1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 20:50:33 +00:00

Merge branch 'antonioramosdet-two_step_acquisition' into next

This commit is contained in:
Carles Fernandez 2018-04-05 19:18:18 +02:00
commit 343c8a5c53
10 changed files with 430 additions and 260 deletions

View File

@ -45,6 +45,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -55,32 +56,33 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); acq_parameters.doppler_max = doppler_max_;
sampled_ms_ = 4;
if (sampled_ms_ % 4 != 0) acq_parameters.sampled_ms = sampled_ms_;
{
sampled_ms_ = static_cast<int>(sampled_ms_ / 4) * 4;
LOG(WARNING) << "coherent_integration_time should be multiple of "
<< "Galileo code length (4 ms). coherent_integration_time = "
<< sampled_ms_ << " ms will be used.";
}
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code (4 ms) ----------------- //--- Find number of samples per spreading code (4 ms) -----------------
code_length_ = round(fs_in_ / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)));
int samples_per_ms = round(code_length_ / 4.0); acq_parameters.samples_per_code = code_length_;
int samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001));
acq_parameters.samples_per_ms = samples_per_ms;
vector_length_ = sampled_ms_ * samples_per_ms; vector_length_ = sampled_ms_ * samples_per_ms;
if (bit_transition_flag_) if (bit_transition_flag_)
@ -98,10 +100,11 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, acq_parameters.it_size = item_size_;
doppler_max_, if_, fs_in_, samples_per_ms, code_length_, acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
dump_filename_, item_size_); acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -44,6 +44,7 @@ using google::LogMessage;
GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* configuration, GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "../data/acquisition.dat"; std::string default_dump_filename = "../data/acquisition.dat";
@ -54,6 +55,8 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
acq_parameters.freq = 0;
acq_pilot_ = configuration_->property(role + ".acquire_pilot", false); acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
acq_iq_ = configuration_->property(role + ".acquire_iq", false); acq_iq_ = configuration_->property(role + ".acquire_iq", false);
if (acq_iq_) if (acq_iq_)
@ -61,17 +64,23 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
acq_pilot_ = false; acq_pilot_ = false;
} }
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); acq_parameters.doppler_max = doppler_max_;
sampled_ms_ = 1;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false); use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false);
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
//--- Find number of samples per spreading code (1ms)------------------------- //--- Find number of samples per spreading code (1ms)-------------------------
code_length_ = round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS)); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS)));
vector_length_ = code_length_ * sampled_ms_; vector_length_ = code_length_ * sampled_ms_;
code_ = new gr_complex[vector_length_]; code_ = new gr_complex[vector_length_];
@ -89,10 +98,14 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type_ << " unknown acquisition item type"; LOG(WARNING) << item_type_ << " unknown acquisition item type";
} }
acq_parameters.it_size = item_size_;
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, doppler_max_, 0, fs_in_, acq_parameters.samples_per_code = code_length_;
code_length_, code_length_, bit_transition_flag_, use_CFAR_, dump_, blocking_, acq_parameters.samples_per_ms = code_length_;
dump_filename_, item_size_); acq_parameters.sampled_ms = sampled_ms_;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
channel_ = 0; channel_ = 0;

