1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-13 19:50:34 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into glonass

This commit is contained in:
Carles Fernandez 2017-10-04 01:27:03 +02:00
commit 35620b8c57
19 changed files with 454 additions and 1914 deletions

View File

@ -19,7 +19,6 @@
set(ACQ_ADAPTER_SOURCES set(ACQ_ADAPTER_SOURCES
gps_l1_ca_pcps_acquisition.cc gps_l1_ca_pcps_acquisition.cc
gps_l1_ca_pcps_multithread_acquisition.cc
gps_l1_ca_pcps_assisted_acquisition.cc gps_l1_ca_pcps_assisted_acquisition.cc
gps_l1_ca_pcps_acquisition_fine_doppler.cc gps_l1_ca_pcps_acquisition_fine_doppler.cc
gps_l1_ca_pcps_tong_acquisition.cc gps_l1_ca_pcps_tong_acquisition.cc

View File

@ -56,6 +56,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
blocking_ = configuration_->property(role + ".blocking", true);
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
@ -91,7 +92,8 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
item_size_ = sizeof(lv_16sc_t); item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_, acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, samples_per_ms, code_length_, doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
} }
@ -100,7 +102,8 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_, acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, samples_per_ms, code_length_, doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
} }

View File

@ -155,6 +155,7 @@ private:
long fs_in_; long fs_in_;
long if_; long if_;
bool dump_; bool dump_;
bool blocking_;
std::string dump_filename_; std::string dump_filename_;
std::complex<float> * code_; std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_; Gnss_Synchro * gnss_synchro_;

View File

@ -59,6 +59,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
blocking_ = configuration_->property(role + ".blocking", true);
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
@ -86,7 +87,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
item_size_ = sizeof(lv_16sc_t); item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_, acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_, doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
} }
else else
@ -94,7 +95,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_, acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_, doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
} }

View File

@ -160,6 +160,7 @@ private:
long fs_in_; long fs_in_;
long if_; long if_;
bool dump_; bool dump_;
bool blocking_;
std::string dump_filename_; std::string dump_filename_;
std::complex<float> * code_; std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_; Gnss_Synchro * gnss_synchro_;

View File

@ -1,287 +0,0 @@
/*!
* \file gps_l1_ca_pcps_multithread_acquisition.cc
* \brief Adapts a multithread PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_pcps_multithread_acquisition.h"
#include <boost/math/distributions/exponential.hpp>
#include <glog/logging.h>
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
using google::LogMessage;
GpsL1CaPcpsMultithreadAcquisition::GpsL1CaPcpsMultithreadAcquisition(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) :
role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
configuration_ = configuration;
std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat";
DLOG(INFO) << "role " << role;
item_type_ = configuration_->property(role + ".item_type",
default_item_type);
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false);
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
bit_transition_flag_ = configuration_->property("Acquisition.bit_transition_flag", false);
if (!bit_transition_flag_)
{
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
}
else
{
max_dwells_ = 2;
}
dump_filename_ = configuration_->property(role + ".dump_filename",
default_dump_filename);
//--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
vector_length_ = code_length_ * sampled_ms_;
code_ = new gr_complex[vector_length_];
if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_multithread_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, dump_, dump_filename_);
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
<< ")";
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
<< ")";
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type_ << " unknown acquisition item type";
}
channel_ = 0;
threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = 0;
}
GpsL1CaPcpsMultithreadAcquisition::~GpsL1CaPcpsMultithreadAcquisition()
{
delete[] code_;
}
void GpsL1CaPcpsMultithreadAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_channel(channel_);
}
}
void GpsL1CaPcpsMultithreadAcquisition::set_threshold(float threshold)
{
float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
if(pfa == 0.0)
{
pfa = configuration_->property(role_+".pfa", 0.0);
}
if(pfa == 0.0)
{
threshold_ = threshold;
}
else
{
threshold_ = calculate_threshold(pfa);
}
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_threshold(threshold_);
}
}
void GpsL1CaPcpsMultithreadAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
}
void GpsL1CaPcpsMultithreadAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
}
void GpsL1CaPcpsMultithreadAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
}
signed int GpsL1CaPcpsMultithreadAcquisition::mag()
{
if (item_type_.compare("gr_complex") == 0)
{
return acquisition_cc_->mag();
}
else
{
return 0;
}
}
void GpsL1CaPcpsMultithreadAcquisition::init()
{
acquisition_cc_->init();
//set_local_code();
}
void GpsL1CaPcpsMultithreadAcquisition::set_local_code()
{
if (item_type_.compare("gr_complex") == 0)
{
std::complex<float>* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++)
{
memcpy(&(code_[i*code_length_]), code,
sizeof(gr_complex)*code_length_);
}
acquisition_cc_->set_local_code(code_);
delete[] code;
}
}
void GpsL1CaPcpsMultithreadAcquisition::reset()
{
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_active(true);
}
}
float GpsL1CaPcpsMultithreadAcquisition::calculate_threshold(float pfa)
{
//Calculate the threshold
unsigned int frequency_bins = 0;
for (int doppler = static_cast<int>(-doppler_max_); doppler <= static_cast<int>(doppler_max_); doppler += doppler_step_)
{
frequency_bins++;
}
DLOG(INFO) << "Channel "<< channel_ << " Pfa = " << pfa;
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist (lambda);
float threshold = static_cast<float>(quantile(mydist,val));
return threshold;
}
void GpsL1CaPcpsMultithreadAcquisition::connect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
}
void GpsL1CaPcpsMultithreadAcquisition::disconnect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
}
gr::basic_block_sptr GpsL1CaPcpsMultithreadAcquisition::get_left_block()
{
return stream_to_vector_;
}
gr::basic_block_sptr GpsL1CaPcpsMultithreadAcquisition::get_right_block()
{
return acquisition_cc_;
}

