1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-12-01 14:18:08 +00:00
This commit is contained in:
Carles Fernandez
2018-04-10 10:52:28 +02:00
34 changed files with 794 additions and 3686 deletions

View File

@@ -29,9 +29,6 @@ endif(ENABLE_FPGA)
set(TRACKING_GR_BLOCKS_SOURCES
galileo_e1_tcp_connector_tracking_cc.cc
gps_l1_ca_tcp_connector_tracking_cc.cc
galileo_e5a_dll_pll_tracking_cc.cc
gps_l2_m_dll_pll_tracking_cc.cc
gps_l5i_dll_pll_tracking_cc.cc
gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
gps_l1_ca_dll_pll_c_aid_tracking_sc.cc
glonass_l1_ca_dll_pll_tracking_cc.cc

View File

@@ -61,38 +61,9 @@
using google::LogMessage;
dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(
double fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot,
char system, char signal[3])
dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(dllpllconf_t conf_)
{
return dll_pll_veml_tracking_sptr(new dll_pll_veml_tracking(
fs_in,
vector_length,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
pll_bw_narrow_hz,
dll_bw_narrow_hz,
early_late_space_chips,
very_early_late_space_chips,
early_late_space_narrow_chips,
very_early_late_space_narrow_chips,
extend_correlation_symbols,
track_pilot, system, signal));
return dll_pll_veml_tracking_sptr(new dll_pll_veml_tracking(conf_));
}
@@ -101,40 +72,29 @@ void dll_pll_veml_tracking::forecast(int noutput_items,
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2;
ninput_items_required[0] = static_cast<int>(trk_parameters.vector_length) * 2;
}
}
dll_pll_veml_tracking::dll_pll_veml_tracking(
double fs_in, unsigned int vector_length, bool dump,
std::string dump_filename, float pll_bw_hz, float dll_bw_hz,
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
float early_late_space_chips, float very_early_late_space_chips,
float early_late_space_narrow_chips, float very_early_late_space_narrow_chips,
int extend_correlation_symbols, bool track_pilot, char system,
char signal[3]) : gr::block("dll_pll_veml_tracking", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
dll_pll_veml_tracking::dll_pll_veml_tracking(dllpllconf_t conf_) : gr::block("dll_pll_veml_tracking", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
trk_parameters = conf_;
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
this->set_relative_rate(1.0 / static_cast<double>(vector_length));
this->set_relative_rate(1.0 / static_cast<double>(trk_parameters.vector_length));
// initialize internal vars
d_dump = dump;
d_veml = false;
d_cloop = true;
d_synchonizing = false;
d_track_pilot = track_pilot;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_code_chip_rate = 0.0;
d_secondary_code_length = 0;
d_secondary_code_string = nullptr;
signal_type = std::string(signal);
if (system == 'G')
signal_type = std::string(trk_parameters.signal);
if (trk_parameters.system == 'G')
{
systemName = "GPS";
if (signal_type.compare("1C") == 0)
@@ -148,7 +108,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_code_length_chips = static_cast<unsigned int>(GPS_L1_CA_CODE_LENGTH_CHIPS);
// GPS L1 C/A does not have pilot component nor secondary code
d_secondary = false;
d_track_pilot = false;
trk_parameters.track_pilot = false;
interchange_iq = false;
}
else if (signal_type.compare("2S") == 0)
@@ -162,7 +122,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_code_samples_per_chip = 1;
// GPS L2 does not have pilot component nor secondary code
d_secondary = false;
d_track_pilot = false;
trk_parameters.track_pilot = false;
interchange_iq = false;
}
else if (signal_type.compare("L5") == 0)
@@ -176,7 +136,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_code_length_chips = static_cast<unsigned int>(GPS_L5i_CODE_LENGTH_CHIPS);
// GPS L5 does not have pilot secondary code
d_secondary = true;
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
d_secondary_code_length = static_cast<unsigned int>(GPS_L5q_NH_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&GPS_L5q_NH_CODE_STR);
@@ -203,7 +163,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_symbols_per_bit = 0;
}
}
else if (system == 'E')
else if (trk_parameters.system == 'E')
{
systemName = "Galileo";
if (signal_type.compare("1B") == 0)
@@ -216,7 +176,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_correlation_length_ms = 4;
d_code_samples_per_chip = 2; // CBOC disabled: 2 samples per chip. CBOC enabled: 12 samples per chip
d_veml = true;
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
d_secondary = true;
d_secondary_code_length = static_cast<unsigned int>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
@@ -238,7 +198,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_code_samples_per_chip = 1;
d_code_length_chips = static_cast<unsigned int>(Galileo_E5a_CODE_LENGTH_CHIPS);
d_secondary = true;
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
interchange_iq = true;
d_secondary_code_length = static_cast<unsigned int>(Galileo_E5a_Q_SECONDARY_CODE_LENGTH);
@@ -284,23 +244,11 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
// Initialize tracking ==========================================
// Set bandwidth of code and carrier loop filters
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_hz);
d_code_loop_filter = Tracking_2nd_DLL_filter(static_cast<float>(d_code_period));
d_carrier_loop_filter = Tracking_2nd_PLL_filter(static_cast<float>(d_code_period));
// Correlator spacing
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
d_very_early_late_spc_chips = very_early_late_space_chips; // Define very-early-late offset (in chips)
d_early_late_spc_narrow_chips = early_late_space_narrow_chips; // Define narrow early-late offset (in chips)