View File

@ -46,6 +46,7 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -56,22 +57,28 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
acq_parameters.sampled_ms = sampled_ms_;
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code ------------------------- //--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_ / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS)); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS)));
vector_length_ = code_length_ * sampled_ms_; vector_length_ = code_length_ * sampled_ms_;
@ -90,9 +97,14 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, acq_parameters.it_size = item_size_;
doppler_max_, if_, fs_in_, code_length_, code_length_, acq_parameters.sampled_ms = sampled_ms_;
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); acq_parameters.samples_per_ms = code_length_;
acq_parameters.samples_per_code = code_length_;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -45,6 +45,7 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -55,22 +56,27 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code ------------------------- //--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_ / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS)); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS)));
vector_length_ = code_length_ * sampled_ms_; vector_length_ = code_length_ * sampled_ms_;
@ -89,9 +95,14 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, acq_parameters.it_size = item_size_;
doppler_max_, if_, fs_in_, code_length_, code_length_, acq_parameters.sampled_ms = sampled_ms_;
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); acq_parameters.samples_per_ms = code_length_;
acq_parameters.samples_per_code = code_length_;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -48,6 +48,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -57,22 +58,31 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
item_type_ = configuration_->property(role + ".item_type", default_item_type); item_type_ = configuration_->property(role + ".item_type", default_item_type);
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000); doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
acq_parameters.sampled_ms = sampled_ms_;
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
//--- Find number of samples per spreading code ------------------------- //--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
vector_length_ = code_length_ * sampled_ms_; vector_length_ = code_length_ * sampled_ms_;
@ -91,9 +101,10 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, acq_parameters.samples_per_ms = code_length_;
doppler_max_, if_, fs_in_, code_length_, code_length_, acq_parameters.samples_per_code = code_length_;
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); acq_parameters.it_size = item_size_;
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -46,6 +46,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -57,21 +58,26 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration->property(role + ".doppler_max", 5000); doppler_max_ = configuration->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code ------------------------- //--- Find number of samples per spreading code -------------------------
code_length_ = round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS))); code_length_ = std::round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS)));
vector_length_ = code_length_; vector_length_ = code_length_;
@ -90,10 +96,14 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(1, max_dwells_, acq_parameters.samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001));
doppler_max_, if_, fs_in_, code_length_, code_length_, acq_parameters.samples_per_code = code_length_;
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, acq_parameters.it_size = item_size_;
dump_filename_, item_size_); acq_parameters.sampled_ms = 20;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", true);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -46,6 +46,7 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
ConfigurationInterface* configuration, std::string role, ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{ {
pcpsconf_t acq_parameters;
configuration_ = configuration; configuration_ = configuration;
std::string default_item_type = "gr_complex"; std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat"; std::string default_dump_filename = "./data/acquisition.dat";
@ -56,21 +57,26 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.fs_in = fs_in_;
if_ = configuration_->property(role + ".if", 0); if_ = configuration_->property(role + ".if", 0);
acq_parameters.freq = if_;
dump_ = configuration_->property(role + ".dump", false); dump_ = configuration_->property(role + ".dump", false);
acq_parameters.dump = dump_;
blocking_ = configuration_->property(role + ".blocking", true); blocking_ = configuration_->property(role + ".blocking", true);
acq_parameters.blocking = blocking_;
doppler_max_ = configuration->property(role + ".doppler_max", 5000); doppler_max_ = configuration->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
acq_parameters.doppler_max = doppler_max_;
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
acq_parameters.bit_transition_flag = bit_transition_flag_;
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
max_dwells_ = configuration_->property(role + ".max_dwells", 1); max_dwells_ = configuration_->property(role + ".max_dwells", 1);
acq_parameters.max_dwells = max_dwells_;
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
acq_parameters.dump_filename = dump_filename_;
//--- Find number of samples per spreading code ------------------------- //--- Find number of samples per spreading code -------------------------
code_length_ = round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS))); code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS))));
vector_length_ = code_length_; vector_length_ = code_length_;
@ -89,10 +95,14 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
} }
acquisition_ = pcps_make_acquisition(1, max_dwells_, acq_parameters.samples_per_code = code_length_;
doppler_max_, if_, fs_in_, code_length_, code_length_, acq_parameters.samples_per_ms = code_length_;
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, acq_parameters.it_size = item_size_;
dump_filename_, item_size_); acq_parameters.sampled_ms = 1;
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);

