diff --git a/README.md b/README.md index f593630a0..9a9687691 100644 --- a/README.md +++ b/README.md @@ -48,6 +48,7 @@ Downloading, building and installing [GNU Radio](http://gnuradio.org/redmine/pro ~~~~~~ $ git clone https://github.com/gnuradio/pybombs.git $ cd pybombs +$ python setup.py build $ sudo python setup.py install $ pybombs recipes add gr-recipes https://github.com/gnuradio/gr-recipes.git $ pybombs recipes add gr-etcetera https://github.com/gnuradio/gr-etcetera.git @@ -408,7 +409,7 @@ Install Armadillo and dependencies: $ brew tap homebrew/science $ brew install cmake hdf5 arpack superlu $ brew install armadillo -$ brew install glog gflags +$ brew install glog gflags gnutls ~~~~~~ #### Build GNSS-SDR diff --git a/src/algorithms/PVT/gnuradio_blocks/gps_l1_ca_pvt_cc.cc b/src/algorithms/PVT/gnuradio_blocks/gps_l1_ca_pvt_cc.cc index 834da4260..194a02d1a 100644 --- a/src/algorithms/PVT/gnuradio_blocks/gps_l1_ca_pvt_cc.cc +++ b/src/algorithms/PVT/gnuradio_blocks/gps_l1_ca_pvt_cc.cc @@ -163,19 +163,26 @@ int gps_l1_ca_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_ite Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; //Get the input pointer //Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //Get the output pointer + // ############ 1. READ EPHEMERIS FROM GLOBAL MAP #### + d_ls_pvt->gps_ephemeris_map = global_gps_ephemeris_map.get_map_copy(); + for (unsigned int i = 0; i < d_nchannels; i++) { + std::map::iterator gps_ephemeris_iter; + gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin(); if (in[i][0].Flag_valid_pseudorange == true) { gnss_pseudoranges_map.insert(std::pair(in[i][0].PRN, in[i][0])); // store valid pseudoranges in a map d_rx_time = in[i][0].d_TOW_at_current_symbol; // all the channels have the same RX timestamp (common RX time pseudoranges) + d_rtcm_printer->lock_time(gps_ephemeris_iter->second, d_rx_time, in[i][0]); // keep track of locking time + } + else + { + d_rtcm_printer->lock_time(gps_ephemeris_iter->second, 0.0, in[i][0]); } } - // ############ 1. READ EPHEMERIS/UTC_MODE/IONO FROM GLOBAL MAPS #### - - d_ls_pvt->gps_ephemeris_map = global_gps_ephemeris_map.get_map_copy(); - + // ############ READ UTC_MODEL/IONO FROM GLOBAL MAPS #### if (global_gps_utc_model_map.size() > 0) { // UTC MODEL data is shared for all the GPS satellites. Read always at a locked channel @@ -337,7 +344,7 @@ int gps_l1_ca_pvt_cc::general_work (int noutput_items, gr_vector_int &ninput_ite if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end()) { d_rtcm_printer->Print_Rtcm_MT1019(gps_ephemeris_iter->second); - d_rtcm_printer->Print_Rtcm_MT1002(gps_ephemeris_iter->second, d_rx_time, gnss_pseudoranges_map); + d_rtcm_printer->Print_Rtcm_MSM(1, gps_ephemeris_iter->second, {}, {}, d_rx_time, gnss_pseudoranges_map, 1234, 0, 0, 0, 0, 0); } b_rtcm_writing_started = true; } diff --git a/src/algorithms/PVT/libs/rtcm_printer.cc b/src/algorithms/PVT/libs/rtcm_printer.cc index 44ed4e397..b8b15e009 100644 --- a/src/algorithms/PVT/libs/rtcm_printer.cc +++ b/src/algorithms/PVT/libs/rtcm_printer.cc @@ -304,3 +304,9 @@ std::string Rtcm_Printer::print_MT1005_test() std::string test = rtcm->print_MT1005_test(); return test; } + + +unsigned int Rtcm_Printer::lock_time(const Gps_Ephemeris& gps_eph, double obs_time, const Gnss_Synchro & gnss_synchro) +{ + return rtcm->lock_time(gps_eph, obs_time, gnss_synchro); +} diff --git a/src/algorithms/PVT/libs/rtcm_printer.h b/src/algorithms/PVT/libs/rtcm_printer.h index 004e2f318..e925de378 100644 --- a/src/algorithms/PVT/libs/rtcm_printer.h +++ b/src/algorithms/PVT/libs/rtcm_printer.h @@ -73,6 +73,7 @@ public: bool more_messages); std::string print_MT1005_test(); // #include -#include - -#define ROTATOR_RELOAD 512 #ifdef LV_HAVE_GENERIC @@ -56,20 +53,9 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points) { unsigned int i = 0; - int j = 0; lv_16sc_t tmp16; lv_32fc_t tmp32; - for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i) - { - for(j = 0; j < ROTATOR_RELOAD; ++j) - { - tmp16 = *inVector++; - tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase); - *outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32))); - (*phase) *= phase_inc; - } - } - for(i = 0; i < num_points % ROTATOR_RELOAD; ++i) + for(i = 0; i < (unsigned int)(num_points); ++i) { tmp16 = *inVector++; tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase); diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h index 614453f30..6a79ffbde 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h @@ -78,7 +78,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic(lv_16sc_t* resu \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result */ -static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) +static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) { lv_16sc_t dotProduct = lv_cmake(0,0); @@ -86,7 +86,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, const lv_16sc_t** _in_a = in_a; const lv_16sc_t* _in_common = in_common; - lv_16sc_t* _out = out; + lv_16sc_t* _out = result; if (sse_iters > 0) { @@ -100,7 +100,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result; + __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, results; mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); @@ -116,10 +116,10 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, { a = _mm_load_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg - c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, .... + c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... - c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. - real = _mm_subs_epi16 (c, c_sr); + c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. + real = _mm_subs_epi16(c, c_sr); b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... @@ -129,23 +129,23 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(lv_16sc_t* out, imag = _mm_adds_epi16(imag1, imag2); - realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real); - imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag); + realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real); + imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag); } _in_common += 4; } - for (int n_vec=0;n_vec 0) { @@ -203,7 +203,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_u_sse2(lv_16sc_t* out, realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result; + __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, results; mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); @@ -219,10 +219,10 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_u_sse2(lv_16sc_t* out, { a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg - c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, .... + c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... - c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. - real = _mm_subs_epi16 (c, c_sr); + c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. + real = _mm_subs_epi16(c, c_sr); b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... @@ -239,16 +239,16 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_u_sse2(lv_16sc_t* out, _in_common += 4; } - for (int n_vec=0;n_vec 0) { @@ -319,7 +319,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon(lv_16sc_t* out, co for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) { a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg - //__builtin_prefetch(_in_a[n_vec] + 8); + //__builtin_prefetch(&_in_a[n_vec][number*4] + 8); // multiply the real*real and imag*imag to get real result // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h index e4c8b3823..efd75a27f 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic.h @@ -49,8 +49,9 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_generic(lv_16sc_t* for(unsigned int n = 0; n < num_a_vectors; n++) { in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); - memcpy(in_a[n], in, sizeof(lv_16sc_t) * num_points); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); } + volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) @@ -72,6 +73,7 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_a_sse2(lv_16sc_t* r in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); } + volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_a_sse2(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) @@ -92,8 +94,9 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_u_sse2(lv_16sc_t* r for(unsigned int n = 0; n < num_a_vectors; n++) { in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t)*num_points, volk_gnsssdr_get_alignment()); - memcpy(in_a[n], in, sizeof(lv_16sc_t)*num_points); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t)*num_points); } + volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_u_sse2(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) @@ -114,8 +117,9 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_neon(lv_16sc_t* res for(unsigned int n = 0; n < num_a_vectors; n++) { in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t)*num_points, volk_gnsssdr_get_alignment()); - memcpy(in_a[n], in, sizeof(lv_16sc_t)*num_points); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t)*num_points); } + volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h index a958743a7..e5bd95389 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn.h @@ -1,11 +1,14 @@ /*! * \file volk_gnsssdr_16ic_x2_dot_prod_16ic_xn.h - * \brief Volk protokernel: multiplies N 16 bits vectors by a common vector phase rotated and accumulates the results in N 16 bits short complex outputs. + * \brief Volk protokernel: multiplies N 16 bits vectors by a common vector + * phase rotated and accumulates the results in N 16 bits short complex outputs. * \authors
    *
  • Javier Arribas, 2015. jarribas(at)cttc.es *
* - * Volk protokernel that multiplies N 16 bits vectors by a common vector, which is phase-rotated by phase offset and phase increment, and accumulates the results in N 16 bits short complex outputs. + * Volk protokernel that multiplies N 16 bits vectors by a common vector, which is + * phase-rotated by phase offset and phase increment, and accumulates the results + * in N 16 bits short complex outputs. * It is optimized to perform the N tap correlation process in GNSS receivers. * * ------------------------------------------------------------------------- @@ -39,36 +42,39 @@ #include #include +#include #ifdef LV_HAVE_GENERIC /*! - \brief Multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector - \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored - \param[in] in_common Pointer to one of the vectors to be multiplied and accumulated (reference vector) - \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated - \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated - \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result + \brief Rotates and multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector + \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored + \param[in] in_common