1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

Use dll_pll_veml_tracking tracking block for Galileo E5a

This commit is contained in:
Carles Fernandez 2018-04-05 21:35:01 +02:00
parent c1eccf1a27
commit 32cfe3e228
5 changed files with 23 additions and 1233 deletions

View File

@ -56,7 +56,6 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking(
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 12000000); int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 12000000);
int fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); int fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
bool dump = configuration->property(role + ".dump", false); bool dump = configuration->property(role + ".dump", false);
unified_ = configuration->property(role + ".unified", false);
float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 20.0); float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 20.0);
if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz); if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 20.0); float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 20.0);
@ -89,29 +88,18 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking(
if (item_type.compare("gr_complex") == 0) if (item_type.compare("gr_complex") == 0)
{ {
item_size_ = sizeof(gr_complex); item_size_ = sizeof(gr_complex);
if (unified_) char sig_[3] = "5X";
{ item_size_ = sizeof(gr_complex);
char sig_[3] = "5X"; tracking_ = dll_pll_veml_make_tracking(
item_size_ = sizeof(gr_complex); fs_in, vector_length, dump, dump_filename,
tracking_unified_ = dll_pll_veml_make_tracking( pll_bw_hz, dll_bw_hz,
fs_in, vector_length, dump, dump_filename, pll_bw_narrow_hz, dll_bw_narrow_hz,
pll_bw_hz, dll_bw_hz, early_late_space_chips,
pll_bw_narrow_hz, dll_bw_narrow_hz, early_late_space_chips,
early_late_space_chips, early_late_space_narrow_chips,
early_late_space_chips, early_late_space_narrow_chips,
early_late_space_narrow_chips, extend_correlation_symbols,
early_late_space_narrow_chips, track_pilot, 'E', sig_);
extend_correlation_symbols,
track_pilot, 'E', sig_);
}
else
{
tracking_ = galileo_e5a_dll_pll_make_tracking_cc(
0, fs_in, vector_length, dump, dump_filename,
pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz,
dll_bw_narrow_hz, ti_ms,
early_late_space_chips);
}
} }
else else
{ {
@ -130,33 +118,26 @@ GalileoE5aDllPllTracking::~GalileoE5aDllPllTracking()
void GalileoE5aDllPllTracking::start_tracking() void GalileoE5aDllPllTracking::start_tracking()
{ {
if (unified_) tracking_->start_tracking();
tracking_unified_->start_tracking();
else
tracking_->start_tracking();
} }
/* /*
* Set tracking channel unique ID * Set tracking channel unique ID
*/ */
void GalileoE5aDllPllTracking::set_channel(unsigned int channel) void GalileoE5aDllPllTracking::set_channel(unsigned int channel)
{ {
channel_ = channel; channel_ = channel;
if (unified_) tracking_->set_channel(channel);
tracking_unified_->set_channel(channel);
else
tracking_->set_channel(channel);
} }
void GalileoE5aDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) void GalileoE5aDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{ {
if (unified_) tracking_->set_gnss_synchro(p_gnss_synchro);
tracking_unified_->set_gnss_synchro(p_gnss_synchro);
else
tracking_->set_gnss_synchro(p_gnss_synchro);
} }
void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block) void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block)
{ {
if (top_block) if (top_block)
@ -165,6 +146,7 @@ void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block)
//nothing to connect, now the tracking uses gr_sync_decimator //nothing to connect, now the tracking uses gr_sync_decimator
} }
void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block) void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block)
{ {
if (top_block) if (top_block)
@ -173,18 +155,14 @@ void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block)
//nothing to disconnect, now the tracking uses gr_sync_decimator //nothing to disconnect, now the tracking uses gr_sync_decimator
} }
gr::basic_block_sptr GalileoE5aDllPllTracking::get_left_block() gr::basic_block_sptr GalileoE5aDllPllTracking::get_left_block()
{ {
if (unified_) return tracking_;
return tracking_unified_;
else
return tracking_;
} }
gr::basic_block_sptr GalileoE5aDllPllTracking::get_right_block() gr::basic_block_sptr GalileoE5aDllPllTracking::get_right_block()
{ {
if (unified_) return tracking_;
return tracking_unified_;
else
return tracking_;
} }