View File

@ -45,57 +45,34 @@
using google::LogMessage; using google::LogMessage;
pcps_acquisition_sptr pcps_make_acquisition( pcps_acquisition_sptr pcps_make_acquisition(pcpsconf_t conf_)
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename, size_t it_size)
{ {
return pcps_acquisition_sptr( return pcps_acquisition_sptr(new pcps_acquisition(conf_));
new pcps_acquisition(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename, it_size));
} }
pcps_acquisition::pcps_acquisition( pcps_acquisition::pcps_acquisition(pcpsconf_t conf_) : gr::block("pcps_acquisition",
unsigned int sampled_ms, unsigned int max_dwells, gr::io_signature::make(1, 1, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)),
unsigned int doppler_max, long freq, long fs_in, gr::io_signature::make(0, 0, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)))
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename,
size_t it_size) : gr::block("pcps_acquisition",
gr::io_signature::make(1, 1, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1)),
gr::io_signature::make(0, 0, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1)))
{ {
this->message_port_register_out(pmt::mp("events")); this->message_port_register_out(pmt::mp("events"));
acq_parameters = conf_;
d_sample_counter = 0; // SAMPLE COUNTER d_sample_counter = 0; // SAMPLE COUNTER
d_active = false; d_active = false;
d_state = 0; d_state = 0;
d_freq = freq; d_old_freq = conf_.freq;
d_old_freq = freq;
d_fs_in = fs_in;
d_samples_per_ms = samples_per_ms;
d_samples_per_code = samples_per_code;
d_sampled_ms = sampled_ms;
d_max_dwells = max_dwells;
d_well_count = 0; d_well_count = 0;
d_doppler_max = doppler_max; d_fft_size = acq_parameters.sampled_ms * acq_parameters.samples_per_ms;
d_fft_size = d_sampled_ms * d_samples_per_ms;
d_mag = 0; d_mag = 0;
d_input_power = 0.0; d_input_power = 0.0;
d_num_doppler_bins = 0; d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0; d_threshold = 0.0;
d_doppler_step = 0; d_doppler_step = 0;
d_code_phase = 0; d_doppler_center_step_two = 0.0;
d_test_statistics = 0.0; d_test_statistics = 0.0;
d_channel = 0; d_channel = 0;
if (it_size == sizeof(gr_complex)) if (conf_.it_size == sizeof(gr_complex))
{ {
d_cshort = false; d_cshort = false;
} }
@ -114,10 +91,10 @@ pcps_acquisition::pcps_acquisition(
// //
// We can avoid this by doing linear correlation, effectively doubling the // We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros. // size of the input buffer and padding the code with zeros.
if (d_bit_transition_flag) if (acq_parameters.bit_transition_flag)
{ {
d_fft_size *= 2; d_fft_size *= 2;
d_max_dwells = 1; //Activation of d_bit_transition_flag invalidates the value of d_max_dwells acq_parameters.max_dwells = 1; //Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
} }
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
@ -129,12 +106,9 @@ pcps_acquisition::pcps_acquisition(
// Inverse FFT // Inverse FFT
d_ifft = new gr::fft::fft_complex(d_fft_size, false); d_ifft = new gr::fft::fft_complex(d_fft_size, false);
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_gnss_synchro = 0; d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0; d_grid_doppler_wipeoffs = nullptr;
d_blocking = blocking; d_grid_doppler_wipeoffs_step_two = nullptr;
d_worker_active = false; d_worker_active = false;
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
if (d_cshort) if (d_cshort)
@ -146,6 +120,7 @@ pcps_acquisition::pcps_acquisition(
d_data_buffer_sc = nullptr; d_data_buffer_sc = nullptr;
} }
grid_ = arma::fmat(); grid_ = arma::fmat();
d_step_two = false;
} }
@ -159,6 +134,14 @@ pcps_acquisition::~pcps_acquisition()
} }
delete[] d_grid_doppler_wipeoffs; delete[] d_grid_doppler_wipeoffs;
} }
if (acq_parameters.make_2_steps)
{
for (unsigned int i = 0; i < acq_parameters.num_doppler_bins_step2; i++)
{
volk_gnsssdr_free(d_grid_doppler_wipeoffs_step_two[i]);
}
delete[] d_grid_doppler_wipeoffs_step_two;
}
volk_gnsssdr_free(d_fft_codes); volk_gnsssdr_free(d_fft_codes);
volk_gnsssdr_free(d_magnitude); volk_gnsssdr_free(d_magnitude);
delete d_ifft; delete d_ifft;
@ -174,7 +157,7 @@ pcps_acquisition::~pcps_acquisition()
void pcps_acquisition::set_local_code(std::complex<float>* code) void pcps_acquisition::set_local_code(std::complex<float>* code)
{ {
// reset the intermediate frequency // reset the intermediate frequency
d_freq = d_old_freq; acq_parameters.freq = d_old_freq;
// This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid // This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid
if (is_fdma()) if (is_fdma())
{ {
@ -185,7 +168,7 @@ void pcps_acquisition::set_local_code(std::complex<float>* code)
// [ 0 0 0 ... 0 c_0 c_1 ... c_L] // [ 0 0 0 ... 0 c_0 c_1 ... c_L]
// where c_i is the local code and there are L zeros and L chips // where c_i is the local code and there are L zeros and L chips
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
if (d_bit_transition_flag) if (acq_parameters.bit_transition_flag)
{ {
int offset = d_fft_size / 2; int offset = d_fft_size / 2;
std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0)); std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0));
@ -206,14 +189,14 @@ bool pcps_acquisition::is_fdma()
// Dealing with FDMA system // Dealing with FDMA system
if (strcmp(d_gnss_synchro->Signal, "1G") == 0) if (strcmp(d_gnss_synchro->Signal, "1G") == 0)
{ {
