1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-21 06:27:01 +00:00

Add work in the AD9361 manager

This commit is contained in:
Carles Fernandez 2019-10-09 09:18:29 +02:00
parent 09078b6486
commit 43a8090dc6
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
2 changed files with 616 additions and 40 deletions

View File

@ -38,6 +38,30 @@
#include <sstream>
#include <vector>
#define MIN_ADC_CLK 25000000UL // 25 MHz
#define MAX_ADC_CLK 640000000UL // 640 MHz
#define MIN_DATA_RATE MIN_ADC_CLK / 48
#define MAX_DATA_RATE 61440000UL // Output of FIR (RX)
#define MAX_DAC_CLK (MAX_ADC_CLK / 2)
#define MIN_DAC_CLK 25000000UL // 25 MHz
#define MAX_RX_HB1 122880000UL
#define MAX_RX_HB2 245760000UL
#define MAX_RX_HB3 320000000UL
#define MAX_TX_HB1 122880000UL
#define MAX_TX_HB2 245760000UL
#define MAX_TX_HB3 320000000UL
#define MAX_FIR MAX_DATA_RATE * 2
#define MAX_BBPLL_DIV 64
#define MIN_BBPLL_FREQ 714928500UL // 715 MHz - 100ppm
#define MAX_BBPLL_FREQ 1430143000UL // 1430 MHz + 100ppm
#define check(val, min, max) ((val) <= (max) ? (val) >= (min) : false)
const uint64_t TX_MAX_PATH_RATES[] = {MAX_DAC_CLK, MAX_TX_HB3, MAX_TX_HB2, MAX_TX_HB1, MAX_FIR};
const uint64_t TX_MIN_PATH_RATES[] = {MIN_DAC_CLK, 0, 0, 0, 0};
const uint64_t RX_MAX_PATH_RATES[] = {MAX_ADC_CLK, MAX_RX_HB3, MAX_RX_HB2, MAX_RX_HB1, MAX_FIR};
const uint64_t RX_MIN_PATH_RATES[] = {MIN_ADC_CLK, 0, 0, 0, 0};
uint64_t max_rate_found;
/* check return value of attr_write function */
void errchk(int v, const char *what)
@ -71,6 +95,508 @@ struct iio_device *get_ad9361_phy(struct iio_context *ctx)
}
void set_max_taps(struct filter_design_parameters *fdpTX,
struct filter_design_parameters *fdpRX)
{
// RX side
int N, M, K;
if (fdpRX->HB3 == 3)
N = 16 * floor(fdpRX->converter_rate / (fdpRX->Rdata));
else
N = 16 * floor(fdpRX->converter_rate / (2 * fdpRX->Rdata));
if (N > 128)
N = 128;
// TX side
if (fdpTX->FIR == 1)
M = 64;
else
M = 128;
K = 16 * floor(fdpTX->converter_rate * fdpTX->DAC_div / (2 * fdpTX->Rdata));
if (K < M)
M = K;
// Pick the smallest
if (M > N)
{
fdpTX->maxTaps = N;
fdpRX->maxTaps = N;
}
else
{
fdpTX->maxTaps = M;
fdpRX->maxTaps = M;
}
}
double calculate_rfbw(double pll_rate, double caldiv, bool TX,
double *rcaldiv)
{
double rfbw, min_rfbw, max_rfbw, scale;
if (TX)
{
scale = 1.6;
min_rfbw = 1250000;
max_rfbw = 40000000;
}
else
{
scale = 1.4;
min_rfbw = 400000;
max_rfbw = 56000000;
}
rfbw =
(double)round((pll_rate / caldiv) * (2 / (scale * (2 * M_PI) / log(2))));
// If the RF bandwidth is outside the range of acceptable values we modify
// the divider value until it falls into an acceptable range.
