1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-07 07:50:32 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-11-08 01:14:48 +01:00
commit 3970f6b315
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
3 changed files with 9 additions and 223 deletions

View File

@ -31,6 +31,7 @@
#include "ls_pvt.h" #include "ls_pvt.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "geofunctions.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <exception> #include <exception>
#include <stdexcept> #include <stdexcept>
@ -235,12 +236,12 @@ arma::vec Ls_Pvt::leastSquarePos(const arma::mat& satpos, const arma::vec& obs,
double* azim = 0; double* azim = 0;
double* elev = 0; double* elev = 0;
double* dist = 0; double* dist = 0;
Ls_Pvt::topocent(azim, elev, dist, pos.subvec(0, 2), Rot_X - pos.subvec(0, 2)); topocent(azim, elev, dist, pos.subvec(0, 2), Rot_X - pos.subvec(0, 2));
if (traveltime < 0.1 && nmbOfSatellites > 3) if (traveltime < 0.1 && nmbOfSatellites > 3)
{ {
//--- Find receiver's height //--- Find receiver's height
Ls_Pvt::togeod(&dphi, &dlambda, &h, 6378137.0, 298.257223563, pos(0), pos(1), pos(2)); togeod(&dphi, &dlambda, &h, 6378137.0, 298.257223563, pos(0), pos(1), pos(2));
// Add troposphere correction if the receiver is below the troposphere // Add troposphere correction if the receiver is below the troposphere
if (h > 15000) if (h > 15000)
{ {

View File

@ -31,6 +31,7 @@
#include "pvt_solution.h" #include "pvt_solution.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "geofunctions.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <exception> #include <exception>
@ -133,125 +134,6 @@ int Pvt_Solution::cart2geo(double X, double Y, double Z, int elipsoid_selection)
} }
int Pvt_Solution::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
/* Subroutine to calculate geodetic coordinates latitude, longitude,
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
values semi-major axis (a) and the inverse of flattening (finv).
The output units of angular quantities will be in decimal degrees
(15.5 degrees not 15 deg 30 min). The output units of h will be the
same as the units of X,Y,Z,a.
Inputs:
a - semi-major axis of the reference ellipsoid
finv - inverse of flattening of the reference ellipsoid
X,Y,Z - Cartesian coordinates
Outputs:
dphi - latitude
dlambda - longitude
h - height above reference ellipsoid
Based in a Matlab function by Kai Borre
*/
*h = 0;
double tolsq = 1.e-10; // tolerance to accept convergence
int maxit = 10; // max number of iterations
double rtd = 180.0 / GPS_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0.0;
}
else
{
esq = (2.0 - 1.0 / finv) / finv;
}
// first guess
double P = sqrt(X * X + Y * Y); // P is distance from spin axis
//direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y, X) * rtd;
}
else
{
*dlambda = 0.0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z / r;
}
else
{
sinphi = 0.0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0;
return 1;
}
*h = r - a * (1 - sinphi * sinphi / finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1.0 - esq;
for (int i = 0; i < maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi * oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi * dZ + cosphi * dP);
*dphi = *dphi + (cosphi * dZ - sinphi * dP) / (N_phi + (*h));
// test for convergence
if ((dP * dP + dZ * dZ) < tolsq)
{
break;
}
if (i == (maxit - 1))
{
LOG(WARNING) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
return 0;
}
int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km) int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km)
{ {
/* Inputs: /* Inputs:
@ -359,73 +241,6 @@ int Pvt_Solution::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb
} }
int Pvt_Solution::topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx)
{
/* Transformation of vector dx into topocentric coordinate
system with origin at x
Inputs:
x - vector origin coordinates (in ECEF system [X; Y; Z;])
dx - vector ([dX; dY; dZ;]).
Outputs:
D - vector length. Units like the input
Az - azimuth from north positive clockwise, degrees
El - elevation angle, degrees
Based on a Matlab function by Kai Borre
*/
double lambda;
double phi;
double h;
double dtr = GPS_PI / 180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
Pvt_Solution::togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = {{-sl, -sb * cl, cb * cl},
{cl, -sb * sl, cb * sl},
{0, 0, cb, sb}};
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E * E + N * N);
if (hor_dis < 1.0E-20)
{
*Az = 0;
*El = 90;
}
else
{
*Az = atan2(E, N) / dtr;
*El = atan2(U, hor_dis) / dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
return 0;
}
void Pvt_Solution::set_averaging_depth(int depth) void Pvt_Solution::set_averaging_depth(int depth)
{ {
d_averaging_depth = depth; d_averaging_depth = depth;
@ -519,26 +334,31 @@ double Pvt_Solution::get_height() const
return d_height_m; return d_height_m;
} }
double Pvt_Solution::get_speed_over_ground() const double Pvt_Solution::get_speed_over_ground() const
{ {
return d_speed_over_ground_m_s; return d_speed_over_ground_m_s;
} }
void Pvt_Solution::set_speed_over_ground(double speed_m_s) void Pvt_Solution::set_speed_over_ground(double speed_m_s)
{ {
d_speed_over_ground_m_s = speed_m_s; d_speed_over_ground_m_s = speed_m_s;
} }
void Pvt_Solution::set_course_over_ground(double cog_deg) void Pvt_Solution::set_course_over_ground(double cog_deg)
{ {
d_course_over_ground_d = cog_deg; d_course_over_ground_d = cog_deg;
} }
double Pvt_Solution::get_course_over_ground() const double Pvt_Solution::get_course_over_ground() const
{ {
return d_course_over_ground_d; return d_course_over_ground_d;
} }
double Pvt_Solution::get_avg_latitude() const double Pvt_Solution::get_avg_latitude() const
{ {
return d_avg_latitude_d; return d_avg_latitude_d;

View File

@ -129,41 +129,6 @@ public:
*/ */
int cart2geo(double X, double Y, double Z, int elipsoid_selection); int cart2geo(double X, double Y, double Z, int elipsoid_selection);
/*!
* \brief Transformation of vector dx into topocentric coordinate system with origin at x
*
* \param[in] x Vector origin coordinates (in ECEF system [X; Y; Z;])
* \param[in] dx Vector ([dX; dY; dZ;]).
*
* \param[out] D Vector length. Units like the input
* \param[out] Az Azimuth from north positive clockwise, degrees
* \param[out] El Elevation angle, degrees
*
* Based on a Matlab function by Kai Borre
*/
int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx);
/*!
* \brief Subroutine to calculate geodetic coordinates latitude, longitude,
* height given Cartesian coordinates X,Y,Z, and reference ellipsoid
* values semi-major axis (a) and the inverse of flattening (finv).
*
* The output units of angular quantities will be in decimal degrees
* (15.5 degrees not 15 deg 30 min). The output units of h will be the
* same as the units of X,Y,Z,a.
*
* \param[in] a - semi-major axis of the reference ellipsoid
* \param[in] finv - inverse of flattening of the reference ellipsoid
* \param[in] X,Y,Z - Cartesian coordinates
*
* \param[out] dphi - latitude
* \param[out] dlambda - longitude
* \param[out] h - height above reference ellipsoid
*
* Based in a Matlab function by Kai Borre
*/
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
/*! /*!
* \brief Tropospheric correction * \brief Tropospheric correction
* *