mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 07:13:03 +00:00 
			
		
		
		
	Fixing resamplers
Under some circumstances (i.e. negative Doppler) it could cause a segmentation fault. It is now fixed for all protokernels.
This commit is contained in:
		| @@ -64,6 +64,7 @@ | ||||
| #define INCLUDED_volk_gnsssdr_16ic_xn_resampler2_16ic_xn_H | ||||
|  | ||||
| #include <math.h> | ||||
| #include <stdlib.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr_common.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr_complex.h> | ||||
|  | ||||
| @@ -80,7 +81,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_generic(lv_16sc_t** r | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index < 0) local_code_chip_index += code_length_chips; | ||||
|                     if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1); | ||||
|                     local_code_chip_index = local_code_chip_index % code_length_chips; | ||||
|                     result[current_correlator_tap][n] = local_code[local_code_chip_index]; | ||||
|                 } | ||||
| @@ -144,7 +145,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse4_1(lv_16sc_t** | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -208,7 +209,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse4_1(lv_16sc_t** | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -276,7 +277,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_sse3(lv_16sc_t** re | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -344,7 +345,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_sse3(lv_16sc_t** re | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -382,14 +383,13 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < avx_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][8 * n + 7], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[8], 1, 3); | ||||
|                     aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); | ||||
|                     aux = _mm256_add_ps(aux, aux2); | ||||
|                     // floor | ||||
|                     aux = _mm256_floor_ps(aux); | ||||
|  | ||||
|                     negatives = _mm256_cmp_ps(aux, zeros, 0x01); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(aux, aux3); | ||||
|                     // fmod | ||||
|                     c = _mm256_div_ps(aux, code_length_chips_reg_f); | ||||
|                     i = _mm256_cvttps_epi32(c); | ||||
| @@ -397,6 +397,13 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res | ||||
|                     base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); | ||||
|  | ||||
|                     // no negatives | ||||
|                     c = _mm256_cvtepi32_ps(local_code_chip_index_reg); | ||||
|                     negatives = _mm256_cmp_ps(c, zeros, 0x01 ); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(c, aux3); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(aux); | ||||
|  | ||||
|                     _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); | ||||
|                     for(unsigned int k = 0; k < 8; ++k) | ||||
|                         { | ||||
| @@ -413,7 +420,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -428,7 +435,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_a_avx(lv_16sc_t** res | ||||
| static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** result, const lv_16sc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) | ||||
| { | ||||
|     lv_16sc_t** _result = result; | ||||
|         const unsigned int avx_iters = num_points / 8; | ||||
|     const unsigned int avx_iters = num_points / 8; | ||||
|  | ||||
|     const __m256 eights = _mm256_set1_ps(8.0f); | ||||
|     const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips); | ||||
| @@ -451,14 +458,13 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** res | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < avx_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][8 * n + 7], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[8], 1, 3); | ||||
|                     aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); | ||||
|                     aux = _mm256_add_ps(aux, aux2); | ||||
|                     // floor | ||||
|                     aux = _mm256_floor_ps(aux); | ||||
|  | ||||
|                     negatives = _mm256_cmp_ps(aux, zeros, 0x01); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(aux, aux3); | ||||
|                     // fmod | ||||
|                     c = _mm256_div_ps(aux, code_length_chips_reg_f); | ||||
|                     i = _mm256_cvttps_epi32(c); | ||||
| @@ -466,6 +472,13 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** res | ||||
|                     base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); | ||||
|  | ||||
|                     // no negatives | ||||
|                     c = _mm256_cvtepi32_ps(local_code_chip_index_reg); | ||||
|                     negatives = _mm256_cmp_ps(c, zeros, 0x01 ); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(c, aux3); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(aux); | ||||
|  | ||||
|                     _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); | ||||
|                     for(unsigned int k = 0; k < 8; ++k) | ||||
|                         { | ||||
| @@ -482,7 +495,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_u_avx(lv_16sc_t** res | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -505,37 +518,39 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu | ||||
|  | ||||
|     __VOLK_ATTR_ALIGNED(16) int32_t local_code_chip_index[4]; | ||||
|     int32_t local_code_chip_index_; | ||||
|  | ||||
|     const int32x4_t zeros = vdupq_n_s32(0); | ||||
|     const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips); | ||||
|  | ||||
|     const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips); | ||||
|     int32x4_t local_code_chip_index_reg, aux_i, negatives, i; | ||||
|     float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal; | ||||
|     __VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f }; | ||||
|     uint32x4_t igx; | ||||
|     reciprocal = vrecpeq_f32(code_length_chips_reg_f); | ||||
|     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); | ||||