while ((rfbw < min_rfbw) || (rfbw > max_rfbw))
{
if (rfbw < min_rfbw)
caldiv = caldiv - 1;
else
caldiv = caldiv + 1;
if ((caldiv < 1) || (caldiv > 511))
{
fprintf(stderr, "Calibration divider out of bounds (1 - 511): %f\n", caldiv);
return -EINVAL;
}
rfbw = calculate_rfbw(pll_rate, caldiv, TX, rcaldiv);
}
*rcaldiv = caldiv;
return rfbw;
}
void set_rates(uint64_t *rx_path_clks,
uint64_t *tx_path_clks, int DAC_div, uint64_t *rates,
int dec_table_index)
{
int k;
// Check if ADC will run faster in config
if (rates[1] > max_rate_found)
max_rate_found = rates[1];
else
return;
for (k = 0; k < 6; k++)
{
rx_path_clks[k] = rates[k];
tx_path_clks[k] = rates[k];
if (k > 0)
{ // Adjust HB's for DAC divider setting
if ((dec_table_index < 2) && (k < 4))
tx_path_clks[k] = rates[k] / DAC_div;
else if ((dec_table_index < 4) && (k < 3))
tx_path_clks[k] = rates[k] / DAC_div;
}
}
}
int check_dac_adc_config(uint64_t pll_bb, int PLL_mult,
int dec_table_index)
{
// Need to determine if DAC divider is required and if ADC and DAC rates
// can be satisfied
uint64_t with_dd, without_dd;
bool a, b, c;
with_dd = pll_bb / PLL_mult / 2;
without_dd = pll_bb / PLL_mult / 1;
a = check(with_dd, MIN_DAC_CLK, MAX_DAC_CLK);
b = check(without_dd, MIN_ADC_CLK, MAX_ADC_CLK);
c = check(without_dd, MIN_DAC_CLK, MAX_DAC_CLK);
if (c && b)
return 1; // Run without dac div
else if (a && b && (dec_table_index < 5))
return 2; // Run with dac div
else
return -1;
}
bool check_rates(int FIR __attribute__((unused)), const int *HB_configs, uint64_t samp_rate,
uint64_t *rates)
{
int j;
bool c = true;
rates[5] = samp_rate;
for (j = 4; j > 0; j--)
{
rates[j] = rates[j + 1] * HB_configs[j - 1];
if (j > 1)
{
c &= check(rates[j], TX_MIN_PATH_RATES[j - 1], TX_MAX_PATH_RATES[j - 1]);
c &= check(rates[j], RX_MIN_PATH_RATES[j - 1], RX_MAX_PATH_RATES[j - 1]);
}
}
return c;
}
int determine_pll_div(uint64_t *rates)
{
// Determine necessary PLL multiplier
uint64_t tmp;
int PLL_mult = MAX_BBPLL_DIV;
while (PLL_mult > 1)
{
tmp = (uint64_t)rates[1] * PLL_mult;
if (check(tmp, MIN_BBPLL_FREQ, MAX_BBPLL_FREQ))
{
rates[0] = (uint64_t)rates[1] * PLL_mult;
return PLL_mult;
}
PLL_mult >>= 1;
}
return -1;
}
int determine_path_rates_with_fir(uint64_t sample_rate,
uint64_t rate_gov,
uint64_t *rx_path_clks,
uint64_t *tx_path_clks,
int FIR)
{
uint64_t rates[6];
int PLL_mult, k;
max_rate_found = 0UL;
const int HB_configs[][4] = {
{3, 2, 2, FIR}, //12
{2, 2, 2, FIR}, //8
{3, 2, 1, FIR}, //6
{2, 2, 1, FIR}, //4
{2, 1, 1, FIR}, //2
{3, 1, 1, FIR}, //3
{1, 1, 1, FIR}, //1
};
// RX Path:
// BBPLL -> /PLL_div -> /HB3 -> /HB2 -> /HB1 -> /FIR
// TX Path:
// BBPLL -> /(PLL_div*DAC_div) -> /HB3 -> /HB2 -> /HB1 -> /FIR
// Cycle through possible decimations from highest to lowest
for (k = 0; k < 7; k++)
{
// HB3 cannot be 3 if rate_gov enabled
if ((rate_gov > 0) && HB_configs[k][0] == 3)
continue;
// Check if HB and FIR rates are valid
if (check_rates(FIR, HB_configs[k], sample_rate, rates))
{
// Calculate PLL divider for configuration
PLL_mult = determine_pll_div(rates);
if (PLL_mult > 0)
{
// Determine DAC divider setting and check ADC/DAC settings
int dac_div = check_dac_adc_config(rates[0], PLL_mult, k);
// printf("dac_div: %d\n",dac_div);
if (dac_div > 0)
set_rates(rx_path_clks, tx_path_clks, dac_div, rates, k);
}
}
}
if (max_rate_found == 0UL)
return -EINVAL;
else
return 0;
}
int ad9361_calculate_rf_clock_chain(uint64_t sample_rate,
uint64_t rate_gov,
uint64_t *rx_path_clks,
uint64_t *tx_path_clks)
{
int ret, k;
int FIR[] = {4, 2, 1};
// Check desired rate within bounds
if (!check(sample_rate, MIN_DATA_RATE, MAX_DATA_RATE))
return -EINVAL;
// Rate selection will try to:
// 1. Utilize the maximum decimation in the FIR
// 2. Run the ADC/DAC as fast as possible
// 3. Use the most decimation possible starting with HB3(closest to ADC)->HB1
// Cycle through available FIR settings
for (k = 0; k < 3; k++)
{
ret = determine_path_rates_with_fir(sample_rate, rate_gov, rx_path_clks,
tx_path_clks, FIR[k]);
if (ret == 0)
break;
}
return ret;
}
int apply_custom_filter(struct iio_device *dev, unsigned dec_tx,
unsigned dec_rx, short *tapsTx,
short *tapsRx, unsigned taps,
uint64_t rate,
int gain_tx, int gain_rx,
uint64_t wnom_tx, uint64_t wnom_rx)
{
struct iio_channel *chanTX, *chanRX;
long long current_rate;
int ret, i, enable, len = 0;
char *buf;
chanTX = iio_device_find_channel(dev, "voltage0", true);
if (chanTX == NULL)
return -ENODEV;
ret = iio_channel_attr_read_longlong(chanTX, "sampling_frequency", &current_rate);
if (ret < 0)
return ret;
ret = ad9361_get_trx_fir_enable(dev, &enable);
if (ret < 0)
return ret;
if (enable)
{
if (current_rate <= (25000000 / 12))
iio_channel_attr_write_longlong(chanTX, "sampling_frequency", 3000000);
ret = ad9361_set_trx_fir_enable(dev, false);
if (ret < 0)
return ret;
}
buf = (char *)malloc(FIR_BUF_SIZE);
if (!buf)
return -ENOMEM;
len += snprintf(buf + len, FIR_BUF_SIZE - len, "RX 3 GAIN %d DEC %d\n", gain_rx,
dec_rx);
len += snprintf(buf + len, FIR_BUF_SIZE - len, "TX 3 GAIN %d INT %d\n", gain_tx,
dec_tx);
for (i = 0; i < (int)taps; i++)
len += snprintf(buf + len, FIR_BUF_SIZE - len, "%d,%d\n", tapsRx[i], tapsTx[i]);
len += snprintf(buf + len, FIR_BUF_SIZE - len, "\n");
