diff --git a/AUTHORS b/AUTHORS index 51c1f9bff..c55eb5ac3 100644 --- a/AUTHORS +++ b/AUTHORS @@ -43,6 +43,7 @@ Mara Branzanti mara.branzanti@gmail.com Developer Marc Molina marc.molina.pena@gmail.com Developer Daniel Fehr daniel.co@bluewin.ch Developer Marc Sales marcsales92@gmail.com Developer +Damian Miralles dmiralles2009@gmail.com Developer Leonardo Tonetto tonetto.dev@gmail.com Contributor Ignacio Paniego ignacio.paniego@gmail.com Web design Eva Puchol eva.puchol@gmail.com Web developer diff --git a/conf/gnss-sdr_acq_QuickSync.conf b/conf/gnss-sdr_acq_QuickSync.conf new file mode 100644 index 000000000..8fe7f8d69 --- /dev/null +++ b/conf/gnss-sdr_acq_QuickSync.conf @@ -0,0 +1,477 @@ +; You can define your own receiver and invoke it by doing +; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf +; + +[GNSS-SDR] + +;######### GLOBAL OPTIONS ################## +;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. +GNSS-SDR.internal_fs_hz=4000000 + +;######### CONTROL_THREAD CONFIG ############ +ControlThread.wait_for_flowgraph=false + +;######### SIGNAL_SOURCE CONFIG ############ +;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] or [Rtlsdr_Signal_Source] +SignalSource.implementation=File_Signal_Source + +;#filename: path to file with the captured GNSS signal samples to be processed +SignalSource.filename=/home/dmiralles2009/Downloads/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat +;SignalSource.filename=/home/dmiralles2009/Downloads/GSoC_CTTC_capture_2012_07_26_4Msps_4ms.dat + +;#item_type: Type and resolution for each of the signal samples. +;#Use gr_complex for 32 bits float I/Q or short for I/Q interleaved short integer. +;#If short is selected you should have to instantiate the Ishort_To_Complex data_type_adapter. + +SignalSource.item_type=short + +;#sampling_frequency: Original Signal sampling frequency in [Hz] +SignalSource.sampling_frequency=4000000 + +;#freq: RF front-end center frequency in [Hz] +SignalSource.freq=1575420000 + +;#gain: Front-end Gain in [dB] +SignalSource.gain=60 + +;#AGC_enabled: RTLSDR AGC enabled [true or false] + +SignalSource.AGC_enabled=true + +;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0) +SignalSource.subdevice=B:0 + +;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. +SignalSource.samples=0 + +;#repeat: Repeat the processing file. Disable this option in this version +SignalSource.repeat=false + +;#dump: Dump the Signal source data to a file. Disable this option in this version +SignalSource.dump=false + +SignalSource.dump_filename=../data/signal_source.dat + + +;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. +; it helps to not overload the CPU, but the processing time will be longer. +SignalSource.enable_throttle_control=false + + +;######### SIGNAL_CONDITIONER CONFIG ############ +;## It holds blocks to change data type, filter and resample input data. + +;#implementation: Use [Pass_Through] or [Signal_Conditioner] +;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks +;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks +SignalConditioner.implementation=Signal_Conditioner + +;######### DATA_TYPE_ADAPTER CONFIG ############ +;## Changes the type of input data. Please disable it in this version. +;#implementation: Use [Ishort_To_Complex] or [Pass_Through] +DataTypeAdapter.implementation=Ishort_To_Complex +;#dump: Dump the filtered data to a file. +DataTypeAdapter.dump=false +;#dump_filename: Log path and filename. +DataTypeAdapter.dump_filename=../data/data_type_adapter.dat + +;######### INPUT_FILTER CONFIG ############ +;## Filter the input data. Can be combined with frequency translation for IF signals + +;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] +;#[Pass_Through] disables this block +;#[Fir_Filter] enables a FIR Filter +;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. + +;InputFilter.implementation=Fir_Filter +;InputFilter.implementation=Freq_Xlating_Fir_Filter +InputFilter.implementation=Pass_Through + +;#dump: Dump the filtered data to a file. +InputFilter.dump=false + +;#dump_filename: Log path and filename. +InputFilter.dump_filename=../data/input_filter.dat + +;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. +;#These options are based on parameters of gnuradio's function: gr_remez. +;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands. + +;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. +InputFilter.input_item_type=gr_complex + +;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. +InputFilter.output_item_type=gr_complex + +;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. +InputFilter.taps_item_type=float + +;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time +InputFilter.number_of_taps=5 + +;#number_of _bands: Number of frequency bands in the filter. +InputFilter.number_of_bands=2 + +;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. +;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) +;#The number of band_begin and band_end elements must match the number of bands + +#used for gps +InputFilter.band1_begin=0.0 +;InputFilter.band1_end=0.8 +InputFilter.band1_end=0.85 +InputFilter.band2_begin=0.90 +InputFilter.band2_end=1.0 + +#used for galileo +InputFilter.band1_begin=0.0 +;InputFilter.band1_end=0.8 +InputFilter.band1_end=0.45 +InputFilter.band2_begin=0.55 +InputFilter.band2_end=1.0 + +;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. +;#The number of ampl_begin and ampl_end elements must match the number of bands + +InputFilter.ampl1_begin=1.0 +InputFilter.ampl1_end=1.0 +InputFilter.ampl2_begin=0.0 +InputFilter.ampl2_end=0.0 + +;#band_error: weighting applied to each band (usually 1). +;#The number of band_error elements must match the number of bands +InputFilter.band1_error=1.0 +InputFilter.band2_error=1.0 + +;#filter_type: one of "bandpass", "hilbert" or "differentiator" +InputFilter.filter_type=bandpass + +;#grid_density: determines how accurately the filter will be constructed. +;The minimum value is 16; higher values are slower to compute the filter. +InputFilter.grid_density=16 + +;#The following options are used only in Freq_Xlating_Fir_Filter implementation. +;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz + +InputFilter.sampling_frequency=4000000 +InputFilter.IF=0 + + + +;######### RESAMPLER CONFIG ############ +;## Resamples the input data. + +;#implementation: Use [Pass_Through] or [Direct_Resampler] +;#[Pass_Through] disables this block +;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation +;Resampler.implementation=Direct_Resampler +Resampler.implementation=Pass_Through + +;#dump: Dump the resamplered data to a file. +Resampler.dump=false +;#dump_filename: Log path and filename. +Resampler.dump_filename=../data/resampler.dat + +;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. +Resampler.item_type=gr_complex + +;#sample_freq_in: the sample frequency of the input signal +Resampler.sample_freq_in=4000000 + +;#sample_freq_out: the desired sample frequency of the output signal +Resampler.sample_freq_out=4000000 + + +;######### CHANNELS GLOBAL CONFIG ############ +;#count: Number of available satellite channels. +Channels.count=4 +;#in_acquisition: Number of channels simultaneously acquiring +Channels.in_acquisition=1 + +;######### CHANNEL 0 CONFIG ############ +;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS +;#if the option is disabled by default is assigned GPS +Channel.system = Galileo +;Channel.system = GPS + + +;#signal: +;# "1C" GPS L1 C/A +;# "1P" GPS L1 P +;# "1W" GPS L1 Z-tracking and similar (AS on) +;# "1Y" GPS L1 Y +;# "1M" GPS L1 M +;# "1N" GPS L1 codeless +;# "2C" GPS L2 C/A +;# "2D" GPS L2 L1(C/A)(P2-P1) semi-codeless +;# "2S" GPS L2 L2C (M) +;# "2L" GPS L2 L2C (L) +;# "2X" GPS L2 L2C (ML) +;# "2P" GPS L2 P +;# "2W" GPS L2 Z-tracking and similar (AS on) +;# "2Y" GPS L2 Y +;# "2M" GPS GPS L2 M +;# "2N" GPS L2 codeless +;# "5I" GPS L5 I +;# "5Q" GPS L5 Q +;# "5X" GPS L5 IQ +;# "1C" GLONASS G1 C/A +;# "1P" GLONASS G1 P +;# "2C" GLONASS G2 C/A (Glonass M) +;# "2P" GLONASS G2 P +;# "1A" GALILEO E1 A (PRS) +;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL) +;# "1C" GALILEO E1 C (no data) +;# "1X" GALILEO E1 BC +;# "1Z" GALILEO E1 ABC +;# "5I" GALILEO E5a I (F/NAV OS) +;# "5Q" GALILEO E5a Q (no data) +;# "5X" GALILEO E5a IQ +;# "7I" GALILEO E5b I +;# "7Q" GALILEO E5b Q +;# "7X" GALILEO E5b IQ +;# "8I" GALILEO E5 I +;# "8Q" GALILEO E5 Q +;# "8X" GALILEO E5 IQ +;# "6A" GALILEO E6 A +;# "6B" GALILEO E6 B +;# "6C" GALILEO E6 C +;# "6X" GALILEO E6 BC +;# "6Z" GALILEO E6 ABC +;# "1C" SBAS L1 C/A +;# "5I" SBAS L5 I +;# "5Q" SBAS L5 Q +;# "5X" SBAS L5 IQ +;# "2I" COMPASS E2 I +;# "2Q" COMPASS E2 Q +;# "2X" COMPASS E2 IQ +;# "7I" COMPASS E5b I +;# "7Q" COMPASS E5b Q +;# "7X" COMPASS E5b IQ +;# "6I" COMPASS E6 I +;# "6Q" COMPASS E6 Q +;# "6X" COMPASS E6 IQ +;#if the option is disabled by default is assigned "1C" GPS L1 C/A + + +;#satellite: Satellite PRN ID for this channel. Disable this option to random search + +;######### CHANNEL 0 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Channel0.system=GPS +;Channel0.signal=1C +;Channel0.satellite=11 +;Channel0.repeat_satellite=true + +;### Uncoment these lines for Galileo Systems +Channel0.system=Galileo +Channel0.signal=1B +Channel0.satellite=20 +Channel0.repeat_satellite=true + + +;######### CHANNEL 1 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Channel1.system=GPS +;Channel1.signal=1C +;Channel1.satellite=1 +;Channel1.repeat_satellite=true + +;### Uncoment these lines for Galileo Systems +Channel1.system=Galileo +Channel1.signal=1B +Channel1.satellite=12 +Channel1.repeat_satellite=true + +;######### CHANNEL 2 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Channel2.system=GPS +;Channel2.signal=1C +;Channel2.satellite=17 +;Channel2.repeat_satellite=true + +;### Uncoment these lines for Galileo Systems +Channel2.system=Galileo +Channel2.signal=1B +Channel2.satellite=11 +Channel2.repeat_satellite=true + +;######### CHANNEL 3 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Channel3.system=GPS +;Channel3.signal=1C +;Channel3.satellite=20 +;Channel3.repeat_satellite=false + +;### Uncoment these lines for Galileo Systems +Channel3.system=Galileo +Channel3.signal=1B +Channel3.satellite=19 +Channel3.repeat_satellite=true + +;######### ACQUISITION GLOBAL CONFIG ############ + +;#dump: Enable or disable the acquisition internal data file logging [true] or [false] +Acquisition.dump=false +;#filename: Log path and filename +Acquisition.dump_filename=./acq_dump.dat +;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. +Acquisition.item_type=gr_complex +;#if: Signal intermediate frequency in [Hz] +Acquisition.if=0 +;#sampled_ms: Signal block duration for the acquisition signal detection [ms] +;Acquisition.coherent_integration_time_ms=4 +Acquisition.repeat_satellite=true +;######### ACQUISITION CHANNELS CONFIG ###### + +;######### ACQUISITION CONFIG PARAMETERS ############ +;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] +;Acquisition0.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition +;Acquisition0.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition +;#threshold: Acquisition threshold +;Acquisition0.threshold=0.010 +;#doppler_max: Maximum expected Doppler shift [Hz] +;Acquisition0.doppler_max=10000 +;#doppler_max: Doppler step in the grid search [Hz] +;Acquisition0.doppler_step=250 +;#repeat_satellite: Use only jointly with the satellte PRN ID option. + +;######### ACQUISITION CH 0 CONFIG ############ + +;### Uncoment these lines for GPS Systems +;Acquisition0.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition +;Acquisition0.threshold=0.010 +;Acquisition0.doppler_step=250 +;Acquisition0.doppler_max=10000 +;Acquisition0.coherent_integration_time_ms=4 + +;### Uncoment these lines for Galileo Systems +Acquisition0.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition +Acquisition0.doppler_step=62 +Acquisition0.threshold=0.002 +Acquisition0.doppler_max=10000 +Acquisition0.coherent_integration_time_ms=16 + +;######### ACQUISITION CH 1 CONFIG ############ + +;### Uncoment these lines for GPS Systems +;Acquisition1.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition +;Acquisition1.threshold=0.010 +;Acquisition1.doppler_step=250 +;Acquisition1.doppler_max=10000 +;Acquisition1.coherent_integration_time_ms=4 + +;### Uncoment these lines for Galileo Systems +Acquisition1.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition +Acquisition1.doppler_step=62 +Acquisition1.threshold=0.002 +Acquisition1.doppler_max=10000 +Acquisition1.coherent_integration_time_ms=16 + + +;######### ACQUISITION CH 2 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Acquisition2.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition +;Acquisition2.threshold=0.002 +;Acquisition2.doppler_max=10000 +;Acquisition2.doppler_step=250 +;Acquisition2.coherent_integration_time_ms=4 + +;### Uncoment these lines for Galileo Systems +Acquisition2.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition +Acquisition2.threshold=0.6 +Acquisition2.doppler_max=10000 +Acquisition2.doppler_step=62 +Acquisition2.coherent_integration_time_ms=16 + + +;######### ACQUISITION CH 3 CONFIG ############ +;### Uncoment these lines for GPS Systems +;Acquisition3.implementation=GPS_L1_CA_PCPS_QuickSync_Acquisition +;Acquisition3.threshold=0.002 +;Acquisition3.doppler_max=10000 +;Acquisition3.doppler_step=250 +;Acquisition3.coherent_integration_time_ms=4 + +;### Uncoment these lines for Galileo Systems +Acquisition3.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition +Acquisition3.threshold=0.8 +Acquisition3.doppler_max=10000 +Acquisition3.doppler_step=62 +Acquisition3.coherent_integration_time_ms=16 + + +;######### TRACKING GLOBAL CONFIG ############ + +;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] +Tracking.