View File

@ -1,156 +0,0 @@
/*!
* \file gps_l1_ca_pcps_multithread_acquisition.h
* \brief Adapts a multithread PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
#include <string>
#include <gnuradio/blocks/stream_to_vector.h>
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_multithread_acquisition_cc.h"
class ConfigurationInterface;
/*!
* \brief This class adapts a multithread PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
*/
class GpsL1CaPcpsMultithreadAcquisition: public AcquisitionInterface
{
public:
GpsL1CaPcpsMultithreadAcquisition(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams);
virtual ~GpsL1CaPcpsMultithreadAcquisition();
inline std::string role() override
{
return role_;
}
/*!
* \brief Returns "GPS_L1_CA_PCPS_Multithread_Acquisition"
*/
inline std::string implementation() override
{
return "GPS_L1_CA_PCPS_Multithread_Acquisition";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
/*!
* \brief Set acquisition channel unique ID
*/
void set_channel(unsigned int channel) override;
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold) override;
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max) override;
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step) override;
/*!
* \brief Initializes acquisition algorithm.
*/
void init() override;
/*!
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
*/
void set_local_code() override;
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag() override;
/*!
* \brief Restart acquisition algorithm
*/
void reset() override;
private:
ConfigurationInterface* configuration_;
pcps_multithread_acquisition_cc_sptr acquisition_cc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
size_t item_size_;
std::string item_type_;
unsigned int vector_length_;
unsigned int code_length_;
bool bit_transition_flag_;
unsigned int channel_;
float threshold_;
unsigned int doppler_max_;
unsigned int doppler_step_;
unsigned int sampled_ms_;
unsigned int max_dwells_;
long fs_in_;
long if_;
bool dump_;
std::string dump_filename_;
std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
float calculate_threshold(float pfa);
};
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_ */

View File

@ -59,6 +59,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
blocking_ = configuration_->property(role + ".blocking", true);
doppler_max_ = configuration->property(role + ".doppler_max", 5000); doppler_max_ = configuration->property(role + ".doppler_max", 5000);
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
@ -86,7 +87,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
item_size_ = sizeof(lv_16sc_t); item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(1, max_dwells_, acquisition_sc_ = pcps_make_acquisition_sc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_, doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
} }
@ -95,7 +96,8 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_, acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_, doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, dump_filename_); bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
} }

View File

@ -157,6 +157,7 @@ private:
long fs_in_; long fs_in_;
long if_; long if_;
bool dump_; bool dump_;
bool blocking_;
std::string dump_filename_; std::string dump_filename_;
std::complex<float> * code_; std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_; Gnss_Synchro * gnss_synchro_;

View File

@ -20,7 +20,6 @@
set(ACQ_GR_BLOCKS_SOURCES set(ACQ_GR_BLOCKS_SOURCES
pcps_acquisition_cc.cc pcps_acquisition_cc.cc
pcps_acquisition_sc.cc pcps_acquisition_sc.cc
pcps_multithread_acquisition_cc.cc
pcps_assisted_acquisition_cc.cc pcps_assisted_acquisition_cc.cc
pcps_acquisition_fine_doppler_cc.cc pcps_acquisition_fine_doppler_cc.cc
pcps_tong_acquisition_cc.cc pcps_tong_acquisition_cc.cc

