Migrating cuda tracking internal DLL/PLL vars from float to double

This commit is contained in:
Javier Arribas 2015-12-02 19:00:29 +01:00
parent 4e5abdf4f2
commit 424e7abe68
5 changed files with 94 additions and 217 deletions

View File

@ -17,10 +17,10 @@ ControlThread.wait_for_flowgraph=false
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/javier/SISTEMA/signals/New York/4msps.dat
SignalSource.filename=/home/javier/ClionProjects/gnss-sim/build/signal_out.bin
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4000000
@ -28,12 +28,6 @@ SignalSource.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
@ -58,12 +52,12 @@ SignalSource.enable_throttle_control=false
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;SignalConditioner.implementation=Signal_Conditioner
SignalConditioner.implementation=Pass_Through
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.implementation=Ibyte_To_Complex
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
@ -210,13 +204,13 @@ Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition_GPS.threshold=0.005
Acquisition_GPS.threshold=0.06
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
Acquisition_GPS.doppler_max=6000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
Acquisition_GPS.doppler_step=100
;######### TRACKING GLOBAL CONFIG ############
@ -235,7 +229,7 @@ Tracking_GPS.dump=true
Tracking_GPS.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=55.0;
Tracking_GPS.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=1.5

View File

@ -233,7 +233,7 @@ Acquisition_1B.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Artemisa_Tracking
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1C.item_type=gr_complex

View File

@ -195,30 +195,30 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_chip_mod_seconds = 1.0/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
@ -286,10 +286,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz=0.0;
float carr_error_filt_hz=0.0;
float code_error_chips=0.0;
float code_error_filt_chips=0.0;
double carr_error_hz=0.0;
double carr_error_filt_hz=0.0;
double code_error_chips=0.0;
double code_error_filt_chips=0.0;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0];
@ -320,20 +320,24 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
current_synchro_data = *d_acquisition_gnss_synchro;
// UPDATE NCO COMMAND
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
double phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
//code resampler on GPU (new)
float code_phase_step_chips = static_cast<float>(d_code_freq_chips) / static_cast<float>(d_fs_in);
float rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
double code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
cudaProfilerStart();
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(d_rem_carr_phase_rad, phase_step_rad, code_phase_step_chips, rem_code_phase_chips, d_current_prn_length_samples, 3);
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda( static_cast<float>(d_rem_carr_phase_rad),
static_cast<float>(phase_step_rad),
static_cast<float>(code_phase_step_chips),
static_cast<float>(rem_code_phase_chips),
d_current_prn_length_samples, 3);
cudaProfilerStop();
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
@ -352,7 +356,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@ -363,10 +367,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + static_cast<double>(code_error_filt_secs) * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
@ -415,16 +419,16 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
@ -497,41 +501,50 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
tmp_L = std::abs<float>(*d_Late);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
tmp_float=d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// EPR
d_dump_file.write((char*)&tmp_E, sizeof(float));
d_dump_file.write((char*)&tmp_P, sizeof(float));
d_dump_file.write((char*)&tmp_L, sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write((char*)&prompt_I, sizeof(float));
d_dump_file.write((char*)&prompt_Q, sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
// accumulated carrier phase
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
// carrier and code frequency
tmp_float = d_carrier_doppler_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
//PLL commands
tmp_float = carr_error_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = carr_error_filt_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
//DLL commands
tmp_float = code_error_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = code_error_filt_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_double = (double)(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
{

