAcquisitionTest_msg_rx::GlonassL1CaPcpsAcquisitionTest_msg_rx() :
gr::block("GlonassL1CaPcpsAcquisitionTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&GlonassL1CaPcpsAcquisitionTest_msg_rx::msg_handler_events, this, _1));
rx_message = 0;
}
GlonassL1CaPcpsAcquisitionTest_msg_rx::~GlonassL1CaPcpsAcquisitionTest_msg_rx()
{}
// ###########################################################
class GlonassL1CaPcpsAcquisitionTest: public ::testing::Test
{
protected:
GlonassL1CaPcpsAcquisitionTest()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~GlonassL1CaPcpsAcquisitionTest()
{}
void init();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
};
void GlonassL1CaPcpsAcquisitionTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'R';
std::string signal = "1G";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("GNSS-SDR.internal_fs_hz", "4000000");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "1");
config->set_property("Acquisition.dump", "true");
config->set_property("Acquisition.dump_filename", "./acquisition.dat");
config->set_property("Acquisition.implementation", "Glonass_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "500");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition.pfa", "0.0");
}
TEST_F(GlonassL1CaPcpsAcquisitionTest, Instantiate)
{
init();
boost::shared_ptr<GlonassL1CaPcpsAcquisition> acquisition = boost::make_shared<GlonassL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
}
TEST_F(GlonassL1CaPcpsAcquisitionTest, ConnectAndRun)
{
int fs_in = 4000000;
int nsamples = 4000;
struct timeval tv;
long long int begin = 0;
long long int end = 0;
gr::msg_queue::sptr queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
init();
boost::shared_ptr<GlonassL1CaPcpsAcquisition> acquisition = boost::make_shared<GlonassL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GlonassL1CaPcpsAcquisitionTest_msg_rx> msg_rx = GlonassL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
std::cout << "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
}
TEST_F(GlonassL1CaPcpsAcquisitionTest, ValidationOfResults)
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
top_block = gr::make_top_block("Acquisition test");
double expected_delay_samples = 524;
double expected_doppler_hz = 1680;
init();
std::shared_ptr<GlonassL1CaPcpsAcquisition> acquisition = std::make_shared<GlonassL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GlonassL1CaPcpsAcquisitionTest_msg_rx> msg_rx = GlonassL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(0.1);
}) << "Failure setting threshold." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(250);
}) << "Failure setting doppler_step." << std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
std::string file = path + "signal_samples/GSoC_CTTC_capture_2012_07_26_4Msps_4ms.dat";
// std::string file = path + "signal_samples/Glonass_L1_CA_ID_1_Fs_4Msps_2ms.dat";
const char * file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->init();
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquired " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl;
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = (float)(delay_error_samples * 511 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
}