ret = iio_device_attr_write_raw(dev, "filter_fir_config", buf, len);
free(buf);
if (ret < 0)
return ret;
if (rate <= (25000000 / 12))
{
int dacrate, txrate, max;
char readbuf[100];
ret = iio_device_attr_read(dev, "tx_path_rates", readbuf, sizeof(readbuf));
if (ret < 0)
return ret;
ret = sscanf(readbuf, "BBPLL:%*d DAC:%d T2:%*d T1:%*d TF:%*d TXSAMP:%d",
&dacrate, &txrate);
if (ret != 2)
return -EFAULT;
if (txrate == 0)
return -EINVAL;
max = (dacrate / txrate) * 16;
if (max < taps)
iio_channel_attr_write_longlong(chanTX, "sampling_frequency", 3000000);
ret = ad9361_set_trx_fir_enable(dev, true);
if (ret < 0)
return ret;
ret = iio_channel_attr_write_longlong(chanTX, "sampling_frequency", rate);
if (ret < 0)
return ret;
}
else
{
ret = iio_channel_attr_write_longlong(chanTX, "sampling_frequency", rate);
if (ret < 0)
return ret;
ret = ad9361_set_trx_fir_enable(dev, true);
if (ret < 0)
return ret;
}
chanRX = iio_device_find_channel(dev, "voltage0", false);
if (chanRX == NULL)
return -ENODEV;
ret = iio_channel_attr_write_longlong(chanTX, "rf_bandwidth", wnom_tx);
if (ret < 0)
return ret;
ret = iio_channel_attr_write_longlong(chanRX, "rf_bandwidth", wnom_rx);
if (ret < 0)
return ret;
return 0;
}
int ad9361_set_bb_rate_custom_filter_auto(struct iio_device *dev,
uint64_t rate)
{
struct filter_design_parameters fdpTX;
struct filter_design_parameters fdpRX;
short taps_tx[128];
short taps_rx[128];
int ret, num_taps_tx, num_taps_rx, gain_tx, gain_rx;
unsigned dec_tx, dec_rx, num_taps;
ret = ad9361_calculate_rf_clock_chain_fdp(&fdpTX, &fdpRX, rate);
if (ret < 0)
return ret;
ret = ad9361_generate_fir_taps(&fdpRX, taps_rx, &num_taps_rx, &gain_rx);
if (ret < 0)
return ret;
ret = ad9361_generate_fir_taps(&fdpTX, taps_tx, &num_taps_tx, &gain_tx);
if (ret < 0)
return ret;
dec_tx = (unsigned)fdpTX.FIR;
dec_rx = (unsigned)fdpRX.FIR;
num_taps = (unsigned)fdpTX.maxTaps;
ret = apply_custom_filter(dev, dec_tx, dec_rx, taps_tx, taps_rx, num_taps,
rate, gain_tx, gain_rx, fdpTX.wnom, fdpRX.wnom);
if (ret < 0)
return ret;
return 0;
}
int build_configuration(struct filter_design_parameters *fdpTX,
struct filter_design_parameters *fdpRX,
uint64_t sample_rate,
uint64_t Fpass,
uint64_t Fstop,
uint64_t wnomTX,
uint64_t wnomRX)
{
double div, max;
uint64_t rx_path_clk[6];
uint64_t tx_path_clk[6];
uint64_t *path_clk;
struct filter_design_parameters *fdp;
int ret, k;
uint64_t rate_gov = 0;
ret = ad9361_calculate_rf_clock_chain((uint64_t)sample_rate,
rate_gov, rx_path_clk, tx_path_clk);
if (ret < 0)
return -EINVAL;
for (k = 0; k < 2; k++)
{
if (k > 0)
{
path_clk = tx_path_clk;
fdp = fdpTX;
fdp->RxTx = "Tx";