Pointer to one of the vectors to be rotated, multiplied and accumulated (reference vector) + \param[in] phase_inc Phase increment = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad)) + \param[in,out] phase Initial / final phase + \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated + \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated + \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result */ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) { - lv_16sc_t tmp16; - lv_32fc_t tmp32; - for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) - { - result[n_vec] = lv_cmake(0,0); - } - for (unsigned int n = 0; n < num_points; n++) - { - tmp16 = *in_common++; - tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase); - tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32))); - (*phase) *= phase_inc; - for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) - { - lv_16sc_t tmp = tmp16 * in_a[n_vec][n]; - result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp))); - } - } + lv_16sc_t tmp16; + lv_32fc_t tmp32; + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + result[n_vec] = lv_cmake(0,0); + } + for (unsigned int n = 0; n < num_points; n++) + { + tmp16 = *in_common++; + tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase); + tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32))); + (*phase) *= phase_inc; + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + lv_16sc_t tmp = tmp16 * in_a[n_vec][n]; + result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp))); + } + } } #endif /*LV_HAVE_GENERIC*/ @@ -78,159 +84,160 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc #include /*! - \brief Multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector - \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored - \param[in] in_common Pointer to one of the vectors to be multiplied and accumulated (reference vector) - \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated - \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated - \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result + \brief Rotates and multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector + \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored + \param[in] in_common Pointer to one of the vectors to be rotated, multiplied and accumulated (reference vector) + \param[in] phase_inc Phase increment = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad)) + \param[in,out] phase Initial / final phase + \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated + \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated + \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result */ -static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) +static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) { - lv_16sc_t dotProduct = lv_cmake(0,0); + lv_16sc_t dotProduct = lv_cmake(0,0); - const unsigned int sse_iters = num_points / 4; + const unsigned int sse_iters = num_points / 4; - const lv_16sc_t** _in_a = in_a; - const lv_16sc_t* _in_common = in_common; - lv_16sc_t* _out = out; + const lv_16sc_t** _in_a = in_a; + const lv_16sc_t* _in_common = in_common; + lv_16sc_t* _out = result; - __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; + __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; - //todo dyn mem reg + //todo dyn mem reg - __m128i* realcacc; - __m128i* imagcacc; + __m128i* realcacc; + __m128i* imagcacc; - realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 + realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 + imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result; + __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, results; - mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); - mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); + mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); + mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); - // phase rotation registers - __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg; - __m128i pc1, pc2; - __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2]; - two_phase_inc[0] = phase_inc * phase_inc; - two_phase_inc[1] = phase_inc * phase_inc; - two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc); - __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2]; - two_phase_acc[0] = (*phase); - two_phase_acc[1] = (*phase) * phase_inc; - two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc); - __m128 yl, yh, tmp1, tmp2, tmp3; - lv_16sc_t tmp16; - lv_32fc_t tmp32; + // phase rotation registers + __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg; + __m128i pc1, pc2; + __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2]; + two_phase_inc[0] = phase_inc * phase_inc; + two_phase_inc[1] = phase_inc * phase_inc; + two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc); + __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2]; + two_phase_acc[0] = (*phase); + two_phase_acc[1] = (*phase) * phase_inc; + two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc); + __m128 yl, yh, tmp1, tmp2, tmp3; + lv_16sc_t tmp16; + lv_32fc_t tmp32; - for(unsigned int number = 0; number < sse_iters; number++) - { - // Phase rotation on operand in_common starts here: + for(unsigned int number = 0; number < sse_iters; number++) + { + // Phase rotation on operand in_common starts here: - pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg - //complex 32fc multiplication