d_freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); acq_parameters.freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
return true; return true;
} }
else if (strcmp(d_gnss_synchro->Signal, "2G") == 0) else if (strcmp(d_gnss_synchro->Signal, "2G") == 0)
{ {
d_freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); acq_parameters.freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
return true; return true;
} }
else else
@ -225,7 +208,7 @@ bool pcps_acquisition::is_fdma()
void pcps_acquisition::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq) void pcps_acquisition::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{ {
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in); float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(acq_parameters.fs_in);
float _phase[1]; float _phase[1];
_phase[0] = 0; _phase[0] = 0;
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, -phase_step_rad, _phase, correlator_length_samples); volk_gnsssdr_s32f_sincos_32fc(carrier_vector, -phase_step_rad, _phase, correlator_length_samples);
@ -245,22 +228,29 @@ void pcps_acquisition::init()
d_mag = 0.0; d_mag = 0.0;
d_input_power = 0.0; d_input_power = 0.0;
d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step))); d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(acq_parameters.doppler_max) - static_cast<int>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step)));
// Create the carrier Doppler wipeoff signals // Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
if (acq_parameters.make_2_steps)
{
d_grid_doppler_wipeoffs_step_two = new gr_complex*[acq_parameters.num_doppler_bins_step2];
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
{
d_grid_doppler_wipeoffs_step_two[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
}
}
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{ {
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler);
} }
d_worker_active = false; d_worker_active = false;
if (d_dump) if (acq_parameters.dump)
{ {
unsigned int effective_fft_size = (d_bit_transition_flag ? (d_fft_size / 2) : d_fft_size); unsigned int effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros); grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros);
} }
} }
@ -270,12 +260,19 @@ void pcps_acquisition::update_grid_doppler_wipeoffs()
{ {
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{ {
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler);
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
} }
} }
void pcps_acquisition::update_grid_doppler_wipeoffs_step2()
{
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
{
float doppler = (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size, d_doppler_center_step_two + doppler);
}
}
void pcps_acquisition::set_state(int state) void pcps_acquisition::set_state(int state)
{ {
@ -354,10 +351,17 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
*/ */
gr::thread::scoped_lock lk(d_setlock); gr::thread::scoped_lock lk(d_setlock);
if (!d_active || d_worker_active) if (!d_active or d_worker_active)
{ {
d_sample_counter += d_fft_size * ninput_items[0]; d_sample_counter += d_fft_size * ninput_items[0];
consume_each(ninput_items[0]); consume_each(ninput_items[0]);
if (d_step_two)
{
d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
update_grid_doppler_wipeoffs_step2();
d_state = 0;
d_active = true;
}
return 0; return 0;
} }
@ -390,7 +394,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
{ {
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex)); memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
} }
if (d_blocking) if (acq_parameters.blocking)
{ {
lk.unlock(); lk.unlock();
acquisition_core(d_sample_counter); acquisition_core(d_sample_counter);
@ -414,11 +418,10 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
gr::thread::scoped_lock lk(d_setlock); gr::thread::scoped_lock lk(d_setlock);
// initialize acquisition algorithm // initialize acquisition algorithm
int doppler;
uint32_t indext = 0; uint32_t indext = 0;
float magt = 0.0; float magt = 0.0;
const gr_complex* in = d_data_buffer; //Get the input samples pointer const gr_complex* in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = (d_bit_transition_flag ? d_fft_size / 2 : d_fft_size); int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
if (d_cshort) if (d_cshort)
{ {
volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_fft_size); volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_fft_size);
@ -432,12 +435,12 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
DLOG(INFO) << "Channel: " << d_channel DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << samp_count << ", threshold: " << " ,sample stamp: " << samp_count << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max << d_threshold << ", doppler_max: " << acq_parameters.doppler_max
<< ", doppler_step: " << d_doppler_step << ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false"); << ", use_CFAR_algorithm_flag: " << (acq_parameters.use_CFAR_algorithm_flag ? "true" : "false");
lk.unlock(); lk.unlock();
if (d_use_CFAR_algorithm_flag) if (acq_parameters.use_CFAR_algorithm_flag)
{ {
// 1- (optional) Compute the input signal power estimation // 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size); volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
@ -445,142 +448,241 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