fdp->DAC_div = (double)rx_path_clk[1] / tx_path_clk[1];
}
else
{
path_clk = rx_path_clk;
fdp = fdpRX;
fdp->RxTx = "Rx";
fdp->DAC_div = 1.0;
}
// Map rates and dividers
fdp->PLL_rate = (double)path_clk[0];
fdp->converter_rate = (double)path_clk[1];
fdp->PLL_mult = (double)path_clk[0] / path_clk[1];
fdp->HB3 = (double)path_clk[1] / path_clk[2];
fdp->HB2 = (double)path_clk[2] / path_clk[3];
fdp->HB1 = (double)path_clk[3] / path_clk[4];
fdp->FIR = (double)path_clk[4] / path_clk[5];
// Set default parameters
fdp->Rdata = (double)path_clk[5];
fdp->Type = "Lowpass";
fdp->int_FIR = 1;
fdp->Apass = 0.5;
fdp->Astop = 80;
fdp->phEQ = -1;
fdp->FIRdBmin = 0;
// Define filter design specifications
fdp->Fpass = (double)Fpass;
fdp->Fstop = (double)Fstop;
fdp->Fcenter = 0.0;
if (k > 0)
fdp->wnom = (double)wnomTX;
else
fdp->wnom = (double)wnomRX;
// Determine default analog bandwidth
div = ceil((fdp->PLL_rate / fdp->wnom) * (log(2) / (2 * M_PI)));
max = (div > 1) ? div : 1.0;
fdp->caldiv = (max > 511) ? 511.0 : max;
fdp->RFbw = calculate_rfbw(fdp->PLL_rate, fdp->caldiv, k > 0, &(fdp->caldiv));
if (fdp->RFbw < 0)
return -EINVAL;
}
set_max_taps(fdpTX, fdpRX);
return 0;
}
int ad9361_set_bb_rate_custom_filter_manual(struct iio_device *dev,
uint64_t rate, uint64_t Fpass,
uint64_t Fstop, uint64_t wnom_tx, uint64_t wnom_rx)
{
struct filter_design_parameters fdpTX;
struct filter_design_parameters fdpRX;
short taps_tx[128];
short taps_rx[128];
int ret, num_taps_tx, num_taps_rx, gain_tx, gain_rx;
unsigned dec_tx, dec_rx, num_taps;
if (Fpass >= Fstop)
return -EINVAL;
ret = build_configuration(&fdpTX, &fdpRX, rate, Fpass, Fstop, wnom_tx,
wnom_rx);
if (ret < 0)
return ret;
ret = ad9361_generate_fir_taps(&fdpRX, taps_rx, &num_taps_rx, &gain_rx);
if (ret < 0)
return ret;
ret = ad9361_generate_fir_taps(&fdpTX, taps_tx, &num_taps_tx, &gain_tx);
if (ret < 0)
return ret;
dec_tx = (unsigned)fdpTX.FIR;
dec_rx = (unsigned)fdpRX.FIR;
num_taps = (unsigned)fdpTX.maxTaps;
ret = apply_custom_filter(dev, dec_tx, dec_rx, taps_tx, taps_rx, num_taps,
rate, gain_tx, gain_rx, wnom_tx, wnom_rx);
if (ret < 0)
return ret;
return 0;
}
/* finds AD9361 streaming IIO devices */
bool get_ad9361_stream_dev(struct iio_context *ctx, enum iodev d, struct iio_device **dev)
{
@ -195,17 +721,17 @@ bool config_ad9361_rx_local(uint64_t bandwidth_,
// RX stream config
// Stream configurations
struct stream_cfg rxcfg;
rxcfg.bw_hz = bandwidth_; // 2 MHz rf bandwidth
rxcfg.fs_hz = sample_rate_; // 2.5 MS/s rx sample rate
rxcfg.lo_hz = freq_; // 2.5 GHz rf frequency
rxcfg.rfport = rf_port_select_.c_str(); // port A (select for rf freq.)