d_very_early_late_spc_narrow_chips = very_early_late_space_narrow_chips; // Define narrow very-early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_tracking_code = static_cast<float *>(volk_gnsssdr_malloc(2 * d_code_length_chips * sizeof(float), volk_gnsssdr_get_alignment()));
@@ -328,11 +276,11 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_Prompt = &d_correlator_outs[2];
d_Late = &d_correlator_outs[3];
d_Very_Late = &d_correlator_outs[4];
d_local_code_shift_chips[0] = -d_very_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = 0.0;
d_local_code_shift_chips[3] = d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = d_very_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_prompt_data_shift = &d_local_code_shift_chips[2];
}
else
@@ -342,30 +290,29 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_Prompt = &d_correlator_outs[1];
d_Late = &d_correlator_outs[2];
d_Very_Late = nullptr;
d_local_code_shift_chips[0] = -d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_prompt_data_shift = &d_local_code_shift_chips[1];
}
multicorrelator_cpu.init(2 * d_vector_length, d_n_correlator_taps);
multicorrelator_cpu.init(2 * trk_parameters.vector_length, d_n_correlator_taps);
if (extend_correlation_symbols > 1)
if (trk_parameters.extend_correlation_symbols > 1)
{
d_enable_extended_integration = true;
d_extend_correlation_symbols = extend_correlation_symbols;
}
else
{
d_enable_extended_integration = false;
d_extend_correlation_symbols = 1;
trk_parameters.extend_correlation_symbols = 1;
}
// Enable Data component prompt correlator (slave to Pilot prompt) if tracking uses Pilot signal
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
// Extra correlator for the data component
correlator_data_cpu.init(2 * d_vector_length, 1);
correlator_data_cpu.init(2 * trk_parameters.vector_length, 1);
d_Prompt_Data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
d_data_code = static_cast<float *>(volk_gnsssdr_malloc(2 * d_code_length_chips * sizeof(float), volk_gnsssdr_get_alignment()));
@@ -388,7 +335,7 @@ dll_pll_veml_tracking::dll_pll_veml_tracking(
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
d_current_prn_length_samples = static_cast<int>(trk_parameters.vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
@@ -429,25 +376,25 @@ void dll_pll_veml_tracking::start_tracking()
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);
double acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / d_fs_in;
double acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / trk_parameters.fs_in;
DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples;
DLOG(INFO) << "Number of seconds between Acquisition and Tracking = " << acq_trk_diff_seconds;
// Doppler effect Fd = (C / (C + Vr)) * F
double radial_velocity = (d_signal_carrier_freq + d_acq_carrier_doppler_hz) / d_signal_carrier_freq;
// new chip and prn sequence periods based on acq Doppler
d_code_freq_chips = radial_velocity * d_code_chip_rate;
d_code_phase_step_chips = d_code_freq_chips / d_fs_in;
d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in;
double T_chip_mod_seconds = 1.0 / d_code_freq_chips;
double T_prn_mod_seconds = T_chip_mod_seconds * static_cast<double>(d_code_length_chips);
double T_prn_mod_samples = T_prn_mod_seconds * d_fs_in;
double T_prn_mod_samples = T_prn_mod_seconds * trk_parameters.fs_in;
d_current_prn_length_samples = std::round(T_prn_mod_samples);
double T_prn_true_seconds = static_cast<double>(d_code_length_chips) / d_code_chip_rate;
double T_prn_true_samples = T_prn_true_seconds * d_fs_in;
double T_prn_true_samples = T_prn_true_seconds * trk_parameters.fs_in;
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples = std::fmod(d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * d_fs_in, T_prn_true_samples);
double corrected_acq_phase_samples = std::fmod(d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * trk_parameters.fs_in, T_prn_true_samples);
if (corrected_acq_phase_samples < 0.0)
{
corrected_acq_phase_samples += T_prn_mod_samples;
@@ -457,7 +404,7 @@ void dll_pll_veml_tracking::start_tracking()
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / d_fs_in;
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
@@ -473,7 +420,7 @@ void dll_pll_veml_tracking::start_tracking()
}
else if (systemName.compare("GPS") == 0 and signal_type.compare("L5") == 0)
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
gps_l5q_code_gen_float(d_tracking_code, d_acquisition_gnss_synchro->PRN);
gps_l5i_code_gen_float(d_data_code, d_acquisition_gnss_synchro->PRN);
@@ -487,7 +434,7 @@ void dll_pll_veml_tracking::start_tracking()
}
else if (systemName.compare("Galileo") == 0 and signal_type.compare("1B") == 0)
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
char pilot_signal[3] = "1C";
galileo_e1_code_gen_sinboc11_float(d_tracking_code, pilot_signal, d_acquisition_gnss_synchro->PRN);
@@ -504,7 +451,7 @@ void dll_pll_veml_tracking::start_tracking()
{
gr_complex *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * d_code_length_chips, volk_gnsssdr_get_alignment()));
galileo_e5_a_code_gen_complex_primary(aux_code, d_acquisition_gnss_synchro->PRN, const_cast<char *>(signal_type.c_str()));
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
d_secondary_code_string = const_cast<std::string *>(&Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]);
for (unsigned int i = 0; i < d_code_length_chips; i++)
@@ -539,20 +486,20 @@ void dll_pll_veml_tracking::start_tracking()
if (d_veml)
{
d_local_code_shift_chips[0] = -d_very_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = d_very_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