View File

@ -5,11 +5,12 @@
* <li> Javier Arribas, 2011. jarribas(at)cttc.es * <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com * <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com * <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul> * </ul>
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
* *
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* *
* GNSS-SDR is a software defined Global Navigation * GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver * Satellite Systems receiver
@ -52,12 +53,12 @@ pcps_acquisition_cc_sptr pcps_make_acquisition_cc(
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename) std::string dump_filename)
{ {
return pcps_acquisition_cc_sptr( return pcps_acquisition_cc_sptr(
new pcps_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, new pcps_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, dump_filename)); samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename));
} }
@ -66,7 +67,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename) : std::string dump_filename) :
gr::block("pcps_acquisition_cc", gr::block("pcps_acquisition_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )), gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
@ -132,6 +133,12 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_gnss_synchro = 0; d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0; d_grid_doppler_wipeoffs = 0;
d_done = false;
d_blocking = blocking;
d_new_data_available = false;
d_worker_active = false;
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
} }
@ -156,6 +163,20 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
{ {
d_dump_file.close(); d_dump_file.close();
} }
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
volk_gnsssdr_free( d_data_buffer );
} }
@ -175,7 +196,7 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
if( d_bit_transition_flag ) if( d_bit_transition_flag )
{ {
int offset = d_fft_size/2; int offset = d_fft_size / 2;
std::fill_n( d_fft_if->get_inbuf(), offset, gr_complex( 0.0, 0.0 ) ); std::fill_n( d_fft_if->get_inbuf(), offset, gr_complex( 0.0, 0.0 ) );
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset); memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset);
} }
@ -238,6 +259,10 @@ void pcps_acquisition_cc::init()
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
} }
d_new_data_available = false;
d_done = false;
d_worker_active = false;
} }
@ -283,17 +308,16 @@ void pcps_acquisition_cc::send_positive_acquisition()
// 6.1- Declare positive acquisition using a message port // 6.1- Declare positive acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "positive acquisition" DLOG(INFO) << "positive acquisition"
<< "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< "sample_stamp " << d_sample_counter << ", sample_stamp " << d_sample_counter
<< "test statistics value " << d_test_statistics << ", test statistics value " << d_test_statistics
<< "test statistics threshold " << d_threshold << ", test statistics threshold " << d_threshold
<< "code phase " << d_gnss_synchro->Acq_delay_samples << ", code phase " << d_gnss_synchro->Acq_delay_samples
<< "doppler " << d_gnss_synchro->Acq_doppler_hz << ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< "magnitude " << d_mag << ", magnitude " << d_mag
<< "input signal power " << d_input_power; << ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(1)); this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
} }
@ -302,17 +326,16 @@ void pcps_acquisition_cc::send_negative_acquisition()
// 6.2- Declare negative acquisition using a message port // 6.2- Declare negative acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "negative acquisition" DLOG(INFO) << "negative acquisition"
<< "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< "sample_stamp " << d_sample_counter << ", sample_stamp " << d_sample_counter
<< "test statistics value " << d_test_statistics << ", test statistics value " << d_test_statistics
<< "test statistics threshold " << d_threshold << ", test statistics threshold " << d_threshold
<< "code phase " << d_gnss_synchro->Acq_delay_samples << ", code phase " << d_gnss_synchro->Acq_delay_samples
<< "doppler " << d_gnss_synchro->Acq_doppler_hz << ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< "magnitude " << d_mag << ", magnitude " << d_mag
<< "input signal power " << d_input_power; << ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(2)); this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
} }
@ -356,11 +379,72 @@ int pcps_acquisition_cc::general_work(int noutput_items,
case 1: case 1:
{ {
std::unique_lock<std::mutex> lk( d_mutex );
int num_items_consumed = 1;
if( d_worker_active )
{
if( d_blocking )
{
// Should never get here:
std::string msg = "pcps_acquisition_cc: Entered general work with worker active in blocking mode, should never happen";
LOG(WARNING) << msg;
std::cout << msg << std::endl;
d_cond.wait( lk, [&]{ return !this->d_worker_active; } );
}
else
{
num_items_consumed = ninput_items[0];
d_sample_counter += d_fft_size * num_items_consumed;
}
}
else
{
// Copy the data to the core and let it know that new data is available
memcpy( d_data_buffer, input_items[0], d_fft_size * sizeof( gr_complex ) );
d_new_data_available = true;
d_cond.notify_one();
if( d_blocking )
{
d_cond.wait( lk, [&]{ return !this->d_new_data_available; } );
}
}
consume_each(num_items_consumed);
break;
} // case 1, switch d_state
} // switch d_state
return noutput_items;
}
void pcps_acquisition_cc::acquisition_core( void )
{
d_worker_active = false;
while( 1 )
{
std::unique_lock<std::mutex> lk( d_mutex );
d_cond.wait( lk, [&]{ return this->d_new_data_available or this->d_done; } );
d_worker_active = !d_done;
unsigned long int sample_counter = d_sample_counter; // sample counter
lk.unlock();
if( d_done )
{
break;
}
// initialize acquisition algorithm // initialize acquisition algorithm
int doppler; int doppler;
uint32_t indext = 0; uint32_t indext = 0;
float magt = 0.0; float magt = 0.0;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); const gr_complex *in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size ); int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
@ -368,14 +452,14 @@ int pcps_acquisition_cc::general_work(int noutput_items,
d_input_power = 0.0; d_input_power = 0.0;
d_mag = 0.0; d_mag = 0.0;
d_sample_counter += d_fft_size; // sample counter
d_well_count++; d_well_count++;
DLOG(INFO)<< "Channel: " << d_channel DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: " << " ,sample stamp: " << sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max << d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step<<std::endl; << ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
if (d_use_CFAR_algorithm_flag == true) if (d_use_CFAR_algorithm_flag == true)
{ {
@ -440,7 +524,7 @@ int pcps_acquisition_cc::general_work(int noutput_items,
{ {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code); d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
// 5- Compute the test statistics and compare to the threshold // 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
@ -457,13 +541,13 @@ int pcps_acquisition_cc::general_work(int noutput_items,
boost::filesystem::path p = d_dump_filename; boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string() filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator << boost::filesystem::path::preferred_separator
<< p.stem().string() << p.stem().string()
<< "_" << d_gnss_synchro->System << "_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_" <<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << d_gnss_synchro->PRN << "_doppler_"
<< doppler << doppler
<< p.extension().string(); << p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str(); DLOG(INFO) << "Writing ACQ out to " << filename.str();
@ -507,25 +591,40 @@ int pcps_acquisition_cc::general_work(int noutput_items,
} }
} }
consume_each(1); lk.lock();
break; d_worker_active = false;
d_new_data_available = false;
lk.unlock();
d_cond.notify_one();
} }
}
return noutput_items;
} }
//void pcps_acquisition_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required) bool pcps_acquisition_cc::start( void )
//{ {
//// COD: d_worker_active = false;
//// For zero-padded case we need one extra code period d_done = false;
//if( d_bit_transition_flag )
//{ // Start the worker thread and wait for it to acknowledge:
//ninput_items_required[0] = noutput_items*(d_samples_per_code * d_max_dwells + d_samples_per_code); d_worker_thread = std::move( std::thread( &pcps_acquisition_cc::acquisition_core, this ) );
//}
//else return gr::block::start();
//{ }
//ninput_items_required[0] = noutput_items*d_fft_size*d_max_dwells;
//}
//} bool pcps_acquisition_cc::stop( void )
{
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
return gr::block::stop();
}

View File

@ -20,11 +20,12 @@
* <li> Javier Arribas, 2011. jarribas(at)cttc.es * <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com * <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com * <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul> * </ul>
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
* *
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* *
* GNSS-SDR is a software defined Global Navigation * GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver * Satellite Systems receiver
@ -52,6 +53,9 @@
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <gnuradio/gr_complex.h> #include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h> #include <gnuradio/fft/fft.h>
@ -67,7 +71,7 @@ pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
/*! /*!
@ -84,20 +88,22 @@ private:
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
pcps_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells, pcps_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq); void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
void update_grid_doppler_wipeoffs(); void update_grid_doppler_wipeoffs();
bool is_fdma(); bool is_fdma();
void acquisition_core( void );
void send_negative_acquisition(); void send_negative_acquisition();
void send_positive_acquisition(); void send_positive_acquisition();
long d_fs_in; long d_fs_in;
@ -136,6 +142,17 @@ private:
unsigned int d_channel; unsigned int d_channel;
std::string d_dump_filename; std::string d_dump_filename;
std::thread d_worker_thread;
std::mutex d_mutex;
std::condition_variable d_cond;
bool d_done;
bool d_new_data_available;
bool d_worker_active;
bool d_blocking;
gr_complex *d_data_buffer;
public: public:
/*! /*!
* \brief Default destructor. * \brief Default destructor.
@ -237,6 +254,16 @@ public:
int general_work(int noutput_items, gr_vector_int &ninput_items, int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items); gr_vector_void_star &output_items);
/*!
* Called by the flowgraph when processing is about to start.
*/
bool start( void );
/*!
* Called by the flowgraph when processing is done.
*/
bool stop( void );
}; };
#endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/ #endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/