rxcfg.bw_hz = bandwidth_;
rxcfg.fs_hz = sample_rate_;
rxcfg.lo_hz = freq_;
rxcfg.rfport = rf_port_select_.c_str();
std::cout << "AD9361 Acquiring IIO LOCAL context\n";
struct iio_context *ctx;
// Streaming devices
struct iio_device *rx;
struct iio_channel *rx0_i;
struct iio_channel *rx0_q;
struct iio_channel *rx_chan1;
struct iio_channel *rx_chan2;
ctx = iio_create_default_context();
if (!ctx)
@ -236,21 +762,21 @@ bool config_ad9361_rx_local(uint64_t bandwidth_,
}
std::cout << "* Initializing AD9361 IIO streaming channels\n";
if (!get_ad9361_stream_ch(ctx, RX, rx, 0, &rx0_i))
if (!get_ad9361_stream_ch(ctx, RX, rx, 0, &rx_chan1))
{
std::cout << "RX chan i not found\n";
throw std::runtime_error("RX chan i not found");
std::cout << "RX channel 1 not found\n";
throw std::runtime_error("RX channel 1 not found");
}
if (!get_ad9361_stream_ch(ctx, RX, rx, 1, &rx0_q))
if (!get_ad9361_stream_ch(ctx, RX, rx, 1, &rx_chan2))
{
std::cout << "RX chan q not found\n";
throw std::runtime_error("RX chan q not found");
std::cout << "RX channel 2 not found\n";
throw std::runtime_error("RX channel 2 not found");
}
std::cout << "* Enabling IIO streaming channels\n";
iio_channel_enable(rx0_i);
iio_channel_enable(rx0_q);
iio_channel_enable(rx_chan1);
iio_channel_enable(rx_chan2);
struct iio_device *ad9361_phy;
ad9361_phy = iio_context_find_device(ctx, "ad9361-phy");
@ -334,8 +860,8 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
struct iio_context *ctx;
// Streaming devices
struct iio_device *rx;
struct iio_channel *rx0_i;
struct iio_channel *rx0_q;
struct iio_channel *rx_chan1;
struct iio_channel *rx_chan2;
ctx = iio_create_network_context(remote_host.c_str());
if (!ctx)
@ -365,13 +891,13 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
int ret;
std::cout << "* Initializing AD9361 IIO streaming channels\n";
if (!get_ad9361_stream_ch(ctx, RX, rx, 0, &rx0_i))
if (!get_ad9361_stream_ch(ctx, RX, rx, 0, &rx_chan1))
{
std::cout << "RX chan i not found\n";
throw std::runtime_error("RX chan i not found");
}
if (!get_ad9361_stream_ch(ctx, RX, rx, 1, &rx0_q))
if (!get_ad9361_stream_ch(ctx, RX, rx, 1, &rx_chan2))
{
std::cout << "RX chan q not found\n";
throw std::runtime_error("RX chan q not found");
@ -400,20 +926,18 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
// set bw
//params.push_back("in_voltage_rf_bandwidth=" + boost::to_string(bandwidth));
}
//wr_ch_str(rx0_i, "rf_port_select", rf_port_select_.c_str());
//wr_ch_str(rx_chan1, "rf_port_select", rf_port_select_.c_str());
ret = iio_device_attr_write(ad9361_phy, "in_voltage0_rf_port_select", rf_port_select_.c_str());
if (ret)
{
throw std::runtime_error("Unable to set rf_port_select");
}
wr_ch_lli(rx0_i, "rf_bandwidth", bandwidth_);
//if (!get_lo_chan(ctx, "RX", &chn))
// {
// return false;
// }
//wr_ch_lli(chn, "frequency", freq_);
// in_voltage0_rf_port_select
wr_ch_lli(rx_chan1, "rf_bandwidth", bandwidth_);
if (!get_lo_chan(ctx, RX, &rx_chan1))
{
return false;
}
wr_ch_lli(rx_chan1, "frequency", freq_);
}
else if (filter_source_ == "File")
{
@ -433,13 +957,17 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
{
throw std::runtime_error("Unable to set rf_port_select");
}
wr_ch_lli(rx0_i, "rf_bandwidth", bandwidth_);
wr_ch_lli(rx0_i, "frequency", freq_);
wr_ch_lli(rx_chan1, "rf_bandwidth", bandwidth_);
if (!get_lo_chan(ctx, RX, &rx_chan1))
{
return false;
}
wr_ch_lli(rx_chan1, "frequency", freq_);
}
else if (filter_source_ == "Design")
{
ret = ad9361_set_bb_rate_custom_filter_manual(