d_input_power /= static_cast<float>(d_fft_size); d_input_power /= static_cast<float>(d_fft_size);
} }
// 2- Doppler frequency search loop // 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) if (!d_step_two)
{ {
// doppler search steps for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = (d_bit_transition_flag ? effective_fft_size : 0);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag)
{ {
// Normalize the maximum value to correct the scale factor introduced by FFTW // doppler search steps
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (!d_use_CFAR_algorithm_flag) volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (acq_parameters.use_CFAR_algorithm_flag)
{ {
// Search grid noise floor approximation for this doppler line // Normalize the maximum value to correct the scale factor introduced by FFTW
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size); magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
} }
// 4- record the maximum peak and the associated synchronization parameters
// In case that d_bit_transition_flag = true, we compare the potentially if (d_mag < magt)
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{ {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code); d_mag = magt;
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
// 5- Compute the test statistics and compare to the threshold if (!acq_parameters.use_CFAR_algorithm_flag)
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
if (doppler_index == (d_num_doppler_bins - 1))
{
std::string filename = d_dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (matfp == NULL)
{ {
std::cout << "Unable to create or open Acquisition dump file" << std::endl; // Search grid noise floor approximation for this doppler line
d_dump = false; volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
} }
else
// In case that acq_parameters.bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag)
{ {
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)}; d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0); d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE d_gnss_synchro->Acq_samplestamp_samples = samp_count;
Mat_VarFree(matvar);
dims[0] = static_cast<size_t>(1); // 5- Compute the test statistics and compare to the threshold
dims[1] = static_cast<size_t>(1); //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_max, 0); d_test_statistics = d_mag / d_input_power;
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE }
Mat_VarFree(matvar); }
// Record results to file if required
if (acq_parameters.dump)
{
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
if (doppler_index == (d_num_doppler_bins - 1))
{
std::string filename = acq_parameters.dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (matfp == NULL)
{
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
acq_parameters.dump = false;
}
else
{
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0); dims[0] = static_cast<size_t>(1);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE dims[1] = static_cast<size_t>(1);
Mat_VarFree(matvar); matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
Mat_Close(matfp); matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
Mat_Close(matfp);
}
}
}
}
}
else
{
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
{
// doppler search steps
float doppler = d_doppler_center_step_two + (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (acq_parameters.use_CFAR_algorithm_flag)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (!acq_parameters.use_CFAR_algorithm_flag)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
}
// In case that acq_parameters.bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
} }
} }
} }
} }
lk.lock(); lk.lock();
if (!d_bit_transition_flag) if (!acq_parameters.bit_transition_flag)
{ {
if (d_test_statistics > d_threshold) if (d_test_statistics > d_threshold)
{ {
d_state = 0; // Positive acquisition
d_active = false; d_active = false;
send_positive_acquisition(); if (acq_parameters.make_2_steps)
{
if (d_step_two)
{
send_positive_acquisition();
d_step_two = false;
d_state = 0; // Positive acquisition
}
else
{
d_step_two = true; // Clear input buffer and make small grid acquisition
d_state = 0;
}
}
else
{
send_positive_acquisition();
d_state = 0; // Positive acquisition
}
} }
else if (d_well_count == d_max_dwells) else if (d_well_count == acq_parameters.max_dwells)
{ {
d_state = 0; d_state = 0;
d_active = false; d_active = false;
d_step_two = false;
send_negative_acquisition(); send_negative_acquisition();
} }
} }
else else
{ {
if (d_well_count == d_max_dwells) // d_max_dwells = 2 d_active = false;
if (d_test_statistics > d_threshold)
{ {
if (d_test_statistics > d_threshold) if (acq_parameters.make_2_steps)
{ {
d_state = 0; // Positive acquisition if (d_step_two)
d_active = false; {
send_positive_acquisition(); send_positive_acquisition();
d_step_two = false;
d_state = 0; // Positive acquisition
}
else
{
d_step_two = true; // Clear input buffer and make small grid acquisition
d_state = 0;
}
} }
else else
{ {
d_state = 0; // Negative acquisition send_positive_acquisition();
d_active = false; d_state = 0; // Positive acquisition
send_negative_acquisition();
} }
} }
else
{
d_state = 0; // Negative acquisition
d_step_two = false;
send_negative_acquisition();
}
} }
d_worker_active = false; d_worker_active = false;
} }