}
else
{
d_local_code_shift_chips[0] = -d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = d_early_late_spc_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
}
d_code_phase_samples = d_acq_code_phase_samples;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_hz);
d_carrier_loop_filter.set_pdi(static_cast<float>(d_code_period));
d_code_loop_filter.set_pdi(static_cast<float>(d_code_period));
@@ -585,7 +532,7 @@ dll_pll_veml_tracking::~dll_pll_veml_tracking()
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
if (trk_parameters.dump)
{
if (d_channel == 0)
{
@@ -602,7 +549,7 @@ dll_pll_veml_tracking::~dll_pll_veml_tracking()
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_tracking_code);
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
volk_gnsssdr_free(d_Prompt_Data);
volk_gnsssdr_free(d_data_code);
@@ -673,7 +620,7 @@ bool dll_pll_veml_tracking::cn0_and_tracking_lock_status()
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, static_cast<long>(d_fs_in), static_cast<double>(d_code_length_chips));
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, static_cast<long>(trk_parameters.fs_in), static_cast<double>(d_code_length_chips));
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
@@ -716,10 +663,10 @@ void dll_pll_veml_tracking::do_correlation_step(const gr_complex *input_samples)
d_carrier_phase_step_rad,
static_cast<float>(d_rem_code_phase_chips) * static_cast<float>(d_code_samples_per_chip),
static_cast<float>(d_code_phase_step_chips) * static_cast<float>(d_code_samples_per_chip),
d_vector_length);
trk_parameters.vector_length);
// DATA CORRELATOR (if tracking tracks the pilot signal)
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
correlator_data_cpu.set_input_output_vectors(d_Prompt_Data, input_samples);
correlator_data_cpu.Carrier_wipeoff_multicorrelator_resampler(
@@ -727,7 +674,7 @@ void dll_pll_veml_tracking::do_correlation_step(const gr_complex *input_samples)
d_carrier_phase_step_rad,
static_cast<float>(d_rem_code_phase_chips) * static_cast<float>(d_code_samples_per_chip),
static_cast<float>(d_code_phase_step_chips) * static_cast<float>(d_code_samples_per_chip),
d_vector_length);
trk_parameters.vector_length);
}
}
@@ -772,7 +719,7 @@ void dll_pll_veml_tracking::run_dll_pll()
void dll_pll_veml_tracking::clear_tracking_vars()
{
std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0));
if (d_track_pilot) *d_Prompt_Data = gr_complex(0.0, 0.0);
if (trk_parameters.track_pilot) *d_Prompt_Data = gr_complex(0.0, 0.0);
d_carr_error_hz = 0.0;
d_carr_error_filt_hz = 0.0;
d_code_error_chips = 0.0;
@@ -792,13 +739,13 @@ void dll_pll_veml_tracking::update_tracking_vars()
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_prn_samples = T_prn_seconds * d_fs_in;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * d_fs_in;
T_prn_samples = T_prn_seconds * trk_parameters.fs_in;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * trk_parameters.fs_in;
d_current_prn_length_samples = static_cast<int>(round(K_blk_samples)); // round to a discrete number of samples
//################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / d_fs_in;
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in;
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad += d_carrier_phase_step_rad * static_cast<double>(d_current_prn_length_samples);
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, PI_2);
@@ -807,10 +754,10 @@ void dll_pll_veml_tracking::update_tracking_vars()
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / d_fs_in;
d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in;
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_current_prn_length_samples); // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * d_rem_code_phase_samples / d_fs_in;
d_rem_code_phase_chips = d_code_freq_chips * d_rem_code_phase_samples / trk_parameters.fs_in;
}
@@ -858,7 +805,7 @@ void dll_pll_veml_tracking::save_correlation_results()
d_current_symbol %= d_symbols_per_bit;
}
// If tracking pilot, disable Costas loop
if (d_track_pilot)
if (trk_parameters.track_pilot)
d_cloop = false;
else
d_cloop = true;
@@ -867,7 +814,7 @@ void dll_pll_veml_tracking::save_correlation_results()
void dll_pll_veml_tracking::log_data(bool integrating)
{
if (d_dump)
if (trk_parameters.dump)
{
// Dump results to file
float prompt_I;
@@ -875,7 +822,7 @@ void dll_pll_veml_tracking::log_data(bool integrating)
float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL;
float tmp_float;
double tmp_double;
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
if (interchange_iq)
{
@@ -920,7 +867,7 @@ void dll_pll_veml_tracking::log_data(bool integrating)
// It compensates the amplitude difference while integrating
if (d_extend_correlation_symbols_count > 0)
{
float scale_factor = static_cast<float>(d_extend_correlation_symbols) / static_cast<float>(d_extend_correlation_symbols_count);
float scale_factor = static_cast<float>(trk_parameters.extend_correlation_symbols) / static_cast<float>(d_extend_correlation_symbols_count);
tmp_VE *= scale_factor;
tmp_E *= scale_factor;
tmp_P *= scale_factor;
@@ -994,7 +941,7 @@ int dll_pll_veml_tracking::save_matfile()
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
dump_file.open(trk_parameters.dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
@@ -1093,14 +1040,14 @@ int dll_pll_veml_tracking::save_matfile()
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
std::string filename = trk_parameters.dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
@@ -1116,7 +1063,7 @@ int dll_pll_veml_tracking::save_matfile()