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking +;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version. +Tracking.item_type=gr_complex + +;#sampling_frequency: Signal Intermediate Frequency in [Hz] +Tracking.if=0 + +;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false] +Tracking.dump=false + +;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. +Tracking.dump_filename=./tracking_ch_ + +;#pll_bw_hz: PLL loop filter bandwidth [Hz] +Tracking.pll_bw_hz=50.0; + +;#dll_bw_hz: DLL loop filter bandwidth [Hz] +Tracking.dll_bw_hz=4.0; + +;#fll_bw_hz: FLL loop filter bandwidth [Hz] +Tracking.fll_bw_hz=10.0; + +;#order: PLL/DLL loop filter order [2] or [3] +Tracking.order=3; + +;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] +Tracking.early_late_space_chips=0.5; + +;######### TELEMETRY DECODER CONFIG ############ +;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A. +TelemetryDecoder.implementation=GPS_L1_CA_Telemetry_Decoder +TelemetryDecoder.dump=false + +;######### OBSERVABLES CONFIG ############ +;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A. +Observables.implementation=GPS_L1_CA_Observables + +;#dump: Enable or disable the Observables internal binary data file logging [true] or [false] +Observables.dump=false + +;#dump_filename: Log path and filename. +Observables.dump_filename=./observables.dat + + +;######### PVT CONFIG ############ +;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version. +PVT.implementation=GPS_L1_CA_PVT + +;#averaging_depth: Number of PVT observations in the moving average algorithm +PVT.averaging_depth=10 + +;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false] +PVT.flag_averaging=true + +;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] +PVT.output_rate_ms=100; + +;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. +PVT.display_rate_ms=500; + +;#dump: Enable or disable the PVT internal binary data file logging [true] or [false] +PVT.dump=false + +;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. +PVT.dump_filename=./PVT + +;######### OUTPUT_FILTER CONFIG ############ +;# Receiver output filter: Leave this block disabled in this version +OutputFilter.implementation=Null_Sink_Output_Filter +OutputFilter.filename=data/gnss-sdr.dat +OutputFilter.item_type=gr_complex \ No newline at end of file diff --git a/src/algorithms/acquisition/adapters/CMakeLists.txt b/src/algorithms/acquisition/adapters/CMakeLists.txt index f113b64f8..6364a94c8 100644 --- a/src/algorithms/acquisition/adapters/CMakeLists.txt +++ b/src/algorithms/acquisition/adapters/CMakeLists.txt @@ -23,9 +23,11 @@ if(OPENCL_FOUND) gps_l1_ca_pcps_assisted_acquisition.cc gps_l1_ca_pcps_acquisition_fine_doppler.cc gps_l1_ca_pcps_tong_acquisition.cc + gps_l1_ca_pcps_quicksync_acquisition.cc gps_l1_ca_pcps_opencl_acquisition.cc galileo_e1_pcps_ambiguous_acquisition.cc galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc + galileo_e1_pcps_quicksync_ambiguous_acquisition.cc galileo_e1_pcps_tong_ambiguous_acquisition.cc galileo_e1_pcps_8ms_ambiguous_acquisition.cc ) @@ -36,8 +38,10 @@ else(OPENCL_FOUND) gps_l1_ca_pcps_assisted_acquisition.cc gps_l1_ca_pcps_acquisition_fine_doppler.cc gps_l1_ca_pcps_tong_acquisition.cc + gps_l1_ca_pcps_quicksync_acquisition.cc galileo_e1_pcps_ambiguous_acquisition.cc galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc + galileo_e1_pcps_quicksync_ambiguous_acquisition.cc galileo_e1_pcps_tong_ambiguous_acquisition.cc galileo_e1_pcps_8ms_ambiguous_acquisition.cc ) diff --git a/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.cc b/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.cc new file mode 100644 index 000000000..f98c857e8 --- /dev/null +++ b/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.cc @@ -0,0 +1,347 @@ +/*! + * \file galileo_e1_pcps_quicksync_ambiguous_acquisition.cc + * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for + * Galileo E1 Signals using the QuickSync Algorithm + * \author Damian Miralles, 2014. dmiralles2009@gmail.com + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#include "galileo_e1_pcps_quicksync_ambiguous_acquisition.h" +#include +#include +#include +#include +#include +#include "galileo_e1_signal_processing.h" +#include "Galileo_E1.h" +#include "configuration_interface.h" + +using google::LogMessage; + +GalileoE1PcpsQuickSyncAmbiguousAcquisition::GalileoE1PcpsQuickSyncAmbiguousAcquisition( + ConfigurationInterface* configuration, std::string role, + unsigned int in_streams, unsigned int out_streams, + boost::shared_ptr queue) : + role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue) +{ + configuration_ = configuration; + std::string default_item_type = "gr_complex"; + std::string default_dump_filename = "../data/acquisition.dat"; + + DLOG(INFO) << "role " << role; + + item_type_ = configuration_->property(role + ".item_type", + default_item_type); + + fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); + if_ = configuration_->property(role + ".ifreq", 0); + dump_ = configuration_->property(role + ".dump", false); + shift_resolution_ = configuration_->property(role + ".doppler_max", 15); + sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 16); + + /*--- Find number of samples per spreading code (4 ms) -----------------*/ + code_length_ = round( + fs_in_ + / (Galileo_E1_CODE_CHIP_RATE_HZ + / Galileo_E1_B_CODE_LENGTH_CHIPS)); + + int samples_per_ms = round(code_length_ / 4.0); + vector_length_ = sampled_ms_ * samples_per_ms; + + /*Calculate the folding factor value based on the calculations*/ + folding_factor_ = (unsigned int)ceil(sqrt(log2(code_length_))); + + + if (sampled_ms_ % (folding_factor_*4) != 0) + { + LOG(WARNING) << "QuickSync Algorithm requires a coherent_integration_time" + << " multiple of "<<(folding_factor_*4)<<"ms, Value entered " + <property(role + ".bit_transition_flag", false); + + if (!bit_transition_flag_) + { + max_dwells_ = configuration_->property(role + ".max_dwells", 1); + } + else + { + max_dwells_ = 2; + } + + dump_filename_ = configuration_->property(role + ".dump_filename", + default_dump_filename); + + code_ = new gr_complex[code_length_]; + LOG(INFO) <<"Vector Length: "<unique_id() << ")"; + DLOG(INFO) << "acquisition_quicksync(" << acquisition_cc_->unique_id() + << ")"; + } + else + { + LOG(WARNING) << item_type_ + << " unknown acquisition item type"; + } +} + + +GalileoE1PcpsQuickSyncAmbiguousAcquisition::~GalileoE1PcpsQuickSyncAmbiguousAcquisition() +{ + delete[] code_; +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_channel(unsigned int channel) +{ + channel_ = channel; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_channel(channel_); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_threshold(float threshold) +{ + + float pfa = configuration_->property(role_+ boost::lexical_cast(channel_) + ".pfa", 0.0); + + if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0); + + if(pfa==0.0) + { + threshold_ = threshold; + } + else + { + threshold_ = calculate_threshold(pfa); + } + + DLOG(INFO) <<"Channel "<set_threshold(threshold_); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max) +{ + doppler_max_ = doppler_max; + + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_doppler_max(doppler_max_); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step) +{ + doppler_step_ = doppler_step; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_doppler_step(doppler_step_); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_channel_queue( + concurrent_queue *channel_internal_queue) +{ + channel_internal_queue_ = channel_internal_queue; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_channel_queue(channel_internal_queue_); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_gnss_synchro( + Gnss_Synchro* gnss_synchro) +{ + gnss_synchro_ = gnss_synchro; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_gnss_synchro(gnss_synchro_); + } +} + + +signed int +GalileoE1PcpsQuickSyncAmbiguousAcquisition::mag() +{ + if (item_type_.compare("gr_complex") == 0) + { + return acquisition_cc_->mag(); + } + else + { + return 0; + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::init() +{ + acquisition_cc_->init(); + set_local_code(); +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_local_code() +{ + if (item_type_.compare("gr_complex") == 0) + { + bool cboc = configuration_->property( + "Acquisition" + boost::lexical_cast(channel_) + + ".cboc", false); + + std::complex * code = new std::complex[code_length_]; + + galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal, + cboc, gnss_synchro_->PRN, fs_in_, 0, false); + + /* + for (unsigned int i = 0; i < sampled_ms_/4; i++) + { + memcpy(&(code_[i*code_length_]), code, + sizeof(gr_complex)*code_length_); + } + */ + memcpy(code_, code,sizeof(gr_complex)*code_length_); + acquisition_cc_->set_local_code(code_); + + delete[] code; + code = NULL; + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::reset() +{ + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_active(true); + } +} + +float GalileoE1PcpsQuickSyncAmbiguousAcquisition::calculate_threshold(float pfa) +{ + unsigned int frequency_bins = 0; + for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_) + { + frequency_bins++; + } + + DLOG(INFO) <<"Channel "<connect(stream_to_vector_, 0, acquisition_cc_, 0); + } +} + + +void +GalileoE1PcpsQuickSyncAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block) +{ + if (item_type_.compare("gr_complex") == 0) + { + top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); + } +} + + +gr::basic_block_sptr GalileoE1PcpsQuickSyncAmbiguousAcquisition::get_left_block() +{ + return stream_to_vector_; +} + + +gr::basic_block_sptr GalileoE1PcpsQuickSyncAmbiguousAcquisition::get_right_block() +{ + return acquisition_cc_; +} + + +unsigned int GalileoE1PcpsQuickSyncAmbiguousAcquisition::get_folding_factor() +{ + return folding_factor_; +} diff --git a/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.h b/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.h new file mode 100644 index 000000000..7e013e90f --- /dev/null +++ b/src/algorithms/acquisition/adapters/galileo_e1_pcps_quicksync_ambiguous_acquisition.h @@ -0,0 +1,167 @@ +/*! + * \file galileo_e1_pcps_quicksync_ambiguous_acquisition.h + * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for Galileo E1 Signals + * \date June, 2014 + * \author Damian Miralles Sanchez. dmiralles2009@gmail.com + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#ifndef GNSS_SDR_GALILEO_E1_PCPS_QUICKSYNC_AMBIGUOUS_ACQUISITION_H_ +#define GNSS_SDR_GALILEO_E1_PCPS_QUICKSYNC_AMBIGUOUS_ACQUISITION_H_ + +#include +#include +#include +#include "gnss_synchro.h" +#include "acquisition_interface.h" +#include "pcps_quicksync_acquisition_cc.h" + + +class ConfigurationInterface; + +/*! + * \brief This class adapts a PCPS acquisition block to an + * AcquisitionInterface for Galileo E1 Signals + */ +class GalileoE1PcpsQuickSyncAmbiguousAcquisition: public AcquisitionInterface +{ +public: + GalileoE1PcpsQuickSyncAmbiguousAcquisition(ConfigurationInterface* configuration, + std::string role, unsigned int in_streams, + unsigned int out_streams, boost::shared_ptr queue); + + virtual ~GalileoE1PcpsQuickSyncAmbiguousAcquisition(); + + std::string role() + { + return role_; + } + + /*! + * \brief Returns "Galileo_E1_PCPS_Ambiguous_Acquisition" + */ + std::string implementation() + { + return "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition"; + } + size_t item_size() + { + return item_size_; + } + + void connect(gr::top_block_sptr top_block); + void disconnect(gr::top_block_sptr top_block); + gr::basic_block_sptr get_left_block(); + gr::basic_block_sptr get_right_block(); + + /*! + * \brief Set acquisition/tracking common Gnss_Synchro object pointer + * to efficiently exchange synchronization data between acquisition and + * tracking blocks + */ + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + + /*! + * \brief Set acquisition channel unique ID + */ + void set_channel(unsigned int channel); + + /*! + * \brief Set statistics threshold of PCPS algorithm + */ + void set_threshold(float threshold); + + /*! + * \brief Set maximum Doppler off grid search + */ + void set_doppler_max(unsigned int doppler_max); + + /*! + * \brief Set Doppler steps for the grid search + */ + void set_doppler_step(unsigned int doppler_step); + + /*! + * \brief Set tracking channel internal queue + */ + void set_channel_queue(concurrent_queue *channel_internal_queue); + + /*! + * \brief Initializes acquisition algorithm. + */ + void init(); + + /*! + * \brief Sets local code for Galileo E1 PCPS acquisition algorithm. + */ + void set_local_code(); + + /*! + * \brief Returns the maximum peak of grid search + */ + signed int mag(); + + /*! + * \brief Restart acquisition algorithm + */ + void reset(); + /*! + * \brief Get the folding factor value + */ + unsigned int get_folding_factor(); + +private: + ConfigurationInterface* configuration_; + pcps_quicksync_acquisition_cc_sptr acquisition_cc_; + gr::blocks::stream_to_vector::sptr stream_to_vector_; + size_t item_size_; + std::string item_type_; + unsigned int vector_length_; + unsigned int code_length_; + bool bit_transition_flag_; + unsigned int channel_; + float threshold_; + unsigned int doppler_max_; + unsigned int doppler_step_; + unsigned int shift_resolution_; + unsigned int sampled_ms_; + unsigned int max_dwells_; + unsigned int folding_factor_; + long fs_in_; + long if_; + bool dump_; + std::string dump_filename_; + std::complex * code_; + Gnss_Synchro * gnss_synchro_; + std::string role_; + unsigned int in_streams_; + unsigned int out_streams_; + boost::shared_ptr queue_; + concurrent_queue *channel_internal_queue_; + float calculate_threshold(float pfa); +}; + +#endif /* GNSS_SDR_GALILEO_E1_PCPS_QUICKSYNC_AMBIGUOUS_ACQUISITION_H_ */ diff --git a/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.cc b/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.cc new file mode 100644 index 000000000..66020e17a --- /dev/null +++ b/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.cc @@ -0,0 +1,333 @@ +/*! + * \file gps_l1_ca_pcps_quicksync_acquisition.cc + * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for + * GPS L1 C/A signals using the QuickSync Algorithm + * \author Damian Miralles, 2014. dmiralles2009@gmail.com + * + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#include "gps_l1_ca_pcps_quicksync_acquisition.h" +#include +#include +#include +#include +#include +#include +#include "gps_sdr_signal_processing.h" +#include "GPS_L1_CA.h" +#include "configuration_interface.h" + + + +using google::LogMessage; + +GpsL1CaPcpsQuickSyncAcquisition::GpsL1CaPcpsQuickSyncAcquisition( + ConfigurationInterface* configuration, std::string role, + unsigned int in_streams, unsigned int out_streams, + gr::msg_queue::sptr queue) : + role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue) +{ + configuration_ = configuration; + std::string default_item_type = "gr_complex"; + std::string default_dump_filename = "./data/acquisition.dat"; + + DLOG(INFO) << "role " << role; + + item_type_ = configuration_->property(role + ".item_type", default_item_type); + fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); + if_ = configuration_->property(role + ".ifreq", 0); + dump_ = configuration_->property(role + ".dump", false); + shift_resolution_ = configuration_->property(role + ".doppler_max", 15); + sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); + + //--- Find number of samples per spreading code ------------------------- + code_length_ = round(fs_in_ + / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); + + vector_length_ = code_length_ * sampled_ms_; + + /*Calculate the folding factor value based on the calculations*/ + folding_factor_ = (unsigned int)ceil(sqrt(log2(code_length_))); + + if ( sampled_ms_ % folding_factor_ != 0) + { + LOG(WARNING) << "QuickSync Algorithm requires a coherent_integration_time" + << " multiple of " << folding_factor_ << "ms, Value entered " + << sampled_ms_ << " ms"; + if(sampled_ms_ < folding_factor_) + { + sampled_ms_ = (int) folding_factor_; + } + else + { + sampled_ms_ = (int)(sampled_ms_/folding_factor_) * folding_factor_; + } + + LOG(WARNING) <<" Coherent_integration_time of " + << sampled_ms_ << " ms will be used instead."; + + } + + bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); + + if (!bit_transition_flag_) + { + max_dwells_ = configuration_->property(role + ".max_dwells", 1); + } + else + { + max_dwells_ = 2; + } + + dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); + + int samples_per_ms = round(code_length_); + code_= new gr_complex[code_length_]; + /*Object relevant information for debugging*/ + LOG(INFO) <<"Implementation: "<implementation() + <<", Vector Length: "<unique_id() << ")"; + DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; + } + else + { + LOG(WARNING) << item_type_ << " unknown acquisition item type"; + } + + +} + + +GpsL1CaPcpsQuickSyncAcquisition::~GpsL1CaPcpsQuickSyncAcquisition() +{ + delete[] code_; +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_channel(unsigned int channel) +{ + channel_ = channel; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_channel(channel_); + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_threshold(float threshold) +{ + float pfa = configuration_->property(role_ + + boost::lexical_cast(channel_) + ".pfa", 0.0); + + if(pfa == 0.0) + { + pfa = configuration_->property(role_+".pfa", 0.0); + } + if(pfa == 0.0) + { + threshold_ = threshold; + } + else + { + threshold_ = calculate_threshold(pfa); + } + + DLOG(INFO) <<"Channel "<set_threshold(threshold_); + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_doppler_max(unsigned int doppler_max) +{ + doppler_max_ = doppler_max; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_doppler_max(doppler_max_); + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_doppler_step(unsigned int doppler_step) +{ + doppler_step_ = doppler_step; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_doppler_step(doppler_step_); + } + +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_channel_queue( + concurrent_queue *channel_internal_queue) +{ + channel_internal_queue_ = channel_internal_queue; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_channel_queue(channel_internal_queue_); + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro) +{ + gnss_synchro_ = gnss_synchro; + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_gnss_synchro(gnss_synchro_); + } +} + + +signed int GpsL1CaPcpsQuickSyncAcquisition::mag() +{ + if (item_type_.compare("gr_complex") == 0) + { + return acquisition_cc_->mag(); + } + else + { + return 0; + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::init() +{ + acquisition_cc_->init(); + set_local_code(); + +} + + +void GpsL1CaPcpsQuickSyncAcquisition::set_local_code() +{ + if (item_type_.compare("gr_complex") == 0) + { + std::complex* code = new std::complex[code_length_]; + + gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0); + + /* + for (unsigned int i = 0; i < sampled_ms_; i++) + { + memcpy(&(code_[i*code_length_]), code, + sizeof(gr_complex)*code_length_); + } + */ + memcpy(code_, code,sizeof(gr_complex)*code_length_); + acquisition_cc_->set_local_code(code_); + + delete[] code; + } +} + + +void GpsL1CaPcpsQuickSyncAcquisition::reset() +{ + if (item_type_.compare("gr_complex") == 0) + { + acquisition_cc_->set_active(true); + } +} + + +float GpsL1CaPcpsQuickSyncAcquisition::calculate_threshold(float pfa) +{ + //Calculate the threshold + unsigned int frequency_bins = 0; + for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_) + { + frequency_bins++; + } + DLOG(INFO) << "Channel " << channel_<< " Pfa = " << pfa; + unsigned int ncells = code_length_*frequency_bins; + double exponent = 1/(double)ncells; + double val = pow(1.0 - pfa, exponent); + double lambda = double(code_length_); + boost::math::exponential_distribution mydist (lambda); + float threshold = (float)quantile(mydist,val); + + return threshold; +} + + +void GpsL1CaPcpsQuickSyncAcquisition::connect(gr::top_block_sptr top_block) +{ + if (item_type_.compare("gr_complex") == 0) + { + top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0); + } + +} + + +void GpsL1CaPcpsQuickSyncAcquisition::disconnect(gr::top_block_sptr top_block) +{ + if (item_type_.compare("gr_complex") == 0) + { + top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0); + } +} + + +gr::basic_block_sptr GpsL1CaPcpsQuickSyncAcquisition::get_left_block() +{ + return stream_to_vector_; +} + + +gr::basic_block_sptr GpsL1CaPcpsQuickSyncAcquisition::get_right_block() +{ + return acquisition_cc_; +} + + +unsigned int GpsL1CaPcpsQuickSyncAcquisition::get_folding_factor() +{ + return folding_factor_; +} diff --git a/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.h b/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.h new file mode 100644 index 000000000..1d6b6e01f --- /dev/null +++ b/src/algorithms/acquisition/adapters/gps_l1_ca_pcps_quicksync_acquisition.h @@ -0,0 +1,173 @@ +/*! + * \file gps_l1_ca_pcps_quicksync_acquisition.h + * \brief Adapts a PCPS acquisition block to an AcquisitionInterface for GPS L1 C/A signals implementing the QuickSync Algorithm. + * \date June, 2014 + * \author Damian Miralles Sanchez. dmiralles2009@gmail.com + * + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#ifndef GNSS_SDR_GPS_L1_CA_PCPS_QUICKSYNC_ACQUISITION_H_ +#define GNSS_SDR_GPS_L1_CA_PCPS_QUICKSYNC_ACQUISITION_H_ + +#include +#include +#include +#include "gnss_synchro.h" +#include "acquisition_interface.h" +#include "pcps_quicksync_acquisition_cc.h" +#include "configuration_interface.h" + + + +class ConfigurationInterface; + +/*! + * \brief This class adapts a PCPS acquisition block to an AcquisitionInterface + * for GPS L1 C/A signals + */ +class GpsL1CaPcpsQuickSyncAcquisition: public AcquisitionInterface +{ +public: + GpsL1CaPcpsQuickSyncAcquisition(ConfigurationInterface* configuration, + std::string role, unsigned int in_streams, + unsigned int out_streams, boost::shared_ptr queue); + + virtual ~GpsL1CaPcpsQuickSyncAcquisition(); + + std::string role() + { + return role_; + } + + /*! + * \brief Returns "GPS_L1_CA_PCPS_QuickSync_Acquisition" + */ + std::string implementation() + { + return "GPS_L1_CA_PCPS_QuickSync_Acquisition"; + } + size_t item_size() + { + return item_size_; + } + + void connect(gr::top_block_sptr top_block); + void disconnect(gr::top_block_sptr top_block); + gr::basic_block_sptr get_left_block(); + gr::basic_block_sptr get_right_block(); + + /*! + * \brief Set acquisition/tracking common Gnss_Synchro object pointer + * to efficiently exchange synchronization data between acquisition and + * tracking blocks + */ + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + + /*! + * \brief Set acquisition channel unique ID + */ + void set_channel(unsigned int channel); + + /*! + * \brief Set statistics threshold of PCPS algorithm + */ + void set_threshold(float threshold); + + /*! + * \brief Set maximum Doppler off grid search + */ + void set_doppler_max(unsigned int doppler_max); + + /*! + * \brief Set Doppler steps for the grid search + */ + void set_doppler_step(unsigned int doppler_step); + + /*! + * \brief Set tracking channel internal queue + */ + void set_channel_queue(concurrent_queue *channel_internal_queue); + + /*! + * \brief Initializes acquisition algorithm. + */ + void init(); + + /*! + * \brief Sets local code for GPS L1/CA PCPS acquisition algorithm. + */ + void set_local_code(); + + /*! + * \brief Returns the maximum peak of grid search + */ + signed int mag(); + + /*! + * \brief Restart acquisition algorithm + */ + void reset(); + + /*! + * \brief Get the folding factor value + */ + unsigned int get_folding_factor(); + +private: + ConfigurationInterface* configuration_; + pcps_quicksync_acquisition_cc_sptr acquisition_cc_; + gr::blocks::stream_to_vector::sptr stream_to_vector_; + size_t item_size_; + std::string item_type_; + unsigned int vector_length_; + unsigned int code_length_; + bool bit_transition_flag_; + unsigned int channel_; + float threshold_; + unsigned int doppler_max_; + unsigned int doppler_step_; + unsigned int shift_resolution_; + unsigned int sampled_ms_; + unsigned int max_dwells_; + unsigned int folding_factor_; + long fs_in_; + long if_; + bool dump_; + std::string dump_filename_; + std::complex * code_; + Gnss_Synchro * gnss_synchro_; + std::string role_; + unsigned int in_streams_; + unsigned int out_streams_; + boost::shared_ptr queue_; + concurrent_queue *channel_internal_queue_; + + float calculate_threshold(float pfa); + +}; + +#endif /* GNSS_SDR_GPS_L1_CA_PCPS_QUICKSYNC_ACQUISITION_H_ */ diff --git a/src/algorithms/acquisition/gnuradio_blocks/CMakeLists.txt b/src/algorithms/acquisition/gnuradio_blocks/CMakeLists.txt index 659cfc520..8cb3599bc 100644 --- a/src/algorithms/acquisition/gnuradio_blocks/CMakeLists.txt +++ b/src/algorithms/acquisition/gnuradio_blocks/CMakeLists.txt @@ -24,6 +24,7 @@ if(OPENCL_FOUND) pcps_acquisition_fine_doppler_cc.cc pcps_tong_acquisition_cc.cc pcps_cccwsr_acquisition_cc.cc + pcps_quicksync_acquisition_cc.cc galileo_pcps_8ms_acquisition_cc.cc pcps_opencl_acquisition_cc.cc # Needs OpenCL ) @@ -35,6 +36,7 @@ else(OPENCL_FOUND) pcps_acquisition_fine_doppler_cc.cc pcps_tong_acquisition_cc.cc pcps_cccwsr_acquisition_cc.cc + pcps_quicksync_acquisition_cc.cc galileo_pcps_8ms_acquisition_cc.cc ) endif(OPENCL_FOUND) diff --git a/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.cc b/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.cc new file mode 100644 index 000000000..fc2a29d8a --- /dev/null +++ b/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.cc @@ -0,0 +1,606 @@ +/*! + * \file pcps_quicksync_acquisition_cc.cc + * \brief This class implements a Parallel Code Phase Search Acquisition + * \author Damian Miralles Sanchez, 2014. dmiralles2009(at)gmail.com + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#include "pcps_quicksync_acquisition_cc.h" +#include +#include +#include +#include +#include +#include +#include "control_message_factory.h" +#include "gnss_signal_processing.h" + + + +using google::LogMessage; + +pcps_quicksync_acquisition_cc_sptr pcps_quicksync_make_acquisition_cc( + unsigned int folding_factor, + unsigned int sampled_ms, unsigned int max_dwells, + unsigned int doppler_max, long freq, long fs_in, + int samples_per_ms, int samples_per_code, + bool bit_transition_flag, + gr::msg_queue::sptr queue, bool dump, + std::string dump_filename) +{ + + return pcps_quicksync_acquisition_cc_sptr( + new pcps_quicksync_acquisition_cc( + folding_factor, + sampled_ms, max_dwells, doppler_max, + freq, fs_in, samples_per_ms, + samples_per_code, + bit_transition_flag, + queue, dump, dump_filename)); +} + +pcps_quicksync_acquisition_cc::pcps_quicksync_acquisition_cc( + unsigned int folding_factor, + unsigned int sampled_ms, unsigned int max_dwells, + unsigned int doppler_max, long freq, long fs_in, + int samples_per_ms, int samples_per_code, + bool bit_transition_flag, + gr::msg_queue::sptr queue, bool dump, + std::string dump_filename): + gr::block("pcps_quicksync_acquisition_cc", + gr::io_signature::make(1, 1, (sizeof(gr_complex)*sampled_ms * samples_per_ms )), + gr::io_signature::make(0, 0, (sizeof(gr_complex)*sampled_ms * samples_per_ms ))) +{ + //DLOG(INFO) << "START CONSTRUCTOR"; + + d_sample_counter = 0; // SAMPLE COUNTER + d_active = false; + d_state = 0; + d_queue = queue; + d_freq = freq; + d_fs_in = fs_in; + d_samples_per_ms = samples_per_ms; + d_samples_per_code = samples_per_code; + d_sampled_ms = sampled_ms; + d_max_dwells = max_dwells; + d_well_count = 0; + d_doppler_max = doppler_max; + d_mag = 0; + d_input_power = 0.0; + d_num_doppler_bins = 0; + d_bit_transition_flag = bit_transition_flag; + d_folding_factor = folding_factor; + + //fft size is reduced. + d_fft_size = (d_samples_per_code) / d_folding_factor; + + + //todo: do something if posix_memalign fails + if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){}; + if (posix_memalign((void**)&d_magnitude, 16, d_samples_per_code * d_folding_factor * sizeof(float)) == 0){}; + if (posix_memalign((void**)&d_magnitude_folded, 16, d_fft_size * sizeof(float)) == 0){}; + + d_possible_delay = new unsigned int[d_folding_factor]; + + + /*Create the d_code signal , which would store the values of the code in its + original form to perform later correlation in time domain*/ + d_code = new gr_complex[d_samples_per_code](); + + + // Direct FFT + d_fft_if = new gr::fft::fft_complex(d_fft_size, true); + // Inverse FFT + d_ifft = new gr::fft::fft_complex(d_fft_size, false); + + // For dumping samples into a file + d_dump = dump; + d_dump_filename = dump_filename; + + // DLOG(INFO) << "END CONSTRUCTOR"; +} + +pcps_quicksync_acquisition_cc::~pcps_quicksync_acquisition_cc() +{ + //DLOG(INFO) << "START DESTROYER"; + if (d_num_doppler_bins > 0) + { + for (unsigned int i = 0; i < d_num_doppler_bins; i++) + { + free(d_grid_doppler_wipeoffs[i]); + } + delete[] d_grid_doppler_wipeoffs; + } + + free(d_fft_codes); + free(d_magnitude); + free(d_magnitude_folded); + + delete d_ifft; + d_ifft = NULL; + delete d_fft_if; + d_fft_if = NULL; + delete d_code; + d_code = NULL; + delete d_possible_delay; + d_possible_delay = NULL; + + if (d_dump) + { + d_dump_file.close(); + } + // DLOG(INFO) << "END DESTROYER"; +} + +void pcps_quicksync_acquisition_cc::set_local_code(std::complex * code) +{ + // DLOG(INFO) << "START LOCAL CODE"; + + + /*save a local copy of the code without the folding process to perform corre- + lation in time in the final steps of the acquisition stage*/ + memcpy(d_code, code, sizeof(gr_complex)*d_samples_per_code); + + d_code_folded = new gr_complex[d_fft_size](); + memcpy(d_fft_if->get_inbuf(), d_code_folded, sizeof(gr_complex)*(d_fft_size)); + + /*perform folding of the code by the factorial factor parameter. Notice that + folding of the code in the time stage would result in a downsampled spectrum + in the frequency domain after applying the fftw operation*/ + for (unsigned int i = 0; i < d_folding_factor; i++) + { + std::transform ((code + i*d_fft_size), (code + ((i+1)*d_fft_size)) , + d_fft_if->get_inbuf(), d_fft_if->get_inbuf(), + std::plus()); + } + + + d_fft_if->execute(); // We need the FFT of local code + + //Conjugate the local code + if (is_unaligned()) + { + volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(), d_fft_size); + } + else + { + volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(), d_fft_size); + } + // DLOG(INFO) << "END LOCAL CODE"; + +} + +void pcps_quicksync_acquisition_cc::init() +{ + //DLOG(INFO) << "START init"; + d_gnss_synchro->Acq_delay_samples = 0.0; + d_gnss_synchro->Acq_doppler_hz = 0.0; + d_gnss_synchro->Acq_samplestamp_samples = 0; + d_mag = 0.0; + d_input_power = 0.0; + + // Count the number of bins + d_num_doppler_bins = 0; + for (int doppler = (int)(-d_doppler_max); + doppler <= (int)(d_doppler_max); + doppler += d_doppler_step) + { + d_num_doppler_bins++; + } + + // Create the carrier Doppler wipeoff signals + d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; + for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) + { + if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16, + d_samples_per_code * d_folding_factor * sizeof(gr_complex)) == 0){}; + + int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index; + complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index], + d_freq + doppler, d_fs_in, + d_samples_per_code * d_folding_factor); + } + // DLOG(INFO) << "end init"; +} + +int pcps_quicksync_acquisition_cc::general_work(int noutput_items, + gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items) +{ + /* + * By J.Arribas, L.Esteve and M.Molina + * Acquisition strategy (Kay Borre book + CFAR threshold): + * 1. Compute the input signal power estimation + * 2. Doppler serial search loop + * 3. Perform the FFT-based circular convolution (parallel time search) + * 4. Record the maximum peak and the associated synchronization parameters + * 5. Compute the test statistics and compare to the threshold + * 6. Declare positive or negative acquisition using a message queue + */ + //DLOG(INFO) << "START GENERAL WORK"; + int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL + //std::cout<<"general_work in quicksync gnuradio block"<Acq_delay_samples = 0.0; + d_gnss_synchro->Acq_doppler_hz = 0.0; + d_gnss_synchro->Acq_samplestamp_samples = 0; + d_well_count = 0; + d_mag = 0.0; + d_input_power = 0.0; + d_test_statistics = 0.0; + + d_state = 1; + } + + d_sample_counter += d_sampled_ms * d_samples_per_ms * ninput_items[0]; // sample counter + consume_each(ninput_items[0]); + //DLOG(INFO) << "END CASE 0"; + break; + } + + case 1: + { + /* initialize acquisition implementing the QuickSync algorithm*/ + //DLOG(INFO) << "START CASE 1"; + int doppler; + unsigned int indext = 0; + float magt = 0.0; + const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer + + gr_complex *in_temp; + if (posix_memalign((void**)&(in_temp), 16,d_samples_per_code * d_folding_factor * sizeof(gr_complex)) == 0){}; + + + gr_complex *in_temp_folded; + if (posix_memalign((void**)&(in_temp_folded), 16,d_fft_size * sizeof(gr_complex)) == 0){}; + + /*Create a signal to store a signal of size 1ms, to perform correlation + in time. No folding on this data is required*/ + gr_complex *in_1code; + if (posix_memalign((void**)&(in_1code), 16,d_samples_per_code * sizeof(gr_complex)) == 0){}; + + /*Stores the values of the correlation output between the local code + and the signal with doppler shift corrected */ + gr_complex *corr_output; + if (posix_memalign((void**)&(corr_output), 16,d_samples_per_code * sizeof(gr_complex)) == 0){}; + + /*Stores a copy of the folded version of the signal.This is used for + the FFT operations in future steps of excecution*/ + // gr_complex in_folded[d_fft_size]; + float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size; + + d_input_power = 0.0; + d_mag = 0.0; + d_test_statistics = 0.0; + d_noise_floor_power = 0.0; + + d_sample_counter += d_sampled_ms * d_samples_per_ms; // sample counter + + d_well_count++; + + DLOG(INFO) << "Channel: " << d_channel + << " , doing acquisition of satellite: " + << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN + << " ,algorithm: pcps_quicksync_acquisition" + << " ,folding factor: " << d_folding_factor + << " ,sample stamp: " << d_sample_counter << ", threshold: " + << d_threshold << ", doppler_max: " << d_doppler_max + << ", doppler_step: " << d_doppler_step << ", Signal Size: " + << d_samples_per_code * d_folding_factor; + + + /* 1- Compute the input signal power estimation. This operation is + being performed in a signal of size nxp */ + volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_samples_per_code * d_folding_factor); + volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_samples_per_code * d_folding_factor); + d_input_power /= (float)(d_samples_per_code * d_folding_factor); + + + + for (unsigned int doppler_index=0;doppler_indexget_inbuf()*/ + d_signal_folded = new gr_complex[d_fft_size](); + memcpy( d_fft_if->get_inbuf(),d_signal_folded, + sizeof(gr_complex)*(d_fft_size)); + + /*Doppler search steps and then multiplication of the incoming + signal with the doppler wipeoffs to eliminate frequency offset + */ + doppler=-(int)d_doppler_max+d_doppler_step*doppler_index; + + /*Perform multiplication of the incoming signal with the + complex exponential vector. This removes the frequency doppler + shift offset*/ + volk_32fc_x2_multiply_32fc_a(in_temp, in, + d_grid_doppler_wipeoffs[doppler_index], + d_samples_per_code * d_folding_factor); + + /*Perform folding of the carrier wiped-off incoming signal. Since + superlinear method is being used the folding factor in the + incoming raw data signal is of d_folding_factor^2*/ + for ( int i = 0; i < (int)(d_folding_factor*d_folding_factor); i++) + { + std::transform ((in_temp+i*d_fft_size), + (in_temp+((i+1)*d_fft_size)) , + d_fft_if->get_inbuf(), + d_fft_if->get_inbuf(), + std::plus()); + } + + /* 3- Perform the FFT-based convolution (parallel time search) + Compute the FFT of the carrier wiped--off incoming signal*/ + d_fft_if->execute(); + + /*Multiply carrier wiped--off, Fourier transformed incoming + signal with the local FFT'd code reference using SIMD + operations with VOLK library*/ + volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), + d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); + + /* compute the inverse FFT of the aliased signal*/ + d_ifft->execute(); + + /* Compute the magnitude and get the maximum value with its + index position*/ + volk_32fc_magnitude_squared_32f_a(d_magnitude_folded, + d_ifft->get_outbuf(), d_fft_size); + + /* Normalize the maximum value to correct the scale factor + introduced by FFTW*/ + //volk_32f_s32f_multiply_32f_a(d_magnitude_folded,d_magnitude_folded, + // (1 / (fft_normalization_factor * fft_normalization_factor)), d_fft_size); + volk_32f_index_max_16u_a(&indext, d_magnitude_folded, d_fft_size); + + magt = d_magnitude_folded[indext]/ (fft_normalization_factor * fft_normalization_factor); + + delete d_signal_folded; + + // 4- record the maximum peak and the associated synchronization parameters + if (d_mag < magt) + { + d_mag = magt; + + /* In case that d_bit_transition_flag = true, we compare the potentially + new maximum test statistics (d_mag/d_input_power) with the value in + d_test_statistics. When the second dwell is being processed, the value + of d_mag/d_input_power could be lower than d_test_statistics (i.e, + the maximum test statistics in the previous dwell is greater than + current d_mag/d_input_power). Note that d_test_statistics is not + restarted between consecutive dwells in multidwell operation.*/ + if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) + { + unsigned int detected_delay_samples_folded = 0; + detected_delay_samples_folded = (indext % d_samples_per_code); + float corr_output_f[d_folding_factor]; + gr_complex complex_acumulator[100]; + //gr_complex complex_acumulator[d_folding_factor]; + //const int ff = d_folding_factor; + //gr_complex complex_acumulator[ff]; + //gr_complex complex_acumulator[]; + //complex_acumulator = new gr_complex[d_folding_factor](); + + for (int i = 0; i < (int)d_folding_factor; i++) + { + d_possible_delay[i]= detected_delay_samples_folded+ + (i)*d_fft_size; + } + + for ( int i = 0; i < (int)d_folding_factor; i++) + { + + /*Copy a signal of 1 code length into suggested buffer. + The copied signal must have doppler effect corrected*/ + memcpy(in_1code,&in_temp[d_possible_delay[i]], + sizeof(gr_complex)*(d_samples_per_code)); + + /*Perform multiplication of the unmodified local + generated code with the incoming signal with doppler + effect corrected and accumulates its value. This + is indeed correlation in time for an specific value + of a shift*/ + volk_32fc_x2_multiply_32fc_a(corr_output, in_1code, + d_code, d_samples_per_code); + + for(int j=0; j < (d_samples_per_code); j++) + { + complex_acumulator[i] += (corr_output[j]); + } + + } + /*Obtain maximun value of correlation given the + possible delay selected */ + volk_32fc_magnitude_squared_32f_a(corr_output_f, + complex_acumulator, d_folding_factor); + volk_32f_index_max_16u_a(&indext, corr_output_f, + d_folding_factor); + + /*Display correlation results for galileo satellites*/ + /*Display correlation results for gps satellites*/ + LOG_IF(INFO, (d_possible_delay[0] == 351) || (d_possible_delay[0] == 2351)) + << " Doppler: " << doppler + << ", Mag: " << d_mag + << ", Corr_value: " + << corr_output_f[0] << " " + << corr_output_f[1] << " " + << corr_output_f[2] << " " + << corr_output_f[3] << "\n"; + + /*Now save the real code phase in the gnss_syncro + block for use in other stages*/ + d_gnss_synchro->Acq_delay_samples = (double) + (d_possible_delay[indext]); + d_gnss_synchro->Acq_doppler_hz = (double)doppler; + d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; + + + /* 5- Compute the test statistics and compare to the threshold + d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;*/ + d_test_statistics = d_mag / d_input_power; + //delete complex_acumulator; + + } + } + + // Record results to file if required + if (d_dump) + { + /* + std::stringstream filename; + std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write + filename.str(""); + filename << "../data/test_statistics_" << d_gnss_synchro->System + <<"_" << d_gnss_synchro->Signal << "_sat_" + << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; + d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); + d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin? + d_dump_file.close(); + */ + /*Since QuickSYnc performs a folded correlation in frequency by means + of the FFT, it is esential to also keep the values obtained from the + possible delay to show how it is maximize*/ + std::stringstream filename; + std::streamsize n = sizeof(float) * (d_fft_size); // complex file write + filename.str(""); + filename << "../data/test_statistics_" << d_gnss_synchro->System + <<"_" << d_gnss_synchro->Signal << "_sat_" + << d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat"; + d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary); + d_dump_file.write((char*)d_magnitude_folded, n); //write directly |abs(x)|^2 in this Doppler bin? + d_dump_file.close(); + } + } + + if (!d_bit_transition_flag) + { + if (d_test_statistics > d_threshold) + { + d_state = 2; // Positive acquisition + + } + else if (d_well_count == d_max_dwells) + { + d_state = 3; // Negative acquisition + + } + } + else + { + if (d_well_count == d_max_dwells) // d_max_dwells = 2 + { + if (d_test_statistics > d_threshold) + { + d_state = 2; // Positive acquisition + } + else + { + d_state = 3; // Negative acquisition + } + } + } + + consume_each(1); + + delete d_code_folded; + d_code_folded = NULL; + + free(in_temp); + free(in_1code); + free(corr_output); + + break; + } + + case 2: + { + //DLOG(INFO) << "START CASE 2"; + // 6.1- Declare positive acquisition using a message queue + DLOG(INFO) << "positive acquisition"; + DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; + DLOG(INFO) << "sample_stamp " << d_sample_counter; + DLOG(INFO) << "test statistics value " << d_test_statistics; + DLOG(INFO) << "test statistics threshold " << d_threshold; + DLOG(INFO) << "folding factor " << d_folding_factor; + DLOG(INFO) << "possible delay"; + for (int i = 0; i < (int)d_folding_factor; i++) DLOG(INFO) << d_possible_delay[i]; + DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; + DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; + DLOG(INFO) << "magnitude folded " << d_mag; + DLOG(INFO) << "input signal power " << d_input_power; + + d_active = false; + d_state = 0; + + d_sample_counter += d_sampled_ms * d_samples_per_ms * ninput_items[0]; // sample counter + consume_each(ninput_items[0]); + + acquisition_message = 1; + d_channel_internal_queue->push(acquisition_message); + //DLOG(INFO) << "END CASE 2"; + break; + } + + case 3: + { + //DLOG(INFO) << "START CASE 3"; + // 6.2- Declare negative acquisition using a message queue + DLOG(INFO) << "negative acquisition"; + DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; + DLOG(INFO) << "sample_stamp " << d_sample_counter; + DLOG(INFO) << "test statistics value " << d_test_statistics; + DLOG(INFO) << "test statistics threshold " << d_threshold; + DLOG(INFO) << "folding factor "<Acq_delay_samples; + DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; + DLOG(INFO) << "magnitude folded " << d_mag; + DLOG(INFO) << "input signal power " << d_input_power; + + d_active = false; + d_state = 0; + + d_sample_counter += d_sampled_ms * d_samples_per_ms * ninput_items[0]; // sample counter + consume_each(ninput_items[0]); + + acquisition_message = 2; + d_channel_internal_queue->push(acquisition_message); + //DLOG(INFO) << "END CASE 3"; + break; + } + } + //DLOG(INFO) << "END GENERAL WORK"; + return 0; +} diff --git a/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.h b/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.h new file mode 100644 index 000000000..8d14f57c8 --- /dev/null +++ b/src/algorithms/acquisition/gnuradio_blocks/pcps_quicksync_acquisition_cc.h @@ -0,0 +1,259 @@ +/*! +* \file pcps_quicksync_acquisition_cc.h +* \brief This class implements a Parallel Code Phase Search Acquisition with the +* QuickSync Algorithm +* +* Acquisition strategy (Kay Borre book CFAR + threshold). +*
    +*
  1. Compute the input signal power estimation +*
  2. Doppler serial search loop +*
  3. Perform folding of the incoming signal and local generated code +*
  4. Perform the FFT-based circular convolution (parallel time search) +*
  5. Record the maximum peak and the associated synchronization parameters +*
  6. Compute the test statistics and compare to the threshold +*
  7. Declare positive or negative acquisition using a message queue +*
  8. Obtain the adequate acquisition parameters by correlating the incoming +* signal shifted by the possible folded delays +*
+* +* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, +* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency +* Approach", Birkha user, 2007. pp 81-84 +* +* \date Jun2 2014 +* \author Damian Miralles Sanchez, dmiralles2009@gmail.com +* +* ------------------------------------------------------------------------- +* +* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) +* +* GNSS-SDR is a software defined Global Navigation +* Satellite Systems receiver +* +* This file is part of GNSS-SDR. +* +* GNSS-SDR is free software: you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GNSS-SDR is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GNSS-SDR. If not, see . +* +* ------------------------------------------------------------------------- +*/ + +#ifndef GNSS_SDR_PCPS_QUICKSYNC_ACQUISITION_CC_H_ +#define GNSS_SDR_PCPS_QUICKSYNC_ACQUISITION_CC_H_ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "concurrent_queue.h" +#include "gnss_synchro.h" + +class pcps_quicksync_acquisition_cc; + +typedef boost::shared_ptr +pcps_quicksync_acquisition_cc_sptr; + +pcps_quicksync_acquisition_cc_sptr +pcps_quicksync_make_acquisition_cc(unsigned int folding_factor, + unsigned int sampled_ms, unsigned int max_dwells, + unsigned int doppler_max, long freq, long fs_in, + int samples_per_ms, int samples_per_code, + bool bit_transition_flag, + gr::msg_queue::sptr queue, bool dump, + std::string dump_filename); + +/*! + * \brief This class implements a Parallel Code Phase Search Acquisition with + * the implementation of the Sparse QuickSync Algorithm. + * + * Check \ref Navitec2012 "Faster GPS via the Sparse Fourier Transform", + * for details of its implementation and functionality. + */ +class pcps_quicksync_acquisition_cc: public gr::block +{ +private: + friend pcps_quicksync_acquisition_cc_sptr + pcps_quicksync_make_acquisition_cc(unsigned int folding_factor, + unsigned int sampled_ms, unsigned int max_dwells, + unsigned int doppler_max, long freq, long fs_in, + int samples_per_ms, int samples_per_code, + bool bit_transition_flag, + gr::msg_queue::sptr queue, bool dump, + std::string dump_filename); + + pcps_quicksync_acquisition_cc(unsigned int folding_factor, + unsigned int sampled_ms, unsigned int max_dwells, + unsigned int doppler_max, long freq, long fs_in, + int samples_per_ms, int samples_per_code, + bool bit_transition_flag, + gr::msg_queue::sptr queue, bool dump, + std::string dump_filename); + + void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift, + int doppler_offset); + + gr_complex* d_code; + unsigned int d_folding_factor; // also referred in the paper as 'p' + float * d_corr_acumulator; + unsigned int *d_possible_delay; + float * d_magnitude_folded; + gr_complex *d_signal_folded; + gr_complex *d_code_folded; + float d_noise_floor_power; + + long d_fs_in; + long d_freq; + int d_samples_per_ms; + int d_samples_per_code; + unsigned int d_doppler_resolution; + float d_threshold; + std::string d_satellite_str; + unsigned int d_doppler_max; + unsigned int d_doppler_step; + unsigned int d_sampled_ms; + unsigned int d_max_dwells; + unsigned int d_well_count; + unsigned int d_fft_size; + unsigned long int d_sample_counter; + gr_complex** d_grid_doppler_wipeoffs; + unsigned int d_num_doppler_bins; + gr_complex* d_fft_codes; + gr::fft::fft_complex* d_fft_if; + gr::fft::fft_complex* d_fft_if2; + gr::fft::fft_complex* d_ifft; + Gnss_Synchro *d_gnss_synchro; + unsigned int d_code_phase; + float d_doppler_freq; + float d_mag; + float* d_magnitude; + float d_input_power; + float d_test_statistics; + bool d_bit_transition_flag; + gr::msg_queue::sptr d_queue; + concurrent_queue *d_channel_internal_queue; + std::ofstream d_dump_file; + bool d_active; + int d_state; + bool d_dump; + unsigned int d_channel; + std::string d_dump_filename; + +public: + /*! + * \brief Default destructor. + */ + ~pcps_quicksync_acquisition_cc(); + + /*! + * \brief Set acquisition/tracking common Gnss_Synchro object pointer + * to exchange synchronization data between acquisition and tracking blocks. + * \param p_gnss_synchro Satellite information shared by the processing blocks. + */ + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) + { + d_gnss_synchro = p_gnss_synchro; + } + + /*! + * \brief Returns the maximum peak of grid search. + */ + unsigned int mag() + { + return d_mag; + } + + /*! + * \brief Initializes acquisition algorithm. + */ + void init(); + + /*! + * \brief Sets local code for PCPS acquisition algorithm. + * \param code - Pointer to the PRN code. + */ + void set_local_code(std::complex * code); + + /*! + * \brief Starts acquisition algorithm, turning from standby mode to + * active mode + * \param active - bool that activates/deactivates the block. + */ + void set_active(bool active) + { + d_active = active; + } + + /*! + * \brief Set acquisition channel unique ID + * \param channel - receiver channel. + */ + void set_channel(unsigned int channel) + { + d_channel = channel; + } + + /*! + * \brief Set statistics threshold of PCPS algorithm. + * \param threshold - Threshold for signal detection (check \ref Navitec2012, + * Algorithm 1, for a definition of this threshold). + */ + void set_threshold(float threshold) + { + d_threshold = threshold; + } + + /*! + * \brief Set maximum Doppler grid search + * \param doppler_max - Maximum Doppler shift considered in the grid search [Hz]. + */ + void set_doppler_max(unsigned int doppler_max) + { + d_doppler_max = doppler_max; + } + + /*! + * \brief Set Doppler steps for the grid search + * \param doppler_step - Frequency bin of the search grid [Hz]. + */ + void set_doppler_step(unsigned int doppler_step) + { + d_doppler_step = doppler_step; + } + + + /*! + * \brief Set tracking channel internal queue. + * \param channel_internal_queue - Channel's internal blocks information queue. + */ + void set_channel_queue(concurrent_queue *channel_internal_queue) + { + d_channel_internal_queue = channel_internal_queue; + } + + /*! + * \brief Parallel Code Phase Search Acquisition signal processing. + */ + int general_work(int noutput_items, gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items); +}; + +#endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/ diff --git a/src/core/receiver/gnss_block_factory.cc b/src/core/receiver/gnss_block_factory.cc index 81c766fdb..d90ed9873 100644 --- a/src/core/receiver/gnss_block_factory.cc +++ b/src/core/receiver/gnss_block_factory.cc @@ -61,10 +61,12 @@ #include "gps_l1_ca_pcps_tong_acquisition.h" #include "gps_l1_ca_pcps_assisted_acquisition.h" #include "gps_l1_ca_pcps_acquisition_fine_doppler.h" +#include "gps_l1_ca_pcps_quicksync_acquisition.h" #include "galileo_e1_pcps_ambiguous_acquisition.h" #include "galileo_e1_pcps_8ms_ambiguous_acquisition.h" #include "galileo_e1_pcps_tong_ambiguous_acquisition.h" #include "galileo_e1_pcps_cccwsr_ambiguous_acquisition.h" +#include "galileo_e1_pcps_quicksync_ambiguous_acquisition.h" #include "gps_l1_ca_dll_pll_tracking.h" #include "gps_l1_ca_dll_pll_optim_tracking.h" #include "gps_l1_ca_dll_fll_pll_tracking.h" @@ -429,6 +431,12 @@ std::unique_ptr GNSSBlockFactory::GetBlock( out_streams, queue)); block = std::move(block_); } + else if (implementation.compare("GPS_L1_CA_PCPS_QuickSync_Acquisition") == 0) + { + std::unique_ptr block_( new GpsL1CaPcpsQuickSyncAcquisition(configuration.get(), role, in_streams, + out_streams, queue)); + block = std::move(block_); + } else if (implementation.compare("Galileo_E1_PCPS_Ambiguous_Acquisition") == 0) { std::unique_ptr block_(new GalileoE1PcpsAmbiguousAcquisition(configuration.get(), role, in_streams, @@ -453,6 +461,12 @@ std::unique_ptr GNSSBlockFactory::GetBlock( out_streams, queue)); block = std::move(block_); } + else if (implementation.compare("Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition") == 0) + { + std::unique_ptr block_( new GalileoE1PcpsQuickSyncAmbiguousAcquisition(configuration.get(), role, in_streams, + out_streams, queue)); + block = std::move(block_); + } // TRACKING BLOCKS ------------------------------------------------------------- else if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking") == 0) @@ -618,6 +632,12 @@ std::unique_ptr GNSSBlockFactory::GetAcqBlock( out_streams, queue)); block = std::move(block_); } + else if (implementation.compare("GPS_L1_CA_PCPS_QuickSync_Acquisition") == 0) + { + std::unique_ptr block_( new GpsL1CaPcpsQuickSyncAcquisition(configuration.get(), role, in_streams, + out_streams, queue)); + block = std::move(block_); + } else if (implementation.compare("Galileo_E1_PCPS_Ambiguous_Acquisition") == 0) { std::unique_ptr block_(new GalileoE1PcpsAmbiguousAcquisition(configuration.get(), role, in_streams, @@ -642,6 +662,12 @@ std::unique_ptr GNSSBlockFactory::GetAcqBlock( out_streams, queue)); block = std::move(block_); } + else if (implementation.compare("Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition") == 0) + { + std::unique_ptr block_( new GalileoE1PcpsQuickSyncAmbiguousAcquisition(configuration.get(), role, in_streams, + out_streams, queue)); + block = std::move(block_); + } else { // Log fatal. This causes execution to stop. diff --git a/src/tests/CMakeLists.txt b/src/tests/CMakeLists.txt index 568ee181e..25f47109f 100644 --- a/src/tests/CMakeLists.txt +++ b/src/tests/CMakeLists.txt @@ -193,11 +193,13 @@ add_executable(gnss_block_test EXCLUDE_FROM_ALL ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc # ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc + ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc2013_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_8ms_ambiguous_acquisition_gsoc2013_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_cccwsr_ambiguous_acquisition_gsoc2013_test.cc + ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_tong_ambiguous_acquisition_gsoc2013_test.cc #${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_dll_pll_veml_tracking_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/file_output_filter_test.cc diff --git a/src/tests/gnss_block/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc b/src/tests/gnss_block/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc new file mode 100644 index 000000000..9ecd73dd0 --- /dev/null +++ b/src/tests/gnss_block/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc @@ -0,0 +1,640 @@ +/*! + * \file galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc + * \brief This class implements an acquisition test for + * GalileoE1PcpsAmbiguousAcquisition class. + * \author Damian Miralles, 2014. dmiralles2009@gmail.com + * + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "gnss_block_interface.h" +#include "in_memory_configuration.h" +#include "gnss_synchro.h" +#include "signal_generator.h" +#include "signal_generator_c.h" +#include "fir_filter.h" +#include "gen_signal_source.h" +#include "gnss_sdr_valve.h" +#include "galileo_e1_pcps_quicksync_ambiguous_acquisition.h" + +using google::LogMessage; + +class GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test: public ::testing::Test +{ +protected: + GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test() +{ + queue = gr::msg_queue::make(0); + top_block = gr::make_top_block("Acquisition test"); + factory = std::make_shared(); + item_size = sizeof(gr_complex); + stop = false; + message = 0; +} + + ~GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test() + { + } + + void init(); + void config_1(); + void config_2(); + void start_queue(); + void wait_message(); + void process_message(); + void stop_queue(); + + gr::msg_queue::sptr queue; + gr::top_block_sptr top_block; + //GalileoE1PcpsQuickSyncAmbiguousAcquisition *acquisition; + std::shared_ptr acquisition; + //InMemoryConfiguration* config; + std::shared_ptr factory; + std::shared_ptr config; + Gnss_Synchro gnss_synchro; + size_t item_size; + concurrent_queue channel_internal_queue; + bool stop; + int message; + boost::thread ch_thread; + + unsigned int integration_time_ms; + unsigned int fs_in; + unsigned int folding_factor; + + double expected_delay_chips; + double expected_doppler_hz; + float max_doppler_error_hz; + float max_delay_error_chips; + + unsigned int num_of_realizations; + unsigned int realization_counter; + unsigned int detection_counter; + unsigned int correct_estimation_counter; + unsigned int acquired_samples; + unsigned int mean_acq_time_us; + + double mse_doppler; + double mse_delay; + + double Pd; // Probability of detection + double Pfa_p; // Probability of false alarm on present satellite + double Pfa_a; // Probability of false alarm on absent satellite + double Pmd; // Probability of miss detection + + std::ofstream pdpfafile; + + double threshold_config2; + unsigned int miss_detection_counter; + unsigned int CN0_dB_0; + unsigned int CN0_dB_1; + unsigned int CN0_dB_2; + unsigned int CN0_dB_3; +}; + + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::init() +{ + message = 0; + realization_counter = 0; + detection_counter = 0; + correct_estimation_counter = 0; + acquired_samples = 0; + mse_doppler = 0; + mse_delay = 0; + mean_acq_time_us = 0; + Pd = 0; + Pfa_p = 0; + Pfa_a = 0; + + miss_detection_counter = 0; + Pmd = 0; + CN0_dB_1 = 0; + CN0_dB_2 = 0; + CN0_dB_3 = 0; + +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::config_1() +{ + gnss_synchro.Channel_ID = 0; + gnss_synchro.System = 'E'; + std::string signal = "1C"; + signal.copy(gnss_synchro.Signal, 2, 0); + + integration_time_ms = 16; + fs_in = 4e6; + + expected_delay_chips = 600; + expected_doppler_hz = 750; + max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); + max_delay_error_chips = 0.50; + + num_of_realizations = 1; + + config = std::make_shared(); + + config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.item_type", "gr_complex"); + + config->set_property("SignalSource.num_satellites", "1"); + + config->set_property("SignalSource.system_0", "E"); + config->set_property("SignalSource.PRN_0", "10"); + config->set_property("SignalSource.CN0_dB_0", "44"); + config->set_property("SignalSource.doppler_Hz_0", + std::to_string(expected_doppler_hz)); + config->set_property("SignalSource.delay_chips_0", + std::to_string(expected_delay_chips)); + + config->set_property("SignalSource.noise_flag", "false"); + config->set_property("SignalSource.data_flag", "false"); + config->set_property("SignalSource.BW_BB", "0.97"); + + config->set_property("InputFilter.implementation", "Fir_Filter"); + config->set_property("InputFilter.input_item_type", "gr_complex"); + config->set_property("InputFilter.output_item_type", "gr_complex"); + config->set_property("InputFilter.taps_item_type", "float"); + config->set_property("InputFilter.number_of_taps", "11"); + config->set_property("InputFilter.number_of_bands", "2"); + config->set_property("InputFilter.band1_begin", "0.0"); + config->set_property("InputFilter.band1_end", "0.97"); + config->set_property("InputFilter.band2_begin", "0.98"); + config->set_property("InputFilter.band2_end", "1.0"); + config->set_property("InputFilter.ampl1_begin", "1.0"); + config->set_property("InputFilter.ampl1_end", "1.0"); + config->set_property("InputFilter.ampl2_begin", "0.0"); + config->set_property("InputFilter.ampl2_end", "0.0"); + config->set_property("InputFilter.band1_error", "1.0"); + config->set_property("InputFilter.band2_error", "1.0"); + config->set_property("InputFilter.filter_type", "bandpass"); + config->set_property("InputFilter.grid_density", "16"); + + config->set_property("Acquisition.item_type", "gr_complex"); + config->set_property("Acquisition.if", "0"); + config->set_property("Acquisition.coherent_integration_time_ms", + std::to_string(integration_time_ms)); + config->set_property("Acquisition.max_dwells", "1"); + config->set_property("Acquisition.bit_transition_flag","false"); + config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition"); + config->set_property("Acquisition.threshold", "10"); + config->set_property("Acquisition.doppler_max", "10000"); + config->set_property("Acquisition.doppler_step", "250"); + config->set_property("Acquisition.dump", "true"); +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::config_2() +{ + gnss_synchro.Channel_ID = 0; + gnss_synchro.System = 'E'; + std::string signal = "1C"; + signal.copy(gnss_synchro.Signal, 2, 0); + + integration_time_ms = 16; + fs_in = 4e6; + + expected_delay_chips = 600; + expected_doppler_hz = 750; + max_doppler_error_hz = 2 / (3 * integration_time_ms * 1e-3); + max_delay_error_chips = 0.50; + + threshold_config2 = 3.0000; + CN0_dB_0 = 50; + + num_of_realizations = 100; + + config = std::make_shared(); + + config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.item_type", "gr_complex"); + + config->set_property("SignalSource.num_satellites", "4"); + + config->set_property("SignalSource.system_0", "E"); + config->set_property("SignalSource.PRN_0", "10"); + config->set_property("SignalSource.CN0_dB_0", + std::to_string(CN0_dB_0)); + config->set_property("SignalSource.doppler_Hz_0", + std::to_string(expected_doppler_hz)); + config->set_property("SignalSource.delay_chips_0", + std::to_string(expected_delay_chips)); + + config->set_property("SignalSource.system_1", "E"); + config->set_property("SignalSource.PRN_1", "15"); + config->set_property("SignalSource.CN0_dB_1", "44"); + config->set_property("SignalSource.doppler_Hz_1", "1000"); + config->set_property("SignalSource.delay_chips_1", "100"); + + config->set_property("SignalSource.system_2", "E"); + config->set_property("SignalSource.PRN_2", "21"); + config->set_property("SignalSource.CN0_dB_2", "44"); + config->set_property("SignalSource.doppler_Hz_2", "2000"); + config->set_property("SignalSource.delay_chips_2", "200"); + + config->set_property("SignalSource.system_3", "E"); + config->set_property("SignalSource.PRN_3", "22"); + config->set_property("SignalSource.CN0_dB_3", "44"); + config->set_property("SignalSource.doppler_Hz_3", "3000"); + config->set_property("SignalSource.delay_chips_3", "300"); + + config->set_property("SignalSource.noise_flag", "true"); + config->set_property("SignalSource.data_flag", "true"); + config->set_property("SignalSource.BW_BB", "0.97"); + + config->set_property("InputFilter.implementation", "Fir_Filter"); + config->set_property("InputFilter.input_item_type", "gr_complex"); + config->set_property("InputFilter.output_item_type", "gr_complex"); + config->set_property("InputFilter.taps_item_type", "float"); + config->set_property("InputFilter.number_of_taps", "11"); + config->set_property("InputFilter.number_of_bands", "2"); + config->set_property("InputFilter.band1_begin", "0.0"); + config->set_property("InputFilter.band1_end", "0.97"); + config->set_property("InputFilter.band2_begin", "0.98"); + config->set_property("InputFilter.band2_end", "1.0"); + config->set_property("InputFilter.ampl1_begin", "1.0"); + config->set_property("InputFilter.ampl1_end", "1.0"); + config->set_property("InputFilter.ampl2_begin", "0.0"); + config->set_property("InputFilter.ampl2_end", "0.0"); + config->set_property("InputFilter.band1_error", "1.0"); + config->set_property("InputFilter.band2_error", "1.0"); + config->set_property("InputFilter.filter_type", "bandpass"); + config->set_property("InputFilter.grid_density", "16"); + + config->set_property("Acquisition.item_type", "gr_complex"); + config->set_property("Acquisition.if", "0"); + config->set_property("Acquisition.coherent_integration_time_ms", + std::to_string(integration_time_ms)); + config->set_property("Acquisition.max_dwells", "1"); + config->set_property("Acquisition.bit_transition_flag","false"); + config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition"); + config->set_property("Acquisition.threshold", std::to_string(threshold_config2)); + config->set_property("Acquisition.doppler_max", "10000"); + config->set_property("Acquisition.doppler_step", "250"); + config->set_property("Acquisition.dump", "false"); +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::start_queue() +{ + stop = false; + ch_thread = boost::thread(&GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::wait_message, this); +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::wait_message() +{ + struct timeval tv; + long long int begin = 0; + long long int end = 0; + + while (!stop) + { + acquisition->reset(); + + gettimeofday(&tv, NULL); + begin = tv.tv_sec*1e6 + tv.tv_usec; + + channel_internal_queue.wait_and_pop(message); + + gettimeofday(&tv, NULL); + end = tv.tv_sec*1e6 + tv.tv_usec; + + mean_acq_time_us += (end - begin); + + process_message(); + } +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::process_message() +{ + if (message == 1) + { + detection_counter++; + + // The term -5 is here to correct the additional delay introduced by the FIR filter + double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0 / ((double)fs_in * 1e-3)); + double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); + + mse_delay += std::pow(delay_error_chips, 2); + mse_doppler += std::pow(doppler_error_hz, 2); + + if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) + { + correct_estimation_counter++; + } + + } + else if(message == 2 && gnss_synchro.PRN == 10) + { + /* + if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) + { + miss_detection_counter++; + } + */ + miss_detection_counter++; + } + + realization_counter++; + + std::cout << "Progress: " << round((float)realization_counter / num_of_realizations * 100) << "% \r" << std::flush; + + if (realization_counter == num_of_realizations) + { + mse_delay /= (double)num_of_realizations; + mse_doppler /= (double)num_of_realizations; + + Pd = (double)correct_estimation_counter / (double)num_of_realizations; + Pfa_a = (double)detection_counter / (double)num_of_realizations; + Pfa_p = (double)(detection_counter-correct_estimation_counter) / (double)num_of_realizations; + Pmd = (double)miss_detection_counter / (double)num_of_realizations; + + mean_acq_time_us /= (double)num_of_realizations; + + stop_queue(); + top_block->stop(); + } +} + +void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::stop_queue() +{ + stop = true; +} + + +TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, Instantiate) +{ + config_1(); + std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Quicksync_Ambiguous_Acquisition", 1, 1, queue); + acquisition = std::dynamic_pointer_cast(acq_); +} + + +TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ConnectAndRun) +{ + LOG(INFO)<<"**Start connect and run test"; + int nsamples = floor(fs_in*integration_time_ms*1e-3); + struct timeval tv; + long long int begin = 0; + long long int end = 0; + + config_1(); + + std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Quicksync_Ambiguous_Acquisition", 1, 1, queue); + acquisition = std::dynamic_pointer_cast(acq_); + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + boost::shared_ptr source = + gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); + boost::shared_ptr valve = + gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); + top_block->connect(source, 0, valve, 0); + top_block->connect(valve, 0, acquisition->get_left_block(), 0); + + }) << "Failure connecting the blocks of acquisition test."<< std::endl; + + EXPECT_NO_THROW( { + gettimeofday(&tv, NULL); + begin = tv.tv_sec * 1e6 + tv.tv_usec; + top_block->run(); // Start threads and wait + gettimeofday(&tv, NULL); + end = tv.tv_sec * 1e6 + tv.tv_usec; + }) << "Failure running the top_block."<< std::endl; + + std::cout << "Processed " << nsamples << " samples in " << (end - begin) << " microseconds" << std::endl; + LOG(INFO) <<"----end connect and run test-----"; + LOG(INFO) <<"**End connect and run test"; +} + +TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResults) +{ + LOG(INFO)<<"Start validation of results test"; + config_1(); + + std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Quicksync_Ambiguous_Acquisition", 1, 1, queue); + acquisition = std::dynamic_pointer_cast(acq_); + + ASSERT_NO_THROW( { + acquisition->set_channel(1); + }) << "Failure setting channel."