|     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required! | ||||
|     float32x4_t n0 = vld1q_f32((float*)vec); | ||||
|  | ||||
|     for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) | ||||
|         { | ||||
|             shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]); | ||||
|             aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg); | ||||
|             indexn = vld1q_f32((float*)vec); | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < neon_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][4 * n + 3], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[4]); | ||||
|                     aux = vmulq_f32(code_phase_step_chips_reg, indexn); | ||||
|                     aux = vaddq_f32(aux, aux2); | ||||
|                     // floor | ||||
|  | ||||
|                     //floor | ||||
|                     i = vcvtq_s32_f32(aux); | ||||
|                     fi = vcvtq_f32_s32(i); | ||||
|                     igx = vcgtq_f32(fi, aux); | ||||
|                     j = vreinterpretq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones)); | ||||
|                     j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones)); | ||||
|                     aux = vsubq_f32(fi, j); | ||||
|  | ||||
|                     // fmod | ||||
|                     reciprocal = vrecpeq_f32(code_length_chips_reg_f); | ||||
|                     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); | ||||
|                     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required! | ||||
|                     c = vmulq_f32(aux, reciprocal); | ||||
|                     i =  vcvtq_s32_f32(c); | ||||
|                     cTrunc = vcvtq_f32_s32(i); | ||||
| @@ -547,7 +562,8 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu | ||||
|                     aux_i = vandq_s32(code_length_chips_reg_i, negatives); | ||||
|                     local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i); | ||||
|  | ||||
|                     vst1q_s32((int*)local_code_chip_index, local_code_chip_index_reg); | ||||
|                     vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg); | ||||
|  | ||||
|                     for(unsigned int k = 0; k < 4; ++k) | ||||
|                         { | ||||
|                             _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; | ||||
| @@ -558,10 +574,10 @@ static inline void volk_gnsssdr_16ic_xn_resampler2_16ic_xn_neon(lv_16sc_t** resu | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][n], 1, 0); | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int32_t)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
|         } | ||||
|   | ||||
| @@ -64,6 +64,7 @@ | ||||
| #define INCLUDED_volk_gnsssdr_32fc_xn_resampler_32fc_xn_H | ||||
|  | ||||
| #include <math.h> | ||||
| #include <stdlib.h> /* abs */ | ||||
| #include <volk_gnsssdr/volk_gnsssdr_common.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr_complex.h> | ||||
|  | ||||
| @@ -80,7 +81,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** re | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index < 0) local_code_chip_index += code_length_chips; | ||||
|                     if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1); | ||||
|                     local_code_chip_index = local_code_chip_index % code_length_chips; | ||||
|                     result[current_correlator_tap][n] = local_code[local_code_chip_index]; | ||||
|                 } | ||||
| @@ -97,8 +98,8 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res | ||||
|     lv_32fc_t** _result = result; | ||||
|     const unsigned int quarterPoints = num_points / 4; | ||||
|  | ||||
|     const __m128 ones = _mm_set1_ps(1.); | ||||
|     const __m128 fours = _mm_set1_ps(4.); | ||||
|     const __m128 ones = _mm_set1_ps(1.0f); | ||||
|     const __m128 fours = _mm_set1_ps(4.0f); | ||||
|     const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); | ||||
|     const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); | ||||
|  | ||||
| @@ -115,7 +116,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res | ||||
|         { | ||||
|             shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); | ||||
|             aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); | ||||
|             __m128 indexn = _mm_set_ps(3., 2., 1., 0.); | ||||
|             __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); | ||||
|             for(unsigned int n = 0; n < quarterPoints; n++) | ||||
|                 { | ||||
|                     aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); | ||||
| @@ -126,10 +127,9 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res | ||||
|                     igx = _mm_cmpgt_ps(fi, aux); | ||||
|                     j = _mm_and_ps(igx, ones); | ||||
|                     aux = _mm_sub_ps(fi, j); | ||||
|  | ||||
|                     // fmod | ||||
|                     c = _mm_div_ps(aux, code_length_chips_reg_f); | ||||
|                     i = _mm_cvtps_epi32(c); | ||||
|                     i = _mm_cvttps_epi32(c); | ||||
|                     cTrunc = _mm_cvtepi32_ps(i); | ||||
|                     base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); | ||||
|                     local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); | ||||
| @@ -149,7 +149,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -217,7 +217,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse3(lv_32fc_t** res | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -280,7 +280,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -344,7 +344,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_sse4_1(lv_32fc_t** r | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -382,14 +382,13 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < avx_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][8 * n + 7], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[8], 1, 3); | ||||
|                     aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); | ||||
|                     aux = _mm256_add_ps(aux, aux2); | ||||
|                     // floor | ||||
|                     aux = _mm256_floor_ps(aux); | ||||
|  | ||||