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
@@ -1211,17 +1158,17 @@ void dll_pll_veml_tracking::set_channel(unsigned int channel)
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump)
if (trk_parameters.dump)
{
if (!d_dump_file.is_open())
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
trk_parameters.dump_filename.append(boost::lexical_cast<std::string>(d_channel));
trk_parameters.dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
d_dump_file.open(trk_parameters.dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << trk_parameters.dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
@@ -1367,30 +1314,30 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
{
// UPDATE INTEGRATION TIME
d_extend_correlation_symbols_count = 0;
float new_correlation_time = static_cast<float>(d_extend_correlation_symbols) * static_cast<float>(d_code_period);
float new_correlation_time = static_cast<float>(trk_parameters.extend_correlation_symbols) * static_cast<float>(d_code_period);
d_carrier_loop_filter.set_pdi(new_correlation_time);
d_code_loop_filter.set_pdi(new_correlation_time);
d_state = 3; // next state is the extended correlator integrator
LOG(INFO) << "Enabled " << d_extend_correlation_symbols << " [symbols] extended correlator for CH "
LOG(INFO) << "Enabled " << trk_parameters.extend_correlation_symbols << " [symbols] extended correlator for CH "
<< d_channel
<< " : Satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN);
std::cout << "Enabled " << d_extend_correlation_symbols << " [symbols] extended correlator for CH "
std::cout << "Enabled " << trk_parameters.extend_correlation_symbols << " [symbols] extended correlator for CH "
<< d_channel
<< " : Satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
// Set narrow taps delay values [chips]
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz);
d_code_loop_filter.set_DLL_BW(trk_parameters.dll_bw_narrow_hz);
d_carrier_loop_filter.set_PLL_BW(trk_parameters.pll_bw_narrow_hz);
if (d_veml)
{
d_local_code_shift_chips[0] = -d_very_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -d_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = d_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = d_very_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
}
else
{
d_local_code_shift_chips[0] = -d_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = d_early_late_spc_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
}
}
else
@@ -1413,7 +1360,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
// ########### Output the tracking results to Telemetry block ##########
if (interchange_iq)
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
// Note that data and pilot components are in quadrature. I and Q are interchanged
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).imag());
@@ -1427,7 +1374,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
}
else
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
// Note that data and pilot components are in quadrature. I and Q are interchanged
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).real());
@@ -1446,7 +1393,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = d_correlation_length_ms;
d_extend_correlation_symbols_count++;
if (d_extend_correlation_symbols_count == (d_extend_correlation_symbols - 1))
if (d_extend_correlation_symbols_count == (trk_parameters.extend_correlation_symbols - 1))
{
d_extend_correlation_symbols_count = 0;
d_state = 4;
@@ -1477,7 +1424,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
// ########### Output the tracking results to Telemetry block ##########
if (interchange_iq)
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
// Note that data and pilot components are in quadrature. I and Q are interchanged
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).imag());
@@ -1491,7 +1438,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
}
else
{
if (d_track_pilot)
if (trk_parameters.track_pilot)
{
// Note that data and pilot components are in quadrature. I and Q are interchanged
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt_Data).real());
@@ -1528,7 +1475,7 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
d_sample_counter += d_current_prn_length_samples;
if (current_synchro_data.Flag_valid_symbol_output)
{
current_synchro_data.fs = static_cast<long int>(d_fs_in);
current_synchro_data.fs = static_cast<long int>(trk_parameters.fs_in);
current_synchro_data.Tracking_sample_counter = d_sample_counter;
*out[0] = current_synchro_data;
return 1;

View File

@@ -39,20 +39,32 @@
#include <fstream>
#include <string>
typedef struct
{
/* DLL/PLL tracking configuration */
double fs_in;
unsigned int vector_length;
bool dump;
std::string dump_filename;
float pll_bw_hz;
float dll_bw_hz;
float pll_bw_narrow_hz;
float dll_bw_narrow_hz;
float early_late_space_chips;
float very_early_late_space_chips;
float early_late_space_narrow_chips;
float very_early_late_space_narrow_chips;
int extend_correlation_symbols;
bool track_pilot;
char system;
char signal[3];
} dllpllconf_t;
class dll_pll_veml_tracking;
typedef boost::shared_ptr<dll_pll_veml_tracking> dll_pll_veml_tracking_sptr;
dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(double fs_in, unsigned int vector_length,
bool dump, std::string dump_filename,
float pll_bw_hz, float dll_bw_hz,
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
float early_late_space_chips, float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols, bool track_pilot,
char system, char signal[3]);
dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(dllpllconf_t conf_);
/*!