View File

@ -140,22 +140,22 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
//PRN period in samples
int d_current_prn_length_samples;
@ -167,9 +167,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@ -41,103 +41,6 @@
#define ACCUM_N 128
__global__ void scalarProdGPUCPXxN_shifts_chips(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
GPU_Complex *d_local_code_in,
float *d_shifts_chips,
float code_length_chips,
float code_phase_step_chips,
float rem_code_phase_chips,
int vectorN,
int elementN
)
{
//Accumulators cache
__shared__ GPU_Complex accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
//int vectorBase = IMUL(elementN, vec);
//int vectorEnd = elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
GPU_Complex sum = GPU_Complex(0,0);
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//original sample code
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
//sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos+d_shifts_samples[vec]]);
//custom code for multitap correlator
// 1.resample local code for the current shift
float local_code_chip_index= fmod(code_phase_step_chips*(float)pos + d_shifts_chips[vec] - rem_code_phase_chips, code_length_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index<0.0) local_code_chip_index+=code_length_chips;
//printf("vec= %i, pos %i, chip_idx=%i chip_shift=%f \r\n",vec, pos,__float2int_rd(local_code_chip_index),local_code_chip_index);
// 2.correlate
sum.multiply_acc(d_sig_in[pos],d_local_code_in[__float2int_rd(local_code_chip_index)]);
}
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
{
accumResult[iAccum] += accumResult[stride + iAccum];
}
}
if (threadIdx.x == 0)
{
d_corr_out[vec] = accumResult[0];
}
}
}
/**
* CUDA Kernel Device code
*
* Computes the carrier Doppler wipe-off by integrating the NCO in the CUDA kernel
*/
__global__ void
CUDA_32fc_Doppler_wipeoff( GPU_Complex *sig_out, GPU_Complex *sig_in, float rem_carrier_phase_in_rad, float phase_step_rad, int numElements)
{
// CUDA version of floating point NCO and vector dot product integrated
float sin;
float cos;
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i += blockDim.x * gridDim.x)
{
__sincosf(rem_carrier_phase_in_rad + i*phase_step_rad, &sin, &cos);
sig_out[i] = sig_in[i] * GPU_Complex(cos,-sin);
}
}
__global__ void Doppler_wippe_scalarProdGPUCPXxN_shifts_chips(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
@ -398,37 +301,15 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
int n_correlators)
{
// cudaMemCpy version
//size_t memSize = signal_length_samples * sizeof(std::complex<float>);
// input signal CPU -> GPU copy memory
//cudaMemcpyAsync(d_sig_in, d_sig_in_cpu, memSize,
// cudaMemcpyHostToDevice, stream2);
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
//cudaStreamSynchronize(stream2);
//CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream1>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
//wait for Doppler wipeoff end...
//cudaStreamSynchronize(stream1);
//cudaStreamSynchronize(stream2);
//launch the multitap correlator with integrated local code resampler!
// scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
// d_corr_out,
// d_sig_doppler_wiped,
// d_local_codes_in,
// d_shifts_chips,
// d_code_length_chips,
// code_phase_step_chips,
// rem_code_phase_chips,
// n_correlators,
// signal_length_samples
// );
Doppler_wippe_scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
d_corr_out,
d_sig_in,
@ -444,25 +325,15 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
phase_step_rad
);
//debug
// std::complex<float>* debug_signal;
// debug_signal=static_cast<std::complex<float>*>(malloc(memSize));
// cudaMemcpyAsync(debug_signal, d_sig_doppler_wiped, memSize,
// cudaMemcpyDeviceToHost,stream1);
// cudaStreamSynchronize(stream1);
// std::cout<<"d_sig_doppler_wiped GPU="<<debug_signal[456]<<","<<debug_signal[1]<<","<<debug_signal[2]<<","<<debug_signal[3]<<std::endl;
//cudaGetLastError();
//wait for correlators end...
//cudaStreamSynchronize(stream1);
cudaStreamSynchronize(stream1);
// cudaMemCpy version
// Copy the device result vector in device memory to the host result vector
// in host memory.
//scalar products (correlators outputs)
//cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
// cudaMemcpyDeviceToHost,stream1);
cudaStreamSynchronize(stream1);
return true;
}
@ -490,7 +361,6 @@ bool cuda_multicorrelator::free_cuda()
if (d_corr_out!=NULL) cudaFree(d_corr_out);
if (d_shifts_samples!=NULL) cudaFree(d_shifts_samples);
if (d_shifts_chips!=NULL) cudaFree(d_shifts_chips);
// Reset the device and exit
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also