|                     negatives = _mm256_cmp_ps(aux, zeros, 0x01); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(aux, aux3); | ||||
|                     // fmod | ||||
|                     c = _mm256_div_ps(aux, code_length_chips_reg_f); | ||||
|                     i = _mm256_cvttps_epi32(c); | ||||
| @@ -397,6 +396,13 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu | ||||
|                     base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); | ||||
|  | ||||
|                     // no negatives | ||||
|                     c = _mm256_cvtepi32_ps(local_code_chip_index_reg); | ||||
|                     negatives = _mm256_cmp_ps(c, zeros, 0x01 ); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(c, aux3); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(aux); | ||||
|  | ||||
|                     _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); | ||||
|                     for(unsigned int k = 0; k < 8; ++k) | ||||
|                         { | ||||
| @@ -413,7 +419,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -451,14 +457,13 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_avx(lv_32fc_t** resu | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < avx_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][8 * n + 7], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[8], 1, 3); | ||||
|                     aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn); | ||||
|                     aux = _mm256_add_ps(aux, aux2); | ||||
|                     // floor | ||||
|                     aux = _mm256_floor_ps(aux); | ||||
|  | ||||
|                     negatives = _mm256_cmp_ps(aux, zeros, 0x01); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(aux, aux3); | ||||
|                     // fmod | ||||
|                     c = _mm256_div_ps(aux, code_length_chips_reg_f); | ||||
|                     i = _mm256_cvttps_epi32(c); | ||||
| @@ -466,6 +471,13 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_avx(lv_32fc_t** resu | ||||
|                     base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base)); | ||||
|  | ||||
|                     // no negatives | ||||
|                     c = _mm256_cvtepi32_ps(local_code_chip_index_reg); | ||||
|                     negatives = _mm256_cmp_ps(c, zeros, 0x01 ); | ||||
|                     aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives); | ||||
|                     aux = _mm256_add_ps(c, aux3); | ||||
|                     local_code_chip_index_reg = _mm256_cvttps_epi32(aux); | ||||
|  | ||||
|                     _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg); | ||||
|                     for(unsigned int k = 0; k < 8; ++k) | ||||
|                         { | ||||
| @@ -482,7 +494,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_u_avx(lv_32fc_t** resu | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1) ; | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
| @@ -510,31 +522,35 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul | ||||
|     const int32x4_t zeros = vdupq_n_s32(0); | ||||
|     const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips); | ||||
|     const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips); | ||||
|     int32x4_t local_code_chip_index_reg, aux_i, negatives, i; | ||||
|     int32x4_t local_code_chip_index_reg, aux_i,  negatives, i; | ||||
|     float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal; | ||||
|     __VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f }; | ||||
|     uint32x4_t igx; | ||||
|     reciprocal = vrecpeq_f32(code_length_chips_reg_f); | ||||
|     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); | ||||
|     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required! | ||||
|     float32x4_t n0 = vld1q_f32((float*)vec); | ||||
|  | ||||
|     for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) | ||||
|         { | ||||
|             shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]); | ||||
|             aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg); | ||||
|             indexn = vld1q_f32((float*)vec); | ||||
|             indexn = n0; | ||||
|             for(unsigned int n = 0; n < neon_iters; n++) | ||||
|                 { | ||||
|                     __builtin_prefetch(&_result[current_correlator_tap][4 * n + 3], 1, 0); | ||||
|                     __builtin_prefetch(&local_code_chip_index[4]); | ||||
|                     aux = vmulq_f32(code_phase_step_chips_reg, indexn); | ||||
|                     aux = vaddq_f32(aux, aux2); | ||||
|                     // floor | ||||
|  | ||||
|                     //floor | ||||
|                     i = vcvtq_s32_f32(aux); | ||||
|                     fi = vcvtq_f32_s32(i); | ||||
|                     igx = vcgtq_f32(fi, aux); | ||||
|                     j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones)); | ||||
|                     aux = vsubq_f32(fi, j); | ||||
|  | ||||
|                     // fmod | ||||
|                     reciprocal = vrecpeq_f32(code_length_chips_reg_f); | ||||
|                     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); | ||||
|                     reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required! | ||||
|                     c = vmulq_f32(aux, reciprocal); | ||||
|                     i =  vcvtq_s32_f32(c); | ||||
|                     cTrunc = vcvtq_f32_s32(i); | ||||
| @@ -560,7 +576,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** resul | ||||
|                     // resample code for current tap | ||||
|                     local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); | ||||
|                     //Take into account that in multitap correlators, the shifts can be negative! | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips; | ||||
|                     if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); | ||||
|                     local_code_chip_index_ = local_code_chip_index_ % code_length_chips; | ||||
|                     _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; | ||||
|                 } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Carles Fernandez
					Carles Fernandez