* \brief This class implements a code DLL + carrier PLL tracking block.
@@ -72,29 +84,9 @@ public:
void forecast(int noutput_items, gr_vector_int &ninput_items_required);
private:
friend dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(double fs_in, unsigned int vector_length,
bool dump, std::string dump_filename,
float pll_bw_hz, float dll_bw_hz, float pll_bw_narrow_hz,
float dll_bw_narrow_hz, float early_late_space_chips,
float very_early_late_space_chips, float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols, bool track_pilot,
char system, char signal[3]);
friend dll_pll_veml_tracking_sptr dll_pll_veml_make_tracking(dllpllconf_t conf_);
dll_pll_veml_tracking(double fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
float early_late_space_chips,
float very_early_late_space_chips,
float early_late_space_narrow_chips,
float very_early_late_space_narrow_chips,
int extend_correlation_symbols,
bool track_pilot,
char system, char signal[3]);
dll_pll_veml_tracking(dllpllconf_t conf_);
bool cn0_and_tracking_lock_status();
bool acquire_secondary();
@@ -107,12 +99,10 @@ private:
int save_matfile();
// tracking configuration vars
bool d_dump;
dllpllconf_t trk_parameters;
bool d_veml;
bool d_cloop;
unsigned int d_vector_length;
unsigned int d_channel;
double d_fs_in;
Gnss_Synchro *d_acquisition_gnss_synchro;
//Signal parameters
@@ -135,10 +125,6 @@ private:
//Integration period in samples
int d_correlation_length_ms;
int d_n_correlator_taps;
float d_early_late_spc_chips;
float d_very_early_late_spc_chips;
float d_early_late_spc_narrow_chips;
float d_very_early_late_spc_narrow_chips;
float *d_tracking_code;
float *d_data_code;
@@ -159,7 +145,6 @@ private:
gr_complex *d_Very_Late;
bool d_enable_extended_integration;
int d_extend_correlation_symbols;
int d_extend_correlation_symbols_count;
int d_current_symbol;
@@ -170,7 +155,6 @@ private:
gr_complex d_VL_accu;
gr_complex d_last_prompt;
bool d_track_pilot;
gr_complex *d_Prompt_Data;
double d_code_phase_step_chips;
@@ -187,11 +171,6 @@ private:
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking parameters
float d_dll_bw_hz;
float d_pll_bw_hz;
float d_dll_bw_narrow_hz;
float d_pll_bw_narrow_hz;
// tracking vars
double d_carr_error_hz;
double d_carr_error_filt_hz;
@@ -223,7 +202,6 @@ private:
gr_complex *d_Prompt_buffer;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
};

View File

@@ -1,977 +0,0 @@
/*!
* \file galileo_e5a_dll_pll_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL
* tracking block for Galileo E5a signals
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5a_dll_pll_tracking_cc.h"
#include "galileo_e5_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "Galileo_E5a.h"
#include "Galileo_E1.h"
#include "control_message_factory.h"
#include "gnss_sdr_flags.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <matio.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#include <sstream>
using google::LogMessage;
galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips)
{
return galileo_e5a_dll_pll_tracking_cc_sptr(new Galileo_E5a_Dll_Pll_Tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, ti_ms, early_late_space_chips));
}
void Galileo_E5a_Dll_Pll_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips) : gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
this->set_relative_rate(1.0 / vector_length);
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_code_loop_filter = Tracking_2nd_DLL_filter(GALILEO_E5a_CODE_PERIOD);
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GALILEO_E5a_CODE_PERIOD);
d_current_ti_ms = 1; // initializes with 1ms of integration time until secondary code lock
d_ti_ms = ti_ms;
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the E5a primary code replicas sampled 1x/chip
d_codeQ = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_codeI = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator Q outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
// map memory pointers of correlator outputs
d_Single_Early = &d_correlator_outs[0];
d_Single_Prompt = &d_correlator_outs[1];
d_Single_Late = &d_correlator_outs[2];
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu_Q.init(2 * d_vector_length, d_n_correlator_taps);
// correlator I single output for data (scalar)
d_Single_Prompt_data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
*d_Single_Prompt_data = gr_complex(0, 0);
multicorrelator_cpu_I.init(2 * d_vector_length, 1); // single correlator for data channel
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
//Filter error vars
d_code_error_filt_secs = 0.0;
// sample synchronization
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_first_transition = false;
d_secondary_lock = false;
d_secondary_delay = 0;
d_integration_counter = 0;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[static_cast<unsigned int>(FLAGS_cn0_samples)];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
d_acquisition_gnss_synchro = 0;
d_channel = 0;
tmp_E = 0;
tmp_P = 0;
tmp_L = 0;
d_acq_code_phase_samples = 0;
d_acq_carrier_doppler_hz = 0;
d_carrier_doppler_hz = 0;
d_acc_carrier_phase_rad = 0;
d_code_phase_samples = 0;
d_acc_code_phase_secs = 0;
d_state = 0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
systemName["E"] = std::string("Galileo");
}
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
delete[] d_codeI;
delete[] d_codeQ;
delete[] d_Prompt_buffer;
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_Single_Prompt_data);
multicorrelator_cpu_Q.free();
multicorrelator_cpu_I.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity;
radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz) / Galileo_E5a_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ;
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds;
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff;
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
char sig[3];
strcpy(sig, "5Q");
galileo_e5_a_code_gen_complex_primary(d_codeQ, d_acquisition_gnss_synchro->PRN, sig);