b=a*two_phase_acc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic + pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg + //complex 32fc multiplication b=a*two_phase_acc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic - //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - //next two samples - _in_common += 2; - pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg - //complex 32fc multiplication b=a*two_phase_acc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic + //next two samples + _in_common += 2; + pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg + //complex 32fc multiplication b=a*two_phase_acc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic - //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - // store four rotated in_common samples in the register b - b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic + // store four rotated in_common samples in the register b + b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic - //next two samples - _in_common += 2; + //next two samples + _in_common += 2; - for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) - { - a = _mm_load_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + a = _mm_load_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg - c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, .... + c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... - c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. - real = _mm_subs_epi16 (c, c_sr); + c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. + real = _mm_subs_epi16(c, c_sr); - b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... - a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... + b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... + a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... - imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... - imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... + imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... + imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... - imag = _mm_adds_epi16(imag1, imag2); + imag = _mm_adds_epi16(imag1, imag2); - realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real); - imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag); + realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real); + imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag); + } + } - } - } + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real); + imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag); - for (int n_vec=0;n_vec /*! - \brief Multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector - \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored - \param[in] in_common Pointer to one of the vectors to be multiplied and accumulated (reference vector) - \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated - \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated - \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result + \brief Rotates and multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector + \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored + \param[in] in_common Pointer to one of the vectors to be rotated, multiplied and accumulated (reference vector) + \param[in] phase_inc Phase increment = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad)) + \param[in,out] phase Initial / final phase + \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated + \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated + \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result */ -static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_t* out, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) +static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) { - lv_16sc_t dotProduct = lv_cmake(0,0); + lv_16sc_t dotProduct = lv_cmake(0,0); - const unsigned int sse_iters = num_points / 4; + const unsigned int sse_iters = num_points / 4; - const lv_16sc_t** _in_a = in_a; - const lv_16sc_t* _in_common = in_common; - lv_16sc_t* _out = out; + const lv_16sc_t** _in_a = in_a; + const lv_16sc_t* _in_common = in_common; + lv_16sc_t* _out = result; - __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; + __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; - //todo dyn mem reg + //todo dyn mem reg - __m128i* realcacc; - __m128i* imagcacc; + __m128i* realcacc; + __m128i* imagcacc; - realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 + realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 + imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0 - __m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result; + __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, results; - mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); - mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); + mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); + mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); - // phase rotation registers - __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg; - __m128i pc1, pc2; - __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2]; - two_phase_inc[0] = phase_inc * phase_inc; - two_phase_inc[1] = phase_inc * phase_inc; - two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc); - __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2]; - two_phase_acc[0] = (*phase); - two_phase_acc[1] = (*phase) * phase_inc; - two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc); - __m128 