1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-12-08 17:48:06 +00:00

Fix typos detected by codespell

This commit is contained in:
Carles Fernandez
2025-02-10 13:20:14 +01:00
parent a9688ddad5
commit 32e7dc03ae
105 changed files with 140 additions and 140 deletions

View File

@@ -271,7 +271,7 @@ Acquisition_5X.doppler_max=5000
Acquisition_5X.doppler_step=125
Acquisition_5X.bit_transition_flag=false
Acquisition_5X.max_dwells=1
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is deactivated. Recommended value 3000 Hz
Acquisition_5X.Zero_padding=0 ; **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions. If set to 1 it is ON, if set to 0 it is OFF.
Acquisition_5X.dump=false
Acquisition_5X.dump_filename=./acq_dump.dat

View File

@@ -111,7 +111,7 @@ Acquisition_5X.doppler_max=10000
Acquisition_5X.doppler_step=250
Acquisition_5X.bit_transition_flag=false
Acquisition_5X.max_dwells=1
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is deactivated. Recommended value 3000 Hz
Acquisition_5X.Zero_padding=0 ; **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions. If set to 1 it is ON, if set to 0 it is OFF.
Acquisition_5X.dump=false
Acquisition_5X.dump_filename=./acq_dump.dat

View File

@@ -266,7 +266,7 @@ Acquisition_5X.doppler_max=5000
Acquisition_5X.doppler_step=125
Acquisition_5X.bit_transition_flag=false
Acquisition_5X.max_dwells=1
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is desactivated. Recommended value 3000 Hz
Acquisition_5X.CAF_window_hz=0 ; **Only for E5a** Resolves doppler ambiguity averaging the specified BW in the winner code delay. If set to 0 CAF filter is deactivated. Recommended value 3000 Hz
Acquisition_5X.Zero_padding=0 ; **Only for E5a** Avoids power loss and doppler ambiguity in bit transitions by correlating one code with twice the input data length, ensuring that at least one full code is present without transitions. If set to 1 it is ON, if set to 0 it is OFF.
Acquisition_5X.dump=false
Acquisition_5X.dump_filename=./acq_dump.dat

View File

@@ -77,7 +77,7 @@ InputFilter.dump_filename=./input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#response given a set of band edges, the desired response on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.

View File

@@ -40,7 +40,7 @@ SignalSource.item_type=byte
; endian. If it is big endian then the second byte should be output
; first in each short.
; SignalSource.big_endian_items=false
; big_endian_bytes: true if the most signficiant two bits in the byte
; big_endian_bytes: true if the most significant two bits in the byte
; are the first two to be output.
SignalSource.big_endian_bytes=false
; sample_type: one of 'real' 'iq' or 'qi'