View File

@ -5,11 +5,12 @@
* <li> Javier Arribas, 2011. jarribas(at)cttc.es * <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com * <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com * <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul> * </ul>
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
* *
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* *
* GNSS-SDR is a software defined Global Navigation * GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver * Satellite Systems receiver
@ -32,18 +33,19 @@
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
*/ */
#include "pcps_acquisition_sc.h" #include "pcps_acquisition_sc.h"
#include <sstream> #include <sstream>
#include <boost/filesystem.hpp> #include <boost/filesystem.hpp>
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <volk/volk.h> #include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "control_message_factory.h" #include "control_message_factory.h"
#include "GPS_L1_CA.h" //GPS_TWO_PI #include "GPS_L1_CA.h" //GPS_TWO_PI
#include "GLONASS_L1_CA.h" //GLONASS_TWO_PI #include "GLONASS_L1_CA.h" //GLONASS_TWO_PI
using google::LogMessage; using google::LogMessage;
pcps_acquisition_sc_sptr pcps_make_acquisition_sc( pcps_acquisition_sc_sptr pcps_make_acquisition_sc(
@ -51,27 +53,28 @@ pcps_acquisition_sc_sptr pcps_make_acquisition_sc(
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename) std::string dump_filename)
{ {
return pcps_acquisition_sc_sptr( return pcps_acquisition_sc_sptr(
new pcps_acquisition_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, new pcps_acquisition_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, dump_filename)); samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename));
} }
pcps_acquisition_sc::pcps_acquisition_sc( pcps_acquisition_sc::pcps_acquisition_sc(
unsigned int sampled_ms, unsigned int max_dwells, unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename) : std::string dump_filename) :
gr::block("pcps_acquisition_sc", gr::block("pcps_acquisition_sc",
gr::io_signature::make(1, 1, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )), gr::io_signature::make(1, 1, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
gr::io_signature::make(0, 0, 0)) gr::io_signature::make(0, 0, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )) )
{ {
this->message_port_register_out(pmt::mp("events")); this->message_port_register_out(pmt::mp("events"));
d_sample_counter = 0; // SAMPLE COUNTER d_sample_counter = 0; // SAMPLE COUNTER
d_active = false; d_active = false;
d_state = 0; d_state = 0;
@ -91,7 +94,7 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_bit_transition_flag = bit_transition_flag; d_bit_transition_flag = bit_transition_flag;
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0; d_threshold = 0.0;
d_doppler_step = 250; d_doppler_step = 0;
d_code_phase = 0; d_code_phase = 0;
d_test_statistics = 0.0; d_test_statistics = 0.0;
d_channel = 0; d_channel = 0;
@ -112,11 +115,12 @@ pcps_acquisition_sc::pcps_acquisition_sc(
if( d_bit_transition_flag ) if( d_bit_transition_flag )
{ {
d_fft_size *= 2; d_fft_size *= 2;
d_max_dwells = 1; d_max_dwells = 1; //Activation of d_bit_transition_flag invalidates the value of d_max_dwells
} }
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment())); d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
//temporary storage for the input conversion from 16sc to float 32fc //temporary storage for the input conversion from 16sc to float 32fc
d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
@ -132,6 +136,12 @@ pcps_acquisition_sc::pcps_acquisition_sc(
d_gnss_synchro = 0; d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0; d_grid_doppler_wipeoffs = 0;
d_done = false;
d_blocking = blocking;
d_new_data_available = false;
d_worker_active = false;
d_data_buffer = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_fft_size * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
} }
@ -157,6 +167,20 @@ pcps_acquisition_sc::~pcps_acquisition_sc()
{ {
d_dump_file.close(); d_dump_file.close();
} }
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
volk_gnsssdr_free( d_data_buffer );
} }
@ -173,13 +197,18 @@ void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
// Here we want to create a buffer that looks like this: // Here we want to create a buffer that looks like this:
// [ 0 0 0 ... 0 c_0 c_1 ... c_L] // [ 0 0 0 ... 0 c_0 c_1 ... c_L]
// where c_i is the local code and there are L zeros and L chips // where c_i is the local code and there are L zeros and L chips
int offset = 0; gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
if( d_bit_transition_flag ) if( d_bit_transition_flag )
{ {
std::fill_n( d_fft_if->get_inbuf(), d_samples_per_code, gr_complex( 0.0, 0.0 ) ); int offset = d_fft_size / 2;
offset = d_samples_per_code; std::fill_n( d_fft_if->get_inbuf(), offset, gr_complex( 0.0, 0.0 ) );
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset);
} }
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_samples_per_code); else
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size);
}
d_fft_if->execute(); // We need the FFT of local code d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size); volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
} }
@ -234,8 +263,11 @@ void pcps_acquisition_sc::init()
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
} }
}
d_new_data_available = false;
d_done = false;
d_worker_active = false;
}
void pcps_acquisition_sc::update_grid_doppler_wipeoffs() void pcps_acquisition_sc::update_grid_doppler_wipeoffs()
{ {
@ -253,6 +285,7 @@ void pcps_acquisition_sc::update_grid_doppler_wipeoffs()
void pcps_acquisition_sc::set_state(int state) void pcps_acquisition_sc::set_state(int state)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_state = state; d_state = state;
if (d_state == 1) if (d_state == 1)
{ {
@ -272,6 +305,43 @@ void pcps_acquisition_sc::set_state(int state)
} }
} }
void pcps_acquisition_sc::send_positive_acquisition()
{
// 6.1- Declare positive acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "positive acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter
<< ", test statistics value " << d_test_statistics
<< ", test statistics threshold " << d_threshold
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
}
void pcps_acquisition_sc::send_negative_acquisition()
{
// 6.2- Declare negative acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "negative acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter
<< ", test statistics value " << d_test_statistics
<< ", test statistics threshold " << d_threshold
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
}
int pcps_acquisition_sc::general_work(int noutput_items, int pcps_acquisition_sc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused))) gr_vector_void_star &output_items __attribute__((unused)))
@ -287,8 +357,6 @@ int pcps_acquisition_sc::general_work(int noutput_items,