strcpy(sig, "5I");
galileo_e5_a_code_gen_complex_primary(d_codeI, d_acquisition_gnss_synchro->PRN, sig);
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0;
d_acc_carrier_phase_rad = 0;
d_acc_code_phase_secs = 0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of Galileo E5a signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Galileo E5a starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_state = 1;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary()
{
// 1. Transform replica to 1 and -1
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(i) == '0')
{
sec_code_signed[i] = 1;
}
else
{
sec_code_signed[i] = -1;
}
}
// 2. Transform buffer to 1 and -1
int in_corr[static_cast<unsigned int>(FLAGS_cn0_samples)];
for (unsigned int i = 0; i < static_cast<unsigned int>(FLAGS_cn0_samples); i++)
{
if (d_Prompt_buffer[i].real() > 0)
{
in_corr[i] = 1;
}
else
{
in_corr[i] = -1;
}
}
// 3. Serial search
int out_corr;
int current_best_ = 0;
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
out_corr = 0;
for (unsigned int j = 0; j < static_cast<unsigned int>(FLAGS_cn0_samples); j++)
{
//reverse replica sign since i*i=-1 (conjugated complex)
out_corr += in_corr[j] * -sec_code_signed[(j + i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
}
if (abs(out_corr) > current_best_)
{
current_best_ = abs(out_corr);
d_secondary_delay = i;
}
}
if (current_best_ == FLAGS_cn0_samples) // all bits correlate
{
d_secondary_lock = true;
d_secondary_delay = (d_secondary_delay + static_cast<unsigned int>(FLAGS_cn0_samples) - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
}
}
int Galileo_E5a_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
/* States: 0 Tracking not enabled
* 1 Pull-in of primary code (alignment).
* 3 Tracking algorithm. Correlates EPL each loop and accumulates the result
* until it reaches integration time.
*/
switch (d_state)
{
case 0:
{
d_Early = gr_complex(0, 0);
d_Prompt = gr_complex(0, 0);
d_Late = gr_complex(0, 0);
d_Prompt_data = gr_complex(0, 0);
current_synchro_data.Tracking_sample_counter = d_sample_counter;
break;
}
case 1:
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
DLOG(INFO) << " samples_offset=" << samples_offset;
d_state = 2; // start in Ti = 1 code, until secondary code lock.
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.fs = d_fs_in;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 0;
break;
}
case 2:
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //PRN start block alignment
gr_complex sec_sign_Q;
gr_complex sec_sign_I;
// Secondary code Chip
if (d_secondary_lock)
{
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(d_secondary_delay) == '0' ? -1 : 1), 0);
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0);
}
else
{
sec_sign_Q = gr_complex(1.0, 0.0);
sec_sign_I = gr_complex(1.0, 0.0);
}
// Reset integration counter
if (d_integration_counter == d_current_ti_ms)
{
d_integration_counter = 0;
}
//Generate local code and carrier replicas (using \hat{f}_d(k-1))
if (d_integration_counter == 0)
{
// Reset accumulated values
d_Early = gr_complex(0, 0);
d_Prompt = gr_complex(0, 0);
d_Late = gr_complex(0, 0);
}
// perform carrier wipe-off and compute Early, Prompt and Late
// correlation of 1 primary code
multicorrelator_cpu_Q.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeQ, d_local_code_shift_chips);
multicorrelator_cpu_I.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeI, &d_local_code_shift_chips[1]);
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu_Q.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu_I.set_input_output_vectors(d_Single_Prompt_data, in);
double carr_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
double code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in));
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
multicorrelator_cpu_Q.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_chips,
code_phase_step_chips,
d_current_prn_length_samples);
multicorrelator_cpu_I.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_chips,
code_phase_step_chips,
d_current_prn_length_samples);
// Accumulate results (coherent integration since there are no bit transitions in pilot signal)
d_Early += (*d_Single_Early) * sec_sign_Q;
d_Prompt += (*d_Single_Prompt) * sec_sign_Q;
d_Late += (*d_Single_Late) * sec_sign_Q;
d_Prompt_data = (*d_Single_Prompt_data);
d_Prompt_data *= sec_sign_I;
d_integration_counter++;
// ################## PLL ##########################################################
// PLL discriminator
if (d_integration_counter == d_current_ti_ms)
{
if (d_secondary_lock == true)
{
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
else
{
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
}
// carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad -= 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0 * GALILEO_PI);
// ################## DLL ##########################################################
if (d_integration_counter == d_current_ti_ms)
{
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_Early, d_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
}
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples - 1)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
// ATTEMPT SECONDARY CODE ACQUISITION
if (d_secondary_lock == false)
{
acquire_secondary(); // changes d_secondary_lock and d_secondary_delay
if (d_secondary_lock == true)
{
std::cout << "Galileo E5a secondary code locked for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
d_current_ti_ms = d_ti_ms;
// Change loop parameters ==========================================
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz);
}
else
{
//std::cout << "Secondary code delay couldn't be resolved." << std::endl;
d_carrier_lock_fail_counter++;
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_state = 0; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
}
else // Secondary lock achieved, monitor carrier lock.