yl, yh, tmp1, tmp2, tmp3; - lv_16sc_t tmp16; - lv_32fc_t tmp32; + // phase rotation registers + __m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg; + __m128i pc1, pc2; + __attribute__((aligned(16))) lv_32fc_t two_phase_inc[2]; + two_phase_inc[0] = phase_inc * phase_inc; + two_phase_inc[1] = phase_inc * phase_inc; + two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc); + __attribute__((aligned(16))) lv_32fc_t two_phase_acc[2]; + two_phase_acc[0] = (*phase); + two_phase_acc[1] = (*phase) * phase_inc; + two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc); + __m128 yl, yh, tmp1, tmp2, tmp3; + lv_16sc_t tmp16; + lv_32fc_t tmp32; - for(unsigned int number = 0; number < sse_iters; number++) - { - // Phase rotation on operand in_common starts here: + for(unsigned int number = 0; number < sse_iters; number++) + { + // Phase rotation on operand in_common starts here: - pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg - //complex 32fc multiplication b=a*two_phase_acc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic + pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg + //complex 32fc multiplication b=a*two_phase_acc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic - //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - //next two samples - _in_common += 2; - pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg - //complex 32fc multiplication b=a*two_phase_acc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic + //next two samples + _in_common += 2; + pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg + //complex 32fc multiplication b=a*two_phase_acc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic - //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg - yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr - yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di - tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr - tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br - tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di - two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di + //complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg + yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr + yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di + tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr + tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br + tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di + two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di - // store four rotated in_common samples in the register b - b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic + // store four rotated in_common samples in the register b + b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic - //next two samples - _in_common += 2; + //next two samples + _in_common += 2; - for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) - { - a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + a = _mm_loadu_si128((__m128i*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg - c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, .... + c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... - c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. - real = _mm_subs_epi16 (c, c_sr); + c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. + real = _mm_subs_epi16(c, c_sr); - b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... - a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... + b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... + a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... - imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... - imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... + imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... + imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... - imag = _mm_adds_epi16(imag1, imag2); + imag = _mm_adds_epi16(imag1, imag2); - realcacc[n_vec] = _mm_adds_epi16 (realcacc[n_vec], real); - imagcacc[n_vec] = _mm_adds_epi16 (imagcacc[n_vec], imag); + realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real); + imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag); + } + } - } - } + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + realcacc[n_vec] = _mm_and_si128 (realcacc[n_vec], mask_real); + imagcacc[n_vec] = _mm_and_si128 (imagcacc[n_vec], mask_imag); - for (int n_vec=0;n_vec + +/*! + \brief Rotates and multiplies the reference complex vector with multiple versions of another complex vector, accumulates the results and stores them in the output vector + \param[out] result Array of num_a_vectors components with the multiple versions of in_a multiplied and accumulated The vector where the accumulated result will be stored + \param[in] in_common Pointer to one of the vectors to be rotated, multiplied and accumulated (reference vector) + \param[in] phase_inc Phase increment = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad)) + \param[in,out] phase Initial / final phase + \param[in] in_a Pointer to an array of pointers to multiple versions of the other vector to be multiplied and accumulated + \param[in] num_a_vectors Number of vectors to be multiplied by the reference vector and accumulated + \param[in] num_points The Number of complex values to be multiplied together, accumulated and stored into result + */ +static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points) +{ + const unsigned int neon_iters = num_points / 4; + + const lv_16sc_t** _in_a = in_a; + const lv_16sc_t* _in_common = in_common; + lv_16sc_t* _out = result; + + lv_16sc_t tmp16_, tmp; + lv_32fc_t tmp32_; + + if (neon_iters > 0) + { + lv_16sc_t dotProduct = lv_cmake(0,0); + + lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc; + __VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) }; + __VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) }; + + float32x4_t _phase4_real = vld1q_f32(__phase4_real); + float32x4_t _phase4_imag = vld1q_f32(__phase4_imag); + + lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc; + lv_32fc_t phase3 = phase2 * phase_inc; + lv_32fc_t phase4 = phase3 * phase_inc; + + __VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; + __VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; + + float32x4_t _phase_real = vld1q_f32(__phase_real); + float32x4_t _phase_imag = vld1q_f32(__phase_imag); + + int16x4x2_t a_val, b_val, c_val; + __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; + float32x4_t half = vdupq_n_f32(0.5f); + int16x4x2_t tmp16; + int32x4x2_t tmp32i; + float32x4x2_t tmp32f, tmp32_real, tmp32_imag; + float32x4_t sign, PlusHalf, Round; + + int16x4x2_t* accumulator; + accumulator = (int16x4x2_t*)calloc(num_a_vectors, sizeof(int16x4x2_t)); + + for(int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + accumulator[n_vec].val[0] = vdup_n_s16(0); + accumulator[n_vec].val[1] = vdup_n_s16(0); + } + + for(unsigned int number = 0; number < neon_iters; number++) + { + /* load 4 complex numbers (int 16 bits each component) */ + tmp16 = vld2_s16((int16_t*)_in_common); + __builtin_prefetch(_in_common + 8); + _in_common += 4; + + /* promote them to int 32 bits */ + tmp32i.val[0] = vmovl_s16(tmp16.val[0]); + tmp32i.val[1] = vmovl_s16(tmp16.val[1]); + + /* promote them to float 32 bits */ + tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]); + tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]); + + /* complex multiplication of four complex samples (float 32 bits each component) */ + tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real); + tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag); + tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag); + tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real); + + tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); + tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); + + /* downcast results to int32 */ + /* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */ + sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31))); + PlusHalf = vaddq_f32(tmp32f.val[0], half); + Round = vsubq_f32(PlusHalf, sign); + tmp32i.val[0] = vcvtq_s32_f32(Round); + + sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31))); + PlusHalf = vaddq_f32(tmp32f.val[1], half); + Round = vsubq_f32(PlusHalf, sign); + tmp32i.val[1] = vcvtq_s32_f32(Round); + + /* downcast results to int16 */ + tmp16.val[0] = vqmovn_s32(tmp32i.val[0]); + tmp16.val[1] = vqmovn_s32(tmp32i.val[1]); + + /* compute next four phases */ + tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real); + tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag); + tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag); + tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real); + + _phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); + _phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); + + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg + __builtin_prefetch(&_in_a[n_vec][number*4] + 8); + + // multiply the real*real and imag*imag to get real result + // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r + b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[0]); + // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i + b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[1]); + c_val.val[0] = vsub_s16(b_val.val[0], b_val.val[1]); + + // Multiply cross terms to get the imaginary result + // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i + b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[1]); + // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r + b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[0]); + c_val.val[1] = vadd_s16(b_val.val[0], b_val.val[1]); + + accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], c_val.val[0]); + accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], c_val.val[1]); + } + } + + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + vst2_s16((int16_t*)dotProductVector, accumulator[n_vec]); // Store the results back into the dot product vector + dotProduct = lv_cmake(0,0); + for (int i = 0; i < 4; ++i) + { + dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), + sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); + } + _out[n_vec] = dotProduct; + } + free(accumulator); + vst1q_f32((float32_t*)__phase_real, _phase_real); + vst1q_f32((float32_t*)__phase_imag, _phase_imag); + + (*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]); + } + + for (unsigned int n = neon_iters * 4; n < num_points; n++) + { + tmp16_ = in_common[n]; + tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase); + tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_))); + (*phase) *= phase_inc; + for (int n_vec = 0; n_vec < num_a_vectors; n_vec++) + { + tmp = tmp16_ * in_a[n_vec][n]; + _out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); + } + } +} + +#endif /* LV_HAVE_NEON */ + #endif /*INCLUDED_volk_gnsssdr_16ic_xn_dot_prod_16ic_xn_H*/ diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h