* 6. Declare positive or negative acquisition using a message port * 6. Declare positive or negative acquisition using a message port
*/ */
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
switch (d_state) switch (d_state)
{ {
case 0: case 0:
@ -303,42 +371,101 @@ int pcps_acquisition_sc::general_work(int noutput_items,
d_mag = 0.0; d_mag = 0.0;
d_input_power = 0.0; d_input_power = 0.0;
d_test_statistics = 0.0; d_test_statistics = 0.0;
d_state = 1; d_state = 1;
} }
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]); consume_each(ninput_items[0]);
//DLOG(INFO) << "Consumed " << ninput_items[0] << " items";
break; break;
} }
case 1: case 1:
{ {
std::unique_lock<std::mutex> lk( d_mutex );
int num_items_consumed = 1;
if( d_worker_active )
{
if( d_blocking )
{
// Should never get here:
std::string msg = "pcps_acquisition_sc: Entered general work with worker active in blocking mode, should never happen";
LOG(WARNING) << msg;
std::cout << msg << std::endl;
d_cond.wait( lk, [&]{ return !this->d_worker_active; } );
}
else
{
num_items_consumed = ninput_items[0];
d_sample_counter += d_fft_size * num_items_consumed;
}
}
else
{
// Copy the data to the core and let it know that new data is available
memcpy( d_data_buffer, input_items[0], d_fft_size * sizeof( lv_16sc_t ) );
d_new_data_available = true;
d_cond.notify_one();
if( d_blocking )
{
d_cond.wait( lk, [&]{ return !this->d_new_data_available; } );
}
}
consume_each(num_items_consumed);
break;
} // case 1, switch d_state
} // switch d_state
return noutput_items;
}
void pcps_acquisition_sc::acquisition_core( void )
{
d_worker_active = false;
while( 1 )
{
std::unique_lock<std::mutex> lk( d_mutex );
d_cond.wait( lk, [&]{ return this->d_new_data_available or this->d_done; } );
d_worker_active = !d_done;
unsigned long int sample_counter = d_sample_counter; // sample counter
lk.unlock();
if( d_done )
{
break;
}
// initialize acquisition algorithm // initialize acquisition algorithm
int doppler; int doppler;
uint32_t indext = 0; uint32_t indext = 0;
float magt = 0.0; float magt = 0.0;
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); //Get the input samples pointer const lv_16sc_t *in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size ); int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
//TODO: optimize the signal processing chain to not use gr_complex. This is a temporary solution //TODO: optimize the signal processing chain to not use gr_complex. This is a temporary solution
volk_gnsssdr_16ic_convert_32fc(d_in_32fc,in,effective_fft_size); volk_gnsssdr_16ic_convert_32fc(d_in_32fc, in, effective_fft_size);
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size); float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0; d_mag = 0.0;
d_sample_counter += d_fft_size; // sample counter
d_well_count++; d_well_count++;
DLOG(INFO) << "Channel: " << d_channel DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: " << " ,sample stamp: " << sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max << d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step; << ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
if (d_use_CFAR_algorithm_flag == true) if (d_use_CFAR_algorithm_flag == true)
{ {
@ -351,7 +478,6 @@ int pcps_acquisition_sc::general_work(int noutput_items,
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{ {
// doppler search steps // doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc, volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc,
@ -380,7 +506,6 @@ int pcps_acquisition_sc::general_work(int noutput_items,
// Normalize the maximum value to correct the scale factor introduced by FFTW // Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
} }
// 4- record the maximum peak and the associated synchronization parameters // 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt) if (d_mag < magt)
{ {
@ -405,12 +530,11 @@ int pcps_acquisition_sc::general_work(int noutput_items,
{ {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code); d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
// 5- Compute the test statistics and compare to the threshold // 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power; d_test_statistics = d_mag / d_input_power;
//std::cout<<"d_input_power="<<d_input_power<<" d_test_statistics="<<d_test_statistics<<" d_gnss_synchro->Acq_doppler_hz ="<<d_gnss_synchro->Acq_doppler_hz <<std::endl;
} }
} }
@ -423,13 +547,13 @@ int pcps_acquisition_sc::general_work(int noutput_items,
boost::filesystem::path p = d_dump_filename; boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string() filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator << boost::filesystem::path::preferred_separator
<< p.stem().string() << p.stem().string()
<< "_" << d_gnss_synchro->System << "_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_" <<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << d_gnss_synchro->PRN << "_doppler_"
<< doppler << doppler
<< p.extension().string(); << p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str(); DLOG(INFO) << "Writing ACQ out to " << filename.str();
@ -443,11 +567,15 @@ int pcps_acquisition_sc::general_work(int noutput_items,
{ {
if (d_test_statistics > d_threshold) if (d_test_statistics > d_threshold)
{ {
d_state = 2; // Positive acquisition d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
} }
else if (d_well_count == d_max_dwells) else if (d_well_count == d_max_dwells)
{ {
d_state = 3; // Negative acquisition d_state = 0;
d_active = false;
send_negative_acquisition();
} }
} }
else else
@ -456,71 +584,53 @@ int pcps_acquisition_sc::general_work(int noutput_items,
{ {
if (d_test_statistics > d_threshold) if (d_test_statistics > d_threshold)
{ {
d_state = 2; // Positive acquisition d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
} }
else else
{ {
d_state = 3; // Negative acquisition d_state = 0; // Negative acquisition
d_active = false;
send_negative_acquisition();
} }
} }
} }
consume_each(1); lk.lock();
d_worker_active = false;
DLOG(INFO) << "Done. Consumed 1 item."; d_new_data_available = false;
lk.unlock();
break; d_cond.notify_one();
} }
case 2:
{
// 6.1- Declare positive acquisition using a message port
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
acquisition_message = 1;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
break;
}
case 3:
{
// 6.2- Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
acquisition_message = 2;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
break;
}
}
return noutput_items;
} }
bool pcps_acquisition_sc::start( void )
{
d_worker_active = false;
d_done = false;
// Start the worker thread and wait for it to acknowledge:
d_worker_thread = std::move( std::thread( &pcps_acquisition_sc::acquisition_core, this ) );
return gr::block::start();
}
bool pcps_acquisition_sc::stop( void )
{
// Let the worker thread know that we are done and then wait to join
if( d_worker_thread.joinable() )
{
{
std::lock_guard<std::mutex> lk( d_mutex );
d_done = true;
d_cond.notify_one();
}
d_worker_thread.join();
}
return gr::block::stop();
}