{
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples), d_fs_in, d_current_ti_ms * Galileo_E5a_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples));
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_state = 0;
}
}
}
d_cn0_estimation_counter = 0;
}
if (d_secondary_lock && (d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == 0)
{
d_first_transition = true;
}
// ########### Output the tracking data to navigation and PVT ##########
// The first Prompt output not equal to 0 is synchronized with the transition of a navigation data bit.
if (d_secondary_lock && d_first_transition)
{
current_synchro_data.Prompt_I = static_cast<double>(d_Prompt_data.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_Prompt_data.imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
}
else
{
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_symbol_output = false;
}
break;
}
}
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = GALILEO_E5a_CODE_PERIOD_MS;
if (current_synchro_data.Flag_valid_symbol_output)
{
*out[0] = current_synchro_data;
}
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
double tmp_double;
prompt_I = (d_Prompt_data).real();
prompt_Q = (d_Prompt_data).imag();
if (d_integration_counter == d_current_ti_ms)
{
tmp_E = std::abs<float>(d_Early);
tmp_P = std::abs<float>(d_Prompt);
tmp_L = std::abs<float>(d_Late);
}
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
d_secondary_delay = (d_secondary_delay + 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
d_sample_counter += d_current_prn_length_samples;
consume_each(d_current_prn_length_samples);
if (current_synchro_data.Flag_valid_symbol_output)
{
return 1;
}
else
{
return 0;
}
}
void Galileo_E5a_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
int Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
void Galileo_E5a_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@@ -1,207 +0,0 @@
/*!
* \file galileo_e5a_dll_pll_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL
* tracking block for Galileo E5a signals
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
#define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class Galileo_E5a_Dll_Pll_Tracking_cc;
typedef boost::shared_ptr<Galileo_E5a_Dll_Pll_Tracking_cc>
galileo_e5a_dll_pll_tracking_cc_sptr;
galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_narrowhz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class Galileo_E5a_Dll_Pll_Tracking_cc : public gr::block
{
public:
~Galileo_E5a_Dll_Pll_Tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
Galileo_E5a_Dll_Pll_Tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
void acquire_secondary();
// tracking configuration vars
unsigned int d_vector_length;
int d_current_ti_ms;
int d_ti_ms;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
double d_dll_bw_hz;
double d_pll_bw_hz;
double d_dll_bw_narrow_hz;
double d_pll_bw_narrow_hz;
gr_complex* d_codeQ;
gr_complex* d_codeI;
gr_complex d_Early;
gr_complex d_Prompt;
gr_complex d_Late;
gr_complex d_Prompt_data;
gr_complex* d_Single_Early;
gr_complex* d_Single_Prompt;
gr_complex* d_Single_Late;
gr_complex* d_Single_Prompt_data;
float tmp_E;
float tmp_P;
float tmp_L;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu_I;
cpu_multicorrelator multicorrelator_cpu_Q;
// tracking vars
double d_code_freq_chips;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
double d_code_error_filt_secs;
double d_code_phase_step_chips;
double d_carrier_phase_step_rad;
//PRN period in samples
int d_current_prn_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
int d_state;
bool d_first_transition;
// Secondary code acquisition
bool d_secondary_lock;
int d_secondary_delay;
int d_integration_counter;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ */

View File

@@ -1,761 +0,0 @@
/*!