ad9361_phy, sample_rate_, Fpass_, Fstop_, bandwidth_, bandwidth_);
ad9361_phy, sample_rate_, static_cast<uint64_t>(Fpass_), static_cast<uint64_t>(Fstop_), bandwidth_, bandwidth_);
if (ret)
{
throw std::runtime_error("Unable to set BB rate");
@ -449,8 +977,12 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
{
throw std::runtime_error("Unable to set rf_port_select");
}
wr_ch_lli(rx0_i, "rf_bandwidth", bandwidth_);
wr_ch_lli(rx0_i, "frequency", freq_);
wr_ch_lli(rx_chan1, "rf_bandwidth", bandwidth_);
if (!get_lo_chan(ctx, RX, &rx_chan1))
{
return false;
}
wr_ch_lli(rx_chan1, "frequency", freq_);
}
else
{
@ -468,8 +1000,8 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
}
std::cout << "* Enabling IIO streaming channels\n";
iio_channel_enable(rx0_i);
iio_channel_enable(rx0_q);
iio_channel_enable(rx_chan1);
iio_channel_enable(rx_chan2);
ret = iio_device_attr_write(ad9361_phy, "trx_rate_governor", "nominal");
if (ret < 0)
@ -528,7 +1060,6 @@ bool config_ad9361_rx_remote(const std::string &remote_host,
}
}
std::cout << "End of AD9361 RX configuration.\n";
iio_context_destroy(ctx);

View File

@ -37,6 +37,7 @@
#include <cstdint>
#include <string>
#define FIR_BUF_SIZE 8192
/* RX is input, TX is output */
enum iodev
@ -48,7 +49,7 @@ enum iodev
/* common RX and TX streaming params */
struct stream_cfg
{
int64_t bw_hz; // Analog banwidth in Hz
int64_t bw_hz; // Analog bandwidth in Hz
int64_t fs_hz; // Baseband sample rate in Hz
int64_t lo_hz; // Local oscillator frequency in Hz
const char *rfport; // Port name
@ -64,9 +65,6 @@ void wr_ch_lli(struct iio_channel *chn, const char *what, int64_t val);
/* write attribute: string */
void wr_ch_str(struct iio_channel *chn, const char *what, const char *str);
/* helper function generating channel names */
char *get_ch_name(const char *type, int id, char *tmpstr);
/* returns ad9361 phy device */
struct iio_device *get_ad9361_phy(struct iio_context *ctx);
@ -127,11 +125,58 @@ bool config_ad9361_lo_remote(const std::string &remote_host,
double scale_dds_dbfs_,
double phase_dds_deg_);
bool ad9361_disable_lo_remote(const std::string &remote_host);
bool ad9361_disable_lo_local();
bool load_fir_filter(std::string &filter, struct iio_device *phy);
int ad9361_set_bb_rate_custom_filter_manual(struct iio_device *dev,
uint64_t rate, uint64_t Fpass,
uint64_t Fstop, uint64_t wnom_tx, uint64_t wnom_rx);
int ad9361_set_bb_rate_custom_filter_auto(struct iio_device *dev,
uint64_t rate);
int apply_custom_filter(struct iio_device *dev, unsigned dec_tx,
unsigned dec_rx, short *tapsTx,
short *tapsRx, unsigned taps,
uint64_t rate,
int gain_tx, int gain_rx,
uint64_t wnom_tx, uint64_t wnom_rx);
int ad9361_calculate_rf_clock_chain(uint64_t sample_rate,
uint64_t rate_gov,
uint64_t *rx_path_clks,
uint64_t *tx_path_clks);
int determine_path_rates_with_fir(uint64_t sample_rate,
uint64_t rate_gov,
uint64_t *rx_path_clks,
uint64_t *tx_path_clks,
uint64_t tmp,
int FIR);
bool check_rates(int FIR, const int *HB_configs, uint64_t samp_rate,
uint64_t *rates);
int determine_pll_div(uint64_t *rates);
int check_dac_adc_config(uint64_t pll_bb, int PLL_mult,
int dec_table_index);
double calculate_rfbw(double pll_rate, double caldiv, bool TX,
double *rcaldiv);
int build_configuration(struct filter_design_parameters *fdpTX,
struct filter_design_parameters *fdpRX,
uint64_t sample_rate,
uint64_t Fpass,
uint64_t Fstop,
uint64_t wnomTX,
uint64_t wnomRX);
void set_max_taps(struct filter_design_parameters *fdpTX,
struct filter_design_parameters *fdpRX);
#endif // GNSS_SDR_AD9361_MANAGER_H_