View File

@ -20,11 +20,12 @@
* <li> Javier Arribas, 2011. jarribas(at)cttc.es * <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com * <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com * <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul> * </ul>
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
* *
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) * Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
* *
* GNSS-SDR is a software defined Global Navigation * GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver * Satellite Systems receiver
@ -52,11 +53,16 @@
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <gnuradio/gr_complex.h> #include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h> #include <gnuradio/fft/fft.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "gnss_synchro.h" #include "gnss_synchro.h"
class pcps_acquisition_sc; class pcps_acquisition_sc;
typedef boost::shared_ptr<pcps_acquisition_sc> pcps_acquisition_sc_sptr; typedef boost::shared_ptr<pcps_acquisition_sc> pcps_acquisition_sc_sptr;
@ -66,7 +72,7 @@ pcps_make_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
/*! /*!
@ -83,23 +89,26 @@ private:
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
pcps_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells, pcps_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag, bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool dump, bool blocking,
std::string dump_filename); std::string dump_filename);
void update_local_carrier(gr_complex* carrier_vector, void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
int correlator_length_samples,
float freq); void acquisition_core( void );
void update_grid_doppler_wipeoffs(); void update_grid_doppler_wipeoffs();
bool is_fdma(); bool is_fdma();
void send_negative_acquisition();
void send_positive_acquisition();
long d_fs_in; long d_fs_in;
long d_freq; long d_freq;
long d_old_freq; long d_old_freq;
@ -137,6 +146,17 @@ private:
unsigned int d_channel; unsigned int d_channel;
std::string d_dump_filename; std::string d_dump_filename;
std::thread d_worker_thread;
std::mutex d_mutex;
std::condition_variable d_cond;
bool d_done;
bool d_new_data_available;
bool d_worker_active;
bool d_blocking;
lv_16sc_t *d_data_buffer;
public: public:
/*! /*!
* \brief Default destructor. * \brief Default destructor.
@ -150,6 +170,7 @@ public:
*/ */
inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_gnss_synchro = p_gnss_synchro; d_gnss_synchro = p_gnss_synchro;
} }
@ -179,6 +200,7 @@ public:
*/ */
inline void set_active(bool active) inline void set_active(bool active)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_active = active; d_active = active;
} }
@ -195,6 +217,7 @@ public:
*/ */
inline void set_channel(unsigned int channel) inline void set_channel(unsigned int channel)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_channel = channel; d_channel = channel;
} }
@ -205,6 +228,7 @@ public:
*/ */
inline void set_threshold(float threshold) inline void set_threshold(float threshold)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_threshold = threshold; d_threshold = threshold;
} }
@ -214,6 +238,7 @@ public:
*/ */
inline void set_doppler_max(unsigned int doppler_max) inline void set_doppler_max(unsigned int doppler_max)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_doppler_max = doppler_max; d_doppler_max = doppler_max;
} }
@ -223,6 +248,7 @@ public:
*/ */
inline void set_doppler_step(unsigned int doppler_step) inline void set_doppler_step(unsigned int doppler_step)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_doppler_step = doppler_step; d_doppler_step = doppler_step;
} }
@ -232,6 +258,16 @@ public:
int general_work(int noutput_items, gr_vector_int &ninput_items, int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items); gr_vector_void_star &output_items);
/*!
* Called by the flowgraph when processing is about to start.
*/
bool start( void );
/*!
* Called by the flowgraph when processing is done.
*/
bool stop( void );
}; };
#endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/ #endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/

View File

@ -1,478 +0,0 @@
/*!
* \file pcps_multithread_acquisition_cc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "pcps_multithread_acquisition_cc.h"
#include <sstream>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "control_message_factory.h"
#include "GPS_L1_CA.h" //GPS_TWO_PI
using google::LogMessage;
pcps_multithread_acquisition_cc_sptr pcps_make_multithread_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
std::string dump_filename)
{
return pcps_multithread_acquisition_cc_sptr(
new pcps_multithread_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, dump, dump_filename));
}
pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
std::string dump_filename) :
gr::block("pcps_multithread_acquisition_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
{
this->message_port_register_out(pmt::mp("events"));
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_core_working = false;
d_freq = freq;
d_fs_in = fs_in;
d_samples_per_ms = samples_per_ms;
d_samples_per_code = samples_per_code;
d_sampled_ms = sampled_ms;
d_max_dwells = max_dwells;
d_well_count = 0;
d_doppler_max = doppler_max;
d_fft_size = d_sampled_ms * d_samples_per_ms;
d_mag = 0;
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_in_dwell_count = 0;
d_in_buffer = new gr_complex*[d_max_dwells];
//todo: do something if posix_memalign fails
for (unsigned int i = 0; i < d_max_dwells; i++)
{
d_in_buffer[i] = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
}
d_fft_codes = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
d_magnitude = static_cast<float*>(volk_malloc(d_fft_size * sizeof(float), volk_get_alignment()));
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
// Inverse FFT
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_doppler_resolution = 0;
d_threshold = 0;
d_doppler_step = 0;
d_grid_doppler_wipeoffs = 0;
d_gnss_synchro = 0;
d_code_phase = 0;
d_doppler_freq = 0;
d_test_statistics = 0;
d_channel = 0;
}
pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
{
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
for (unsigned int i = 0; i < d_max_dwells; i++)
{
volk_free(d_in_buffer[i]);
}
delete[] d_in_buffer;
volk_free(d_fft_codes);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
if (d_dump)
{
d_dump_file.close();
}
}
void pcps_multithread_acquisition_cc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = static_cast<int>(-d_doppler_max);
doppler <= static_cast<int>(d_doppler_max);
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment()));
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * (d_freq + doppler) / static_cast<float>(d_fs_in);
float _phase[1];
_phase[0] = 0;
volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index], - phase_step_rad, _phase, d_fft_size);
}
}
void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_multithread_acquisition_cc::acquisition_core()
{
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
float magt = 0.0;
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
gr_complex* in = d_in_buffer[d_well_count];
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
// 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
filename << "../data/test_statistics_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write(reinterpret_cast<char*>(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close();
}
}
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
}
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else
{
d_state = 3; // Negative acquisition
}
}
}
d_core_working = false;
}
void pcps_multithread_acquisition_cc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_in_dwell_count = 0;
d_sample_counter_buffer.clear();
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
int pcps_multithread_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
switch (d_state)
{
case 0:
{
if (d_active)
{
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_in_dwell_count = 0;
d_sample_counter_buffer.clear();
d_state = 1;
}
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
break;
}
case 1:
{
if (d_in_dwell_count < d_max_dwells)
{
// Fill internal buffer with d_max_dwells signal blocks. This step ensures that
// consecutive signal blocks will be processed in multi-dwell operation. This is
// essential when d_bit_transition_flag = true.
unsigned int num_dwells = std::min(static_cast<int>(d_max_dwells - d_in_dwell_count), ninput_items[0]);
for (unsigned int i = 0; i < num_dwells; i++)
{
memcpy(d_in_buffer[d_in_dwell_count++], reinterpret_cast<const gr_complex*>(input_items[i]),
sizeof(gr_complex)*d_fft_size);
d_sample_counter += d_fft_size;
d_sample_counter_buffer.push_back(d_sample_counter);
}
if (ninput_items[0] > static_cast<int>(num_dwells))
{
d_sample_counter += d_fft_size * (ninput_items[0] - num_dwells);
}
}
else
{
// We already have d_max_dwells consecutive blocks in the internal buffer,
// just skip input blocks.
d_sample_counter += d_fft_size * ninput_items[0];
}
// We create a new thread to process next block if the following
// conditions are fulfilled:
// 1. There are new blocks in d_in_buffer that have not been processed yet
// (d_well_count < d_in_dwell_count).
// 2. No other acquisition_core thead is working (!d_core_working).
// 3. d_state==1. We need to check again d_state because it can be modified at any
// moment by the external thread (may have changed since checked in the switch()).
// If the external thread has already declared positive (d_state=2) or negative
// (d_state=3) acquisition, we don't have to process next block!!
if ((d_well_count < d_in_dwell_count) && !d_core_working && d_state==1)
{
d_core_working = true;
boost::thread(&pcps_multithread_acquisition_cc::acquisition_core, this);
}
break;
}
case 2:
{
// Declare positive acquisition using a message port
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
acquisition_message = 1;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
break;
}
case 3:
{
// Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
acquisition_message = 2;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
break;
}
}
consume_each(ninput_items[0]);
return noutput_items;
}