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_gnss_synchro(&gnss_synchro); + }) << "Failure setting gnss_synchro."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_channel_queue(&channel_internal_queue); + }) << "Failure setting channel_internal_queue."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); + }) << "Failure setting doppler_max."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 125)); + }) << "Failure setting doppler_step."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); + }) << "Failure setting threshold."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + }) << "Failure connecting acquisition to the top_block." << std::endl; + + acquisition->init(); + + ASSERT_NO_THROW( { + boost::shared_ptr signal_source; + SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); + FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); + signal_source.reset(new GenSignalSource(config.get(), signal_generator, filter, "SignalSource", queue)); + signal_source->connect(top_block); + top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); + }) << "Failure connecting the blocks of acquisition test." << std::endl; + + // i = 0 --> satellite in acquisition is visible + // i = 1 --> satellite in acquisition is not visible + for (unsigned int i = 0; i < 2; i++) + { + init(); + + if (i == 0) + { + gnss_synchro.PRN = 10; // This satellite is visible + } + else if (i == 1) + { + gnss_synchro.PRN = 20; // This satellite is not visible + } + + acquisition->set_local_code(); + folding_factor = acquisition->get_folding_factor(); + start_queue(); + + EXPECT_NO_THROW( { + top_block->run(); // Start threads and wait + }) << "Failure running the top_block."<< std::endl; + + if (i == 0) + { + EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; + if (message == 1) + { + EXPECT_EQ((unsigned int)1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation."; + } + } + else if (i == 1) + { + EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL."; + } + } + LOG(INFO) << "End validation of results test"; +} + + + +TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResultsProbabilities) +{ + config_2(); + + std::shared_ptr acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Quicksync_Ambiguous_Acquisition", 1, 1, queue); + acquisition = std::dynamic_pointer_cast(acq_); + + ASSERT_NO_THROW( { + acquisition->set_channel(1); + }) << "Failure setting channel."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_gnss_synchro(&gnss_synchro); + }) << "Failure setting gnss_synchro."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_channel_queue(&channel_internal_queue); + }) << "Failure setting channel_internal_queue."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); + }) << "Failure setting doppler_max."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); + }) << "Failure setting doppler_step."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); + }) << "Failure setting threshold."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + }) << "Failure connecting acquisition to the top_block." << std::endl; + + acquisition->init(); + + ASSERT_NO_THROW( { + boost::shared_ptr signal_source; + SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); + FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); + signal_source.reset(new GenSignalSource(config.get(), signal_generator, filter, "SignalSource", queue)); + signal_source->connect(top_block); + top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); + }) << "Failure connecting the blocks of acquisition test." << std::endl; + + std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl; + + // i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation) + // i = 1 --> satellite in acquisition is not visible (prob of false detection) + for (unsigned int i = 0; i < 2; i++) + { + init(); + + if (i == 0) + { + gnss_synchro.PRN = 10; // This satellite is visible + } + else if (i == 1) + { + gnss_synchro.PRN = 20; // This satellite is not visible + } + + acquisition->set_local_code(); + start_queue(); + + EXPECT_NO_THROW( { + top_block->run(); // Start threads and wait + }) << "Failure running the top_block." << std::endl; + + if (i == 0) + { + std::cout << "Estimated probability of detection = " << Pd << std::endl; + std::cout << "Estimated probability of false alarm (satellite present) = " << Pfa_p << std::endl; + std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; + + std::stringstream filenamepd; + filenamepd.str(""); + filenamepd << "../data/test_statistics_" << gnss_synchro.System + <<"_" << gnss_synchro.Signal << "_sat_" + << gnss_synchro.PRN << "CN0_dB_0_" << CN0_dB_0 << "_dBHz.csv"; + + pdpfafile.open(filenamepd.str().c_str(), std::ios::app | std::ios::out); + pdpfafile << threshold_config2 << "," << Pd << "," << Pfa_p << "," << Pmd << std::endl; + pdpfafile.close(); + } + else if (i == 1) + { + std::cout << "Estimated probability of false alarm (satellite absent) = " << Pfa_a << std::endl; + std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; + + std::stringstream filenamepf; + filenamepf.str(""); + filenamepf << "../data/test_statistics_" << gnss_synchro.System + << "_" << gnss_synchro.Signal << "_sat_" + << gnss_synchro.PRN << "CN0_dB_0_" << CN0_dB_0 << "_dBHz.csv"; + + pdpfafile.open(filenamepf.str().c_str(), std::ios::app | std::ios::out); + pdpfafile << threshold_config2 << "," << Pfa_a << std::endl; + pdpfafile.close(); + } + } +} diff --git a/src/tests/gnss_block/gnss_block_factory_test.cc b/src/tests/gnss_block/gnss_block_factory_test.cc index a966fda64..c3eb005f2 100644 --- a/src/tests/gnss_block/gnss_block_factory_test.cc +++ b/src/tests/gnss_block/gnss_block_factory_test.cc @@ -20,7 +20,7 @@ * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or - * at your option) any later version. + * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -194,6 +194,31 @@ TEST(GNSS_Block_Factory_Test, InstantiateGpsL1CaPcpsAcquisition) } +TEST(GNSS_Block_Factory_Test, InstantiateGpsL1CaPcpsQuickSyncAcquisition) +{ + std::shared_ptr configuration = std::make_shared(); + configuration->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition"); + gr::msg_queue::sptr queue = gr::msg_queue::make(0); + std::shared_ptr factory = std::make_shared(); + std::shared_ptr acq_ = factory->GetBlock(configuration, "Acquisition", "GPS_L1_CA_PCPS_QuickSync_Acquisition", 1, 1, queue); + std::shared_ptr acquisition = std::dynamic_pointer_cast(acq_); + EXPECT_STREQ("Acquisition", acquisition->role().c_str()); + EXPECT_STREQ("GPS_L1_CA_PCPS_QuickSync_Acquisition", acquisition->implementation().c_str()); +} + +TEST(GNSS_Block_Factory_Test, InstantiateGalileoE1PcpsQuickSyncAmbiguousAcquisition) +{ + std::shared_ptr configuration = std::make_shared(); + configuration->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition"); + gr::msg_queue::sptr queue = gr::msg_queue::make(0); + std::shared_ptr factory = std::make_shared(); + std::shared_ptr acq_ = factory->GetBlock(configuration, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1, queue); + std::shared_ptr acquisition = std::dynamic_pointer_cast(acq_); + EXPECT_STREQ("Acquisition", acquisition->role().c_str()); + EXPECT_STREQ("Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", acquisition->implementation().c_str()); +} + + TEST(GNSS_Block_Factory_Test, InstantiateGalileoE1PcpsAmbiguousAcquisition) { std::shared_ptr configuration = std::make_shared(); diff --git a/src/tests/gnss_block/gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc b/src/tests/gnss_block/gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc new file mode 100644 index 000000000..e475b26e5 --- /dev/null +++ b/src/tests/gnss_block/gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc @@ -0,0 +1,625 @@ +/*! + * \file gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc + * \brief This class implements an acquisition test for + * GpsL1CaPcpsQuickSyncAcquisition class based on some input parameters. + * \author Damian Miralles Sanchez, 2014. dmiralles2009(at)gmail.com + * + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + + + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "gnss_block_factory.h" +#include "gnss_block_interface.h" +#include "in_memory_configuration.h" +#include "gnss_sdr_valve.h" +#include "gnss_synchro.h" +#include "gps_l1_ca_pcps_quicksync_acquisition.h" + +using google::LogMessage; + +class GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test: public ::testing::Test +{ +protected: + GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test() +{ + queue = gr::msg_queue::make(0); + top_block = gr::make_top_block("Acquisition test"); + factory = std::make_shared(); + item_size = sizeof(gr_complex); + stop = false; + message = 0; +} + + ~GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test() + {} + + void init(); + void config_1(); + void config_2(); + void start_queue(); + void wait_message(); + void process_message(); + void stop_queue(); + + gr::msg_queue::sptr queue; + gr::top_block_sptr top_block; + std::shared_ptr factory; + std::shared_ptr acquisition; + std::shared_ptr config; + Gnss_Synchro gnss_synchro; + size_t item_size; + concurrent_queue channel_internal_queue; + bool stop; + int message; + boost::thread ch_thread; + + unsigned int integration_time_ms; + unsigned int fs_in; + unsigned int folding_factor; + + double expected_delay_chips; + double expected_doppler_hz; + float max_doppler_error_hz; + float max_delay_error_chips; + + unsigned int num_of_realizations; + unsigned int realization_counter; + unsigned int detection_counter; + unsigned int correct_estimation_counter; + unsigned int acquired_samples; + unsigned int mean_acq_time_us; + + double mse_doppler; + double mse_delay; + + double Pd; + double Pfa_p; + double Pfa_a; + double Pmd; + + std::ofstream pdpfafile; + double threshold_config2; + unsigned int miss_detection_counter; + unsigned int CN0_dB_0; +}; + + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::init() +{ + message = 0; + realization_counter = 0; + detection_counter = 0; + correct_estimation_counter = 0; + acquired_samples = 0; + mse_doppler = 0; + mse_delay = 0; + mean_acq_time_us = 0; + Pd = 0; + Pfa_p = 0; + Pfa_a = 0; + + miss_detection_counter = 0; + Pmd = 0; + +} + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::config_1() +{ + gnss_synchro.Channel_ID = 0; + gnss_synchro.System = 'G'; + std::string signal = "1C"; + signal.copy(gnss_synchro.Signal,2,0); + + integration_time_ms = 4; + fs_in = 4e6; + + expected_delay_chips = 600; + expected_doppler_hz = 750; + max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); + max_delay_error_chips = 0.50; + + num_of_realizations = 1; + + config = std::make_shared(); + + config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); + config->set_property("SignalSource.item_type", "gr_complex"); + config->set_property("SignalSource.num_satellites", "1"); + config->set_property("SignalSource.repeat", "true"); + + config->set_property("SignalSource.system_0", "G"); + config->set_property("SignalSource.PRN_0", "10"); + config->set_property("SignalSource.CN0_dB_0", "44"); + config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); + config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); + + config->set_property("SignalSource.noise_flag", "false"); + config->set_property("SignalSource.data_flag", "false"); + config->set_property("SignalSource.BW_BB", "0.97"); + + config->set_property("InputFilter.implementation", "Fir_Filter"); + config->set_property("InputFilter.input_item_type", "gr_complex"); + config->set_property("InputFilter.output_item_type", "gr_complex"); + config->set_property("InputFilter.taps_item_type", "float"); + config->set_property("InputFilter.number_of_taps", "11"); + config->set_property("InputFilter.number_of_bands", "2"); + config->set_property("InputFilter.band1_begin", "0.0"); + config->set_property("InputFilter.band1_end", "0.97"); + config->set_property("InputFilter.band2_begin", "0.98"); + config->set_property("InputFilter.band2_end", "1.0"); + config->set_property("InputFilter.ampl1_begin", "1.0"); + config->set_property("InputFilter.ampl1_end", "1.0"); + config->set_property("InputFilter.ampl2_begin", "0.0"); + config->set_property("InputFilter.ampl2_end", "0.0"); + config->set_property("InputFilter.band1_error", "1.0"); + config->set_property("InputFilter.band2_error", "1.0"); + config->set_property("InputFilter.filter_type", "bandpass"); + config->set_property("InputFilter.grid_density", "16"); + + config->set_property("Acquisition.item_type", "gr_complex"); + config->set_property("Acquisition.if", "0"); + config->set_property("Acquisition.coherent_integration_time_ms", + std::to_string(integration_time_ms)); + config->set_property("Acquisition.max_dwells", "1"); + config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition"); + config->set_property("Acquisition.threshold", "100"); + config->set_property("Acquisition.doppler_max", "10000"); + config->set_property("Acquisition.doppler_step", "250"); + config->set_property("Acquisition.bit_transition_flag", "false"); + config->set_property("Acquisition.dump", "true"); +} + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::config_2() +{ + gnss_synchro.Channel_ID = 0; + gnss_synchro.System = 'G'; + std::string signal = "1C"; + signal.copy(gnss_synchro.Signal,2,0); + + integration_time_ms = 4; + fs_in = 4e6; + + expected_delay_chips = 600; + expected_doppler_hz = 750; + max_doppler_error_hz = 2/(3*integration_time_ms*1e-3); + max_delay_error_chips = 0.50; + + threshold_config2 = 8.0000; + CN0_dB_0 = 50; + + + num_of_realizations = 100; + + config = std::make_shared(); + + config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.fs_hz", std::to_string(fs_in)); + + config->set_property("SignalSource.item_type", "gr_complex"); + + config->set_property("SignalSource.num_satellites", "4"); + + config->set_property("SignalSource.system_0", "G"); + config->set_property("SignalSource.PRN_0", "10"); + config->set_property("SignalSource.CN0_dB_0", std::to_string(CN0_dB_0)); + config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz)); + config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips)); + + config->set_property("SignalSource.system_1", "G"); + config->set_property("SignalSource.PRN_1", "15"); + config->set_property("SignalSource.CN0_dB_1", "44"); + config->set_property("SignalSource.doppler_Hz_1", "1000"); + config->set_property("SignalSource.delay_chips_1", "100"); + + config->set_property("SignalSource.system_2", "G"); + config->set_property("SignalSource.PRN_2", "21"); + config->set_property("SignalSource.CN0_dB_2", "44"); + config->set_property("SignalSource.doppler_Hz_2", "2000"); + config->set_property("SignalSource.delay_chips_2", "200"); + + config->set_property("SignalSource.system_3", "G"); + config->set_property("SignalSource.PRN_3", "22"); + config->set_property("SignalSource.CN0_dB_3", "44"); + config->set_property("SignalSource.doppler_Hz_3", "3000"); + config->set_property("SignalSource.delay_chips_3", "300"); + + config->set_property("SignalSource.noise_flag", "true"); + config->set_property("SignalSource.data_flag", "true"); + config->set_property("SignalSource.BW_BB", "0.97"); + + config->set_property("InputFilter.implementation", "Fir_Filter"); + config->set_property("InputFilter.input_item_type", "gr_complex"); + config->set_property("InputFilter.output_item_type", "gr_complex"); + config->set_property("InputFilter.taps_item_type", "float"); + config->set_property("InputFilter.number_of_taps", "11"); + config->set_property("InputFilter.number_of_bands", "2"); + config->set_property("InputFilter.band1_begin", "0.0"); + config->set_property("InputFilter.band1_end", "0.97"); + config->set_property("InputFilter.band2_begin", "0.98"); + config->set_property("InputFilter.band2_end", "1.0"); + config->set_property("InputFilter.ampl1_begin", "1.0"); + config->set_property("InputFilter.ampl1_end", "1.0"); + config->set_property("InputFilter.ampl2_begin", "0.0"); + config->set_property("InputFilter.ampl2_end", "0.0"); + config->set_property("InputFilter.band1_error", "1.0"); + config->set_property("InputFilter.band2_error", "1.0"); + config->set_property("InputFilter.filter_type", "bandpass"); + config->set_property("InputFilter.grid_density", "16"); + + config->set_property("Acquisition.item_type", "gr_complex"); + config->set_property("Acquisition.if", "0"); + config->set_property("Acquisition.coherent_integration_time_ms", + std::to_string(integration_time_ms)); + config->set_property("Acquisition.max_dwells", "1"); + config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition"); + config->set_property("Acquisition.threshold", std::to_string(threshold_config2)); + config->set_property("Acquisition.doppler_max", "10000"); + config->set_property("Acquisition.doppler_step", "250"); + config->set_property("Acquisition.bit_transition_flag", "false"); + config->set_property("Acquisition.dump", "false"); +} + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::start_queue() +{ + stop = false; + ch_thread = boost::thread(&GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::wait_message, this); +} + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::wait_message() +{ + struct timeval tv; + long long int begin = 0; + long long int end = 0; + + while (!stop) + { + acquisition->reset(); + + gettimeofday(&tv, NULL); + begin = tv.tv_sec * 1e6 + tv.tv_usec; + + channel_internal_queue.wait_and_pop(message); + + gettimeofday(&tv, NULL); + end = tv.tv_sec * 1e6 + tv.tv_usec; + + mean_acq_time_us += (end - begin); + + process_message(); + } +} + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::process_message() +{ + + if (message == 1) + { + detection_counter++; + + // The term -5 is here to correct the additional delay introduced by the FIR filter + double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples - 5) * 1023.0/ ((double)fs_in * 1e-3)); + double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz); + + mse_delay += std::pow(delay_error_chips, 2); + mse_doppler += std::pow(doppler_error_hz, 2); + + if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz)) + { + correct_estimation_counter++; + } + } + else if(message == 2 && gnss_synchro.PRN == 10) + { + miss_detection_counter++; + } + + realization_counter++; + + std::cout << "Progress: " << round((float)realization_counter/num_of_realizations*100) << "% \r" << std::flush; + + if (realization_counter == num_of_realizations) + { + mse_delay /= num_of_realizations; + mse_doppler /= num_of_realizations; + + Pd = (double)correct_estimation_counter / (double)num_of_realizations; + Pfa_a = (double)detection_counter / (double)num_of_realizations; + Pfa_p = (double)(detection_counter-correct_estimation_counter) / (double)num_of_realizations; + Pmd = (double)miss_detection_counter / (double)num_of_realizations; + + mean_acq_time_us /= num_of_realizations; + + stop_queue(); + top_block->stop(); + } +} + + +void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::stop_queue() +{ + stop = true; +} + + +TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, Instantiate) +{ + config_1(); + acquisition = std::make_shared(config.get(), "Acquisition", 1, 1, queue); +} + +TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ConnectAndRun) +{ + int nsamples = floor(fs_in*integration_time_ms*1e-3); + struct timeval tv; + long long int begin = 0; + long long int end = 0; + + config_1(); + acquisition = std::make_shared(config.get(), "Acquisition", 1, 1, queue); + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + boost::shared_ptr source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0)); + boost::shared_ptr valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); + top_block->connect(source, 0, valve, 0); + top_block->connect(valve, 0, acquisition->get_left_block(), 0); + }) << "Failure connecting the blocks of acquisition test."<< std::endl; + + EXPECT_NO_THROW( { + gettimeofday(&tv, NULL); + begin = tv.tv_sec *1e6 + tv.tv_usec; + top_block->run(); // Start threads and wait + gettimeofday(&tv, NULL); + end = tv.tv_sec *1e6 + tv.tv_usec; + }) << "Failure running the top_block."<< std::endl; + + std::cout << "Processed " << nsamples << " samples in " << (end-begin) << " microseconds" << std::endl; + +} + + + +TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResults) +{ + config_1(); + + acquisition = std::make_shared(config.get(), "Acquisition", 1, 1, queue); + + ASSERT_NO_THROW( { + acquisition->set_channel(1); + }) << "Failure setting channel."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_gnss_synchro(&gnss_synchro); + }) << "Failure setting gnss_synchro."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_channel_queue(&channel_internal_queue); + }) << "Failure setting channel_internal_queue."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); + }) << "Failure setting doppler_max."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 250)); + }) << "Failure setting doppler_step."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); + }) << "Failure setting threshold."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + }) << "Failure connecting acquisition to the top_block."<< std::endl; + + acquisition->init(); + + ASSERT_NO_THROW( { + boost::shared_ptr signal_source; + SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); + FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); + signal_source.reset(new GenSignalSource(config.get(), signal_generator, filter, "SignalSource", queue)); + signal_source->connect(top_block); + top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); + }) << "Failure connecting the blocks of acquisition test." << std::endl; + + // i = 0 --> satellite in acquisition is visible + // i = 1 --> satellite in acquisition is not visible + + for (unsigned int i = 0; i < 2; i++) + { + init(); + + if (i == 0) + { + gnss_synchro.PRN = 10; // This satellite is visible + } + else if (i == 1) + { + gnss_synchro.PRN = 20; // This satellite is not visible + } + + acquisition->set_local_code(); + folding_factor = acquisition->get_folding_factor(); + start_queue(); + + EXPECT_NO_THROW( { + top_block->run(); // Start threads and wait + }) << "Failure running the top_block." << std::endl; + + if (i == 0) + { + EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS."; + if (message == 1) + { + + EXPECT_EQ((unsigned int)1, correct_estimation_counter) + << "Acquisition failure. Incorrect parameters estimation."; + } + + } + else if (i == 1) + { + EXPECT_EQ(2, message) + << "Acquisition failure. Expected message: 2=ACQ FAIL."; + } + } + unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples; + std::cout << "----Acquired: " << nsamples << " samples"<< std::endl; +} + +TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsProbabilities) +{ + config_2(); + + acquisition = std::make_shared(config.get(), "Acquisition", 1, 1, queue); + + ASSERT_NO_THROW( { + acquisition->set_channel(1); + }) << "Failure setting channel."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_gnss_synchro(&gnss_synchro); + }) << "Failure setting gnss_synchro."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_channel_queue(&channel_internal_queue); + }) << "Failure setting channel_internal_queue."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000)); + }) << "Failure setting doppler_max."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500)); + }) << "Failure setting doppler_step."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->set_threshold(config->property("Acquisition.threshold", 0.0)); + }) << "Failure setting threshold."<< std::endl; + + ASSERT_NO_THROW( { + acquisition->connect(top_block); + }) << "Failure connecting acquisition to the top_block."<< std::endl; + + acquisition->init(); + + ASSERT_NO_THROW( { + boost::shared_ptr signal_source; + SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue); + FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1, queue); + signal_source.reset(new GenSignalSource(config.get(), signal_generator, filter, "SignalSource", queue)); + signal_source->connect(top_block); + top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0); + }) << "Failure connecting the blocks of acquisition test." << std::endl; + + std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl; + + // i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation) + // i = 1 --> satellite in acquisition is not visible (prob of false detection) + for (unsigned int i = 0; i < 2; i++) + { + init(); + + if (i == 0) + { + gnss_synchro.PRN = 10; // This satellite is visible + } + else if (i == 1) + { + gnss_synchro.PRN = 20; // This satellite is not visible + } + + acquisition->set_local_code(); + start_queue(); + + + EXPECT_NO_THROW( { + top_block->run(); // Start threads and wait + }) << "Failure running the top_block." << std::endl; + + if (i == 0) + { + std::cout << "Estimated probability of detection = " << Pd << std::endl; + std::cout << "Estimated probability of false alarm (satellite present) = " << Pfa_p << std::endl; + std::cout << "Estimated probability of miss detection (satellite present) = " << Pmd << std::endl; + + std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; + + std::stringstream filenamepd; + filenamepd.str(""); + filenamepd << "../data/test_statistics_" << gnss_synchro.System + << "_" << gnss_synchro.Signal << "_sat_" + << gnss_synchro.PRN << "CN0_dB_0_" << CN0_dB_0 << "_dBHz.csv"; + + pdpfafile.open(filenamepd.str().c_str(), std::ios::app | std::ios::out); + pdpfafile << threshold_config2 << "," << Pd << "," << Pfa_p << "," << Pmd << std::endl; + pdpfafile.close(); + + + } + else if (i == 1) + { + std::cout << "Estimated probability of false alarm (satellite absent) = " << Pfa_a << std::endl; + std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl; + + std::stringstream filenamepf; + filenamepf.str(""); + filenamepf << "../data/test_statistics_" << gnss_synchro.System + << "_" << gnss_synchro.Signal << "_sat_" + << gnss_synchro.PRN << "CN0_dB_0_" << CN0_dB_0 << "_dBHz.csv"; + + std::cout << filenamepf.str().c_str() << std::endl; + pdpfafile.open(filenamepf.str().c_str(), std::ios::app | std::ios::out); + if (pdpfafile.is_open()) + { + std::cout << "File successfully open" << std::endl; + pdpfafile << threshold_config2 << "," << Pfa_a << std::endl; + pdpfafile.close(); + } + else + { + std::cout << "Error opening file" << std::endl; + } + + } + } +} diff --git a/src/tests/test_main.cc b/src/tests/test_main.cc index 49d93657f..e023aca73 100644 --- a/src/tests/test_main.cc +++ b/src/tests/test_main.cc @@ -90,6 +90,7 @@ DECLARE_string(log_dir); #if OPENCL_BLOCKS_TEST #include "gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc" #endif +#include "gnss_block/gps_l1_ca_pcps_quicksync_acquisition_gsoc2014_test.cc" #include "gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc" #include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc" #include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc" @@ -97,6 +98,7 @@ DECLARE_string(log_dir); #include "gnss_block/galileo_e1_pcps_8ms_ambiguous_acquisition_gsoc2013_test.cc" #include "gnss_block/galileo_e1_pcps_tong_ambiguous_acquisition_gsoc2013_test.cc" #include "gnss_block/galileo_e1_pcps_cccwsr_ambiguous_acquisition_gsoc2013_test.cc" +#include "gnss_block/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc" #include "gnss_block/galileo_e1_dll_pll_veml_tracking_test.cc" #include "gnuradio_block/gnss_sdr_valve_test.cc" #include "gnuradio_block/direct_resampler_conditioner_cc_test.cc"