index 57ee85143..c0db5decb 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/kernels/volk_gnsssdr/volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic.h @@ -55,16 +55,16 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_generic(lv_ int num_a_vectors = 3; lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment()); for(unsigned int n = 0; n < num_a_vectors; n++) - { - in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); - memcpy(in_a[n], in, sizeof(lv_16sc_t) * num_points); - } + { + in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); + } volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(result, local_code, phase_inc[0], phase,(const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) - { - volk_gnsssdr_free(in_a[n]); - } + { + volk_gnsssdr_free(in_a[n]); + } volk_gnsssdr_free(in_a); } @@ -84,16 +84,17 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_1 int num_a_vectors = 3; lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment()); for(unsigned int n = 0; n < num_a_vectors; n++) - { - in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); - memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); - } + { + in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); + } + volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) - { - volk_gnsssdr_free(in_a[n]); - } + { + volk_gnsssdr_free(in_a[n]); + } volk_gnsssdr_free(in_a); } @@ -114,21 +115,53 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_1 int num_a_vectors = 3; lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment()); for(unsigned int n = 0; n < num_a_vectors; n++) - { - in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t)*num_points, volk_gnsssdr_get_alignment()); - memcpy(in_a[n], in, sizeof(lv_16sc_t)*num_points); - } + { + in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); + memcpy(in_a[n], in, sizeof(lv_16sc_t) * num_points); + } + volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points); for(unsigned int n = 0; n < num_a_vectors; n++) - { - volk_gnsssdr_free(in_a[n]); - } + { + volk_gnsssdr_free(in_a[n]); + } volk_gnsssdr_free(in_a); } #endif // SSE3 +#ifdef LV_HAVE_NEON + +static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_neon(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points) +{ + // phases must be normalized. Phase rotator expects a complex exponential input! + float rem_carrier_phase_in_rad = 0.345; + float phase_step_rad = 0.123; + lv_32fc_t phase[1]; + phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad)); + lv_32fc_t phase_inc[1]; + phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad)); + + int num_a_vectors = 3; + lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment()); + for(unsigned int n = 0; n < num_a_vectors; n++) + { + in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment()); + memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points); + } + + volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points); + + for(unsigned int n = 0; n < num_a_vectors; n++) + { + volk_gnsssdr_free(in_a[n]); + } + volk_gnsssdr_free(in_a); +} + +#endif // NEON + #endif // INCLUDED_volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_H diff --git a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/CMakeLists.txt b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/CMakeLists.txt index eb3a1d537..f79106bf3 100644 --- a/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/CMakeLists.txt +++ b/src/algorithms/libs/volk_gnsssdr_module/volk_gnsssdr/lib/CMakeLists.txt @@ -87,7 +87,7 @@ endif(NOT DEFINED _XOPEN_SOURCE) ######################################################################## # detect x86 flavor of CPU ######################################################################## -if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(i.86|x86|x86_64|amd64)$") +if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(i.86|x86|x86_64|amd64|AMD64)$") message(STATUS "x86* CPU detected") set(CPU_IS_x86 TRUE) endif() @@ -106,19 +106,24 @@ macro(check_arch arch_name) set(flags ${ARGN}) set(have_${arch_name} TRUE) foreach(flag ${flags}) - include(CheckCXXCompilerFlag) - set(have_flag have${flag}) - execute_process( #make the have_flag have nice alphanum chars (just for looks/not necessary) - COMMAND ${PYTHON_EXECUTABLE} -c "import re; print(re.sub('\\W', '_', '${have_flag}'))" - OUTPUT_VARIABLE have_flag OUTPUT_STRIP_TRAILING_WHITESPACE - ) - if(VOLK_FLAG_CHECK_FLAGS) - set(CMAKE_REQUIRED_FLAGS ${VOLK_FLAG_CHECK_FLAGS}) - endif() - CHECK_CXX_COMPILER_FLAG(${flag} ${have_flag}) - unset(CMAKE_REQUIRED_FLAGS) - if (NOT ${have_flag}) - set(have_${arch_name} FALSE) + if ( (${COMPILER_NAME} STREQUAL "MSVC") AND (${flag} STREQUAL "/arch:SSE2" OR ${flag} STREQUAL "/arch:SSE" )) + # SSE/SSE2 is supported in MSVC since VS 2005 but flag not available when compiling 64-bit so do not check + else() + include(CheckCXXCompilerFlag) + set(have_flag have${flag}) + #make the have_flag have nice alphanum chars (just for looks/not necessary) + execute_process( + COMMAND ${PYTHON_EXECUTABLE} -c "import re; print(re.sub('\\W', '_', '${have_flag}'))" + OUTPUT_VARIABLE have_flag OUTPUT_STRIP_TRAILING_WHITESPACE + ) + if(VOLK_FLAG_CHECK_FLAGS) + set(CMAKE_REQUIRED_FLAGS ${VOLK_FLAG_CHECK_FLAGS}) + endif() + CHECK_CXX_COMPILER_FLAG(${flag} ${have_flag}) + unset(CMAKE_REQUIRED_FLAGS) + if (NOT ${have_flag}) + set(have_${arch_name} FALSE) + endif() endif() endforeach() if (have_${arch_name})