View File

@ -1,239 +0,0 @@
/*!
* \file pcps_multithread_acquisition_cc.h
* \brief This class implements a Parallel Code Phase Search Acquisition
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message port
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkha user, 2007. pp 81-84
*
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_
#define GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_
#include <algorithm>
#include <fstream>
#include <string>
#include <vector>
#include <gnuradio/block.h>
#include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h>
#include "gnss_synchro.h"
class pcps_multithread_acquisition_cc;
typedef boost::shared_ptr<pcps_multithread_acquisition_cc> pcps_multithread_acquisition_cc_sptr;
pcps_multithread_acquisition_cc_sptr
pcps_make_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
std::string dump_filename);
/*!
* \brief This class implements a Parallel Code Phase Search Acquisition.
*
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
* Algorithm 1, for a pseudocode description of this implementation.
*/
class pcps_multithread_acquisition_cc: public gr::block
{
private:
friend pcps_multithread_acquisition_cc_sptr
pcps_make_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
std::string dump_filename);
pcps_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
std::string dump_filename);
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
int doppler_offset);
long d_fs_in;
long d_freq;
int d_samples_per_ms;
int d_samples_per_code;
unsigned int d_doppler_resolution;
float d_threshold;
std::string d_satellite_str;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_sampled_ms;
unsigned int d_max_dwells;
unsigned int d_well_count;
unsigned int d_fft_size;
unsigned long int d_sample_counter;
gr_complex** d_grid_doppler_wipeoffs;
unsigned int d_num_doppler_bins;
gr_complex* d_fft_codes;
gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft;
Gnss_Synchro *d_gnss_synchro;
unsigned int d_code_phase;
float d_doppler_freq;
float d_mag;
float* d_magnitude;
float d_input_power;
float d_test_statistics;
bool d_bit_transition_flag;
std::ofstream d_dump_file;
bool d_active;
int d_state;
bool d_core_working;
bool d_dump;
unsigned int d_channel;
std::string d_dump_filename;
gr_complex** d_in_buffer;
std::vector<unsigned long int> d_sample_counter_buffer;
unsigned int d_in_dwell_count;
public:
/*!
* \brief Default destructor.
*/
~pcps_multithread_acquisition_cc();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to exchange synchronization data between acquisition and tracking blocks.
* \param p_gnss_synchro Satellite information shared by the processing blocks.
*/
inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_gnss_synchro = p_gnss_synchro;
}
/*!
* \brief Returns the maximum peak of grid search.
*/
inline unsigned int mag() const
{
return d_mag;
}
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for PCPS acquisition algorithm.
* \param code - Pointer to the PRN code.
*/
void set_local_code(std::complex<float> * code);
/*!
* \brief Starts acquisition algorithm, turning from standby mode to
* active mode
* \param active - bool that activates/deactivates the block.
*/
inline void set_active(bool active)
{
d_active = active;
}
/*!
* \brief If set to 1, ensures that acquisition starts at the
* first available sample.
* \param state - int=1 forces start of acquisition
*/
void set_state(int state);
/*!
* \brief Set acquisition channel unique ID
* \param channel - receiver channel.
*/
inline void set_channel(unsigned int channel)
{
d_channel = channel;
}
/*!
* \brief Set statistics threshold of PCPS algorithm.
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
* Algorithm 1, for a definition of this threshold).
*/
void set_threshold(float threshold)
{
d_threshold = threshold;
}
/*!
* \brief Set maximum Doppler grid search
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
*/
inline void set_doppler_max(unsigned int doppler_max)
{
d_doppler_max = doppler_max;
}
/*!
* \brief Set Doppler steps for the grid search
* \param doppler_step - Frequency bin of the search grid [Hz].
*/
inline void set_doppler_step(unsigned int doppler_step)
{
d_doppler_step = doppler_step;
}
/*!
* \brief Parallel Code Phase Search Acquisition signal processing.
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
void acquisition_core();
};
#endif /* GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_*/

View File

@ -67,7 +67,6 @@
#include "pulse_blanking_filter.h" #include "pulse_blanking_filter.h"
#include "gps_l1_ca_pcps_acquisition.h" #include "gps_l1_ca_pcps_acquisition.h"
#include "gps_l2_m_pcps_acquisition.h" #include "gps_l2_m_pcps_acquisition.h"
#include "gps_l1_ca_pcps_multithread_acquisition.h"
#include "gps_l1_ca_pcps_tong_acquisition.h" #include "gps_l1_ca_pcps_tong_acquisition.h"
#include "gps_l1_ca_pcps_assisted_acquisition.h" #include "gps_l1_ca_pcps_assisted_acquisition.h"
#include "gps_l1_ca_pcps_acquisition_fine_doppler.h" #include "gps_l1_ca_pcps_acquisition_fine_doppler.h"
@ -1027,12 +1026,6 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GPS_L1_CA_PCPS_Multithread_Acquisition") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaPcpsMultithreadAcquisition(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#if OPENCL_BLOCKS #if OPENCL_BLOCKS
else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0) else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0)
@ -1277,12 +1270,6 @@ std::unique_ptr<AcquisitionInterface> GNSSBlockFactory::GetAcqBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GPS_L1_CA_PCPS_Multithread_Acquisition") == 0)
{
std::unique_ptr<AcquisitionInterface> block_(new GpsL1CaPcpsMultithreadAcquisition(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#if OPENCL_BLOCKS #if OPENCL_BLOCKS
else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0) else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0)