View File

@ -59,18 +59,33 @@
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <string> #include <string>
typedef struct
{
/* pcps acquisition configuration */
unsigned int sampled_ms;
unsigned int max_dwells;
unsigned int doppler_max;
unsigned int num_doppler_bins_step2;
float doppler_step2;
long freq;
long fs_in;
int samples_per_ms;
int samples_per_code;
bool bit_transition_flag;
bool use_CFAR_algorithm_flag;
bool dump;
bool blocking;
bool make_2_steps;
std::string dump_filename;
size_t it_size;
} pcpsconf_t;
class pcps_acquisition; class pcps_acquisition;
typedef boost::shared_ptr<pcps_acquisition> pcps_acquisition_sptr; typedef boost::shared_ptr<pcps_acquisition> pcps_acquisition_sptr;
pcps_acquisition_sptr pcps_acquisition_sptr
pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells, pcps_make_acquisition(pcpsconf_t conf_);
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename, size_t it_size);
/*! /*!
* \brief This class implements a Parallel Code Phase Search Acquisition. * \brief This class implements a Parallel Code Phase Search Acquisition.
@ -82,22 +97,13 @@ class pcps_acquisition : public gr::block
{ {
private: private:
friend pcps_acquisition_sptr friend pcps_acquisition_sptr
pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells, pcps_make_acquisition(pcpsconf_t conf_);
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename, size_t it_size);
pcps_acquisition(unsigned int sampled_ms, unsigned int max_dwells, pcps_acquisition(pcpsconf_t conf_);
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename, size_t it_size);
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq); void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
void update_grid_doppler_wipeoffs(); void update_grid_doppler_wipeoffs();
void update_grid_doppler_wipeoffs_step2();
bool is_fdma(); bool is_fdma();
void acquisition_core(unsigned long int samp_count); void acquisition_core(unsigned long int samp_count);
@ -106,42 +112,33 @@ private:
void send_positive_acquisition(); void send_positive_acquisition();
bool d_bit_transition_flag; pcpsconf_t acq_parameters;
bool d_use_CFAR_algorithm_flag;
bool d_active; bool d_active;
bool d_dump;
bool d_worker_active; bool d_worker_active;
bool d_blocking;
bool d_cshort; bool d_cshort;
bool d_step_two;
float d_threshold; float d_threshold;
float d_mag; float d_mag;
float d_input_power; float d_input_power;
float d_test_statistics; float d_test_statistics;
float* d_magnitude; float* d_magnitude;
long d_fs_in;
long d_freq;
long d_old_freq; long d_old_freq;
int d_samples_per_ms;
int d_samples_per_code;
int d_state; int d_state;
unsigned int d_channel; unsigned int d_channel;
unsigned int d_doppler_max;
unsigned int d_doppler_step; unsigned int d_doppler_step;
unsigned int d_sampled_ms; float d_doppler_center_step_two;
unsigned int d_max_dwells;
unsigned int d_well_count; unsigned int d_well_count;
unsigned int d_fft_size; unsigned int d_fft_size;
unsigned int d_num_doppler_bins; unsigned int d_num_doppler_bins;
unsigned int d_code_phase;
unsigned long int d_sample_counter; unsigned long int d_sample_counter;
gr_complex** d_grid_doppler_wipeoffs; gr_complex** d_grid_doppler_wipeoffs;
gr_complex** d_grid_doppler_wipeoffs_step_two;
gr_complex* d_fft_codes; gr_complex* d_fft_codes;
gr_complex* d_data_buffer; gr_complex* d_data_buffer;
lv_16sc_t* d_data_buffer_sc; lv_16sc_t* d_data_buffer_sc;
gr::fft::fft_complex* d_fft_if; gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft; gr::fft::fft_complex* d_ifft;
Gnss_Synchro* d_gnss_synchro; Gnss_Synchro* d_gnss_synchro;
std::string d_dump_filename;
arma::fmat grid_; arma::fmat grid_;
public: public:
@ -223,7 +220,7 @@ public:
inline void set_doppler_max(unsigned int doppler_max) inline void set_doppler_max(unsigned int doppler_max)
{ {
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_doppler_max = doppler_max; acq_parameters.doppler_max = doppler_max;
} }
/*! /*!

View File

@ -168,6 +168,7 @@ void GpsL2MPcpsAcquisitionTest::init()
config->set_property("Acquisition_2S.doppler_max", std::to_string(doppler_max)); config->set_property("Acquisition_2S.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_2S.doppler_step", std::to_string(doppler_step)); config->set_property("Acquisition_2S.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_2S.repeat_satellite", "false"); config->set_property("Acquisition_2S.repeat_satellite", "false");
config->set_property("Acquisition_2S.make_two_steps", "false");
} }