* \file gps_l2_m_dll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l2_m_dll_pll_tracking_cc.h"
#include "gps_l2c_signal.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GPS_L2C.h"
#include "control_message_factory.h"
#include "gnss_sdr_flags.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <matio.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
using google::LogMessage;
gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l2_m_dll_pll_tracking_cc_sptr(new gps_l2_m_dll_pll_tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void gps_l2_m_dll_pll_tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) : gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// DLL/PLL filter initialization
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L2_M_PERIOD);
d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L2_M_PERIOD);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
//set_min_output_buffer((long int)300);
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
}
void gps_l2_m_dll_pll_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l2c_m_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L2CM signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting GPS L2CM tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "GPS L2CM PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
int gps_l2_m_dll_pll_tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
gps_l2_m_dll_pll_tracking_cc::~gps_l2_m_dll_pll_tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
gps_l2_m_dll_pll_tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int gps_l2_m_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
double carr_error_hz = 0;
double carr_error_filt_hz = 0;
double code_error_chips = 0;
double code_error_filt_chips = 0;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter = d_sample_counter + samples_offset; // count for the processed samples
d_pull_in = false;
// take into account the carrier cycles accumulated in the pull in signal alignment
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = 20;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 0;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L2_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
double T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples
//################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L2_TWO_PI);
// carrier phase accumulator
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples;
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1];
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real());
current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 20;
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.correlation_length_ms = 20;
}
//assign the GNURadio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples);
d_sample_counter += d_current_prn_length_samples;
if (current_synchro_data.Flag_valid_symbol_output)
{
return 1;
}
else
{
return 0;
}
}
void gps_l2_m_dll_pll_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void gps_l2_m_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@@ -1,165 +0,0 @@
/*!
* \file gps_l2_m_dll_pll_tracking_cc.h
* \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
#define GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class gps_l2_m_dll_pll_tracking_cc;
typedef boost::shared_ptr<gps_l2_m_dll_pll_tracking_cc>
gps_l2_m_dll_pll_tracking_cc_sptr;
gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class gps_l2_m_dll_pll_tracking_cc : public gr::block
{
public:
~gps_l2_m_dll_pll_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend gps_l2_m_dll_pll_tracking_cc_sptr
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
gps_l2_m_dll_pll_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
gr_complex* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
// PRN period in samples
int d_current_prn_length_samples;
// processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif //GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H

View File

@@ -1,762 +0,0 @@
/*!
* \file gps_l5i_dll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l5i_dll_pll_tracking_cc.h"
#include "gps_l5_signal.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GPS_L5.h"
#include "control_message_factory.h"
#include "gnss_sdr_flags.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <matio.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
using google::LogMessage;
gps_l5i_dll_pll_tracking_cc_sptr
gps_l5i_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l5i_dll_pll_tracking_cc_sptr(new gps_l5i_dll_pll_tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void gps_l5i_dll_pll_tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
gps_l5i_dll_pll_tracking_cc::gps_l5i_dll_pll_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) : gr::block("gps_l5i_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// DLL/PLL filter initialization
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L5i_PERIOD);
d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L5i_PERIOD);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L5i_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
//set_min_output_buffer((long int)300);
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
}
void gps_l5i_dll_pll_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (GPS_L5_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L5_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L5i_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L5i_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L5i_CODE_LENGTH_CHIPS / GPS_L5i_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l5i_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L5i signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting GPS L5i tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "GPS L5i PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
int gps_l5i_dll_pll_tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
gps_l5i_dll_pll_tracking_cc::~gps_l5i_dll_pll_tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
gps_l5i_dll_pll_tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int gps_l5i_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
double carr_error_hz = 0;
double carr_error_filt_hz = 0;
double code_error_chips = 0;
double code_error_filt_chips = 0;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter = d_sample_counter + samples_offset; // count for the processed samples
d_pull_in = false;
// take into account the carrier cycles accumulated in the pull in signal alignment
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = 1;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 0;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L5_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L5i_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L5i_CODE_RATE_HZ) / GPS_L5_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
double T_prn_seconds = T_chip_seconds * GPS_L5i_CODE_LENGTH_CHIPS;
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L5i_PERIOD * code_error_filt_chips) / GPS_L5i_CODE_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples
//################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L5_TWO_PI);
// carrier phase accumulator
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples;
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1];
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L5i_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real());
current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.correlation_length_ms = 1;
}
//assign the GNURadio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_current_prn_length_samples; // count for the processed samples
if (current_synchro_data.Flag_valid_symbol_output)
{
return 1;
}
else
{
return 0;
}
}
void gps_l5i_dll_pll_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void gps_l5i_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@@ -1,165 +0,0 @@
/*!
* \file gps_l5i_dll_pll_tracking_cc.h
* \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H
#define GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class gps_l5i_dll_pll_tracking_cc;
typedef boost::shared_ptr<gps_l5i_dll_pll_tracking_cc>
gps_l5i_dll_pll_tracking_cc_sptr;
gps_l5i_dll_pll_tracking_cc_sptr
gps_l5i_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class gps_l5i_dll_pll_tracking_cc : public gr::block
{
public:
~gps_l5i_dll_pll_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend gps_l5i_dll_pll_tracking_cc_sptr
gps_l5i_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
gps_l5i_dll_pll_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
gr_complex* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
// PRN period in samples
int d_current_prn_length_samples;
// processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif //GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H