View File

@ -107,7 +107,7 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/acquisition/galileo_e5a_pcps_acquisition_gsoc2014_gensource_test.cc" #include "unit-tests/signal-processing-blocks/acquisition/galileo_e5a_pcps_acquisition_gsoc2014_gensource_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_test.cc" #include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_gsoc2017_test.cc" #include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_gsoc2017_test.cc"
//#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc"
#if OPENCL_BLOCKS_TEST #if OPENCL_BLOCKS_TEST
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc" #include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc"
#endif #endif

View File

@ -1,566 +0,0 @@
/*!
* \file gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsMultithreadAcquisition class.
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <iostream>
#include <boost/shared_ptr.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "configuration_interface.h"
#include "gnss_synchro.h"
#include "gps_l1_ca_pcps_multithread_acquisition.h"
#include "signal_generator.h"
#include "signal_generator_c.h"
#include "fir_filter.h"
#include "gen_signal_source.h"
#include "gnss_sdr_valve.h"
#include "signal_generator.h"
#include "signal_generator.cc"
#include "signal_generator_c.h"
#include "signal_generator_c.cc"
class GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test: public ::testing::Test
{
protected:
GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test()
{
item_size = sizeof(gr_complex);
stop = false;
message = 0;
gnss_synchro = Gnss_Synchro();
}
~GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test()
{
}
void init();
void config_1();
void config_2();
void start_queue();
void wait_message();
void process_message();
void stop_queue();
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
std::shared_ptr<GpsL1CaPcpsMultithreadAcquisition> acquisition;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
bool stop;
int message;
boost::thread ch_thread;
unsigned int integration_time_ms = 0;
unsigned int fs_in = 0;
double expected_delay_chips = 0.0;
double expected_doppler_hz = 0.0;
float max_doppler_error_hz = 0.0;
float max_delay_error_chips = 0.0;
unsigned int num_of_realizations = 0;
unsigned int realization_counter = 0;
unsigned int detection_counter = 0;
unsigned int correct_estimation_counter = 0;
unsigned int acquired_samples = 0;
unsigned int mean_acq_time_us = 0;
double mse_doppler = 0.0;
double mse_delay = 0.0;
double Pd = 0.0;
double Pfa_p = 0.0;
double Pfa_a = 0.0;
};
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::init()
{
message = 0;
realization_counter = 0;
detection_counter = 0;
correct_estimation_counter = 0;
acquired_samples = 0;
mse_doppler = 0;
mse_delay = 0;
mean_acq_time_us = 0;
Pd = 0;
Pfa_p = 0;
Pfa_a = 0;
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_1()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 1;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "1");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.noise_flag", "false");
config->set_property("SignalSource.data_flag", "false");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Multithread_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 100;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "4");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.system_1", "G");
config->set_property("SignalSource.PRN_1", "15");
config->set_property("SignalSource.CN0_dB_1", "44");
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
config->set_property("SignalSource.noise_flag", "true");
config->set_property("SignalSource.data_flag", "true");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Multithread_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::start_queue()
{
stop = false;
ch_thread = boost::thread(&GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::wait_message, this);
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::wait_message()
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
while (!stop)
{
acquisition->reset();
start = std::chrono::system_clock::now();
channel_internal_queue.wait_and_pop(message);
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
mean_acq_time_us += elapsed_seconds.count() * 1e6;
process_message();
}
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::process_message()
{
if (message == 1)
{
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = std::abs(static_cast<double>(expected_delay_chips) - static_cast<double>(gnss_synchro.Acq_delay_samples - 5) * 1023.0 / (static_cast<double>(fs_in) * 1e-3));
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);
if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz))
{
correct_estimation_counter++;
}
}
realization_counter++;
std::cout << "Progress: " << round(static_cast<float>(realization_counter) / static_cast<float>(num_of_realizations) * 100.0) << "% \r" << std::flush;
if (realization_counter == num_of_realizations)
{
mse_delay /= num_of_realizations;
mse_doppler /= num_of_realizations;
Pd = static_cast<double>(correct_estimation_counter) / static_cast<double>(num_of_realizations);
Pfa_a = static_cast<double>(detection_counter) / static_cast<double>(num_of_realizations);
Pfa_p = static_cast<double>(detection_counter - correct_estimation_counter) / static_cast<double>(num_of_realizations);
mean_acq_time_us /= num_of_realizations;
stop_queue();
top_block->stop();
std::cout << std::endl;
}
}
void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::stop_queue()
{
stop = true;
}
TEST_F(GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test, Instantiate)
{
config_1();
acquisition = std::make_shared<GpsL1CaPcpsMultithreadAcquisition>(config.get(), "Acquisition", 1, 1);
}
TEST_F(GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test, ConnectAndRun)
{
int nsamples = floor(fs_in*integration_time_ms*1e-3);
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
config_1();
acquisition = std::make_shared<GpsL1CaPcpsMultithreadAcquisition>(config.get(), "Acquisition", 1, 1);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
TEST_F(GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test, ValidationOfResults)
{
config_1();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = std::make_shared<GpsL1CaPcpsMultithreadAcquisition>(config.get(), "Acquisition", 1, 1);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1);
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
if (i == 0)
{
EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
if (message == 1)
{
EXPECT_EQ(static_cast<unsigned int>(1), correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation.";
}
}
else if (i == 1)
{
EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL.";
}
}
}
TEST_F(GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
{
config_2();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = std::make_shared<GpsL1CaPcpsMultithreadAcquisition>(config.get(), "Acquisition", 1, 1);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config.get(), "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config.get(), "InputFilter", 1, 1);
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> satellite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
if (i == 0)
{
std::cout << "Probability of detection = " << Pd << std::endl;
std::cout << "Probability of false alarm (satellite present) = " << Pfa_p << std::endl;
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
}
else if (i == 1)
{
std::cout << "Probability of false alarm (satellite absent) = " << Pfa_a << std::endl;
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
}
}
}