View File

@ -40,7 +40,6 @@
#define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ #define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_
#include "tracking_interface.h" #include "tracking_interface.h"
#include "galileo_e5a_dll_pll_tracking_cc.h"
#include "dll_pll_veml_tracking.h" #include "dll_pll_veml_tracking.h"
#include <string> #include <string>
@ -94,14 +93,12 @@ public:
void start_tracking() override; void start_tracking() override;
private: private:
galileo_e5a_dll_pll_tracking_cc_sptr tracking_; dll_pll_veml_tracking_sptr tracking_;
dll_pll_veml_tracking_sptr tracking_unified_;
size_t item_size_; size_t item_size_;
unsigned int channel_; unsigned int channel_;
std::string role_; std::string role_;
unsigned int in_streams_; unsigned int in_streams_;
unsigned int out_streams_; unsigned int out_streams_;
bool unified_;
}; };
#endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ */ #endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ */

View File

@ -29,7 +29,6 @@ endif(ENABLE_FPGA)
set(TRACKING_GR_BLOCKS_SOURCES set(TRACKING_GR_BLOCKS_SOURCES
galileo_e1_tcp_connector_tracking_cc.cc galileo_e1_tcp_connector_tracking_cc.cc
gps_l1_ca_tcp_connector_tracking_cc.cc gps_l1_ca_tcp_connector_tracking_cc.cc
galileo_e5a_dll_pll_tracking_cc.cc
gps_l5i_dll_pll_tracking_cc.cc gps_l5i_dll_pll_tracking_cc.cc
gps_l1_ca_dll_pll_c_aid_tracking_cc.cc gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
gps_l1_ca_dll_pll_c_aid_tracking_sc.cc gps_l1_ca_dll_pll_c_aid_tracking_sc.cc

View File

@ -1,977 +0,0 @@
/*!
* \file galileo_e5a_dll_pll_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL
* tracking block for Galileo E5a signals
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5a_dll_pll_tracking_cc.h"
#include "galileo_e5_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "Galileo_E5a.h"
#include "Galileo_E1.h"
#include "control_message_factory.h"
#include "gnss_sdr_flags.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <matio.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#include <sstream>
using google::LogMessage;
galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips)
{
return galileo_e5a_dll_pll_tracking_cc_sptr(new Galileo_E5a_Dll_Pll_Tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, ti_ms, early_late_space_chips));
}
void Galileo_E5a_Dll_Pll_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips) : gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
this->set_relative_rate(1.0 / vector_length);
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_code_loop_filter = Tracking_2nd_DLL_filter(GALILEO_E5a_CODE_PERIOD);
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GALILEO_E5a_CODE_PERIOD);
d_current_ti_ms = 1; // initializes with 1ms of integration time until secondary code lock
d_ti_ms = ti_ms;
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the E5a primary code replicas sampled 1x/chip
d_codeQ = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_codeI = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator Q outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
// map memory pointers of correlator outputs
d_Single_Early = &d_correlator_outs[0];
d_Single_Prompt = &d_correlator_outs[1];
d_Single_Late = &d_correlator_outs[2];
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu_Q.init(2 * d_vector_length, d_n_correlator_taps);
// correlator I single output for data (scalar)
d_Single_Prompt_data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
*d_Single_Prompt_data = gr_complex(0, 0);
multicorrelator_cpu_I.init(2 * d_vector_length, 1); // single correlator for data channel
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
//Filter error vars
d_code_error_filt_secs = 0.0;
// sample synchronization
d_sample_counter = 0;
d_acq_sample_stamp = 0;
d_first_transition = false;
d_secondary_lock = false;
d_secondary_delay = 0;
d_integration_counter = 0;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[static_cast<unsigned int>(FLAGS_cn0_samples)];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
d_acquisition_gnss_synchro = 0;
d_channel = 0;
tmp_E = 0;
tmp_P = 0;
tmp_L = 0;
d_acq_code_phase_samples = 0;
d_acq_carrier_doppler_hz = 0;
d_carrier_doppler_hz = 0;
d_acc_carrier_phase_rad = 0;
d_code_phase_samples = 0;
d_acc_code_phase_secs = 0;
d_state = 0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
systemName["E"] = std::string("Galileo");
}
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
delete[] d_codeI;
delete[] d_codeQ;
delete[] d_Prompt_buffer;
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_Single_Prompt_data);
multicorrelator_cpu_Q.free();
multicorrelator_cpu_I.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity;
radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz) / Galileo_E5a_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ;
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds;
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff;
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
char sig[3];
strcpy(sig, "5Q");
galileo_e5_a_code_gen_complex_primary(d_codeQ, d_acquisition_gnss_synchro->PRN, sig);
strcpy(sig, "5I");
galileo_e5_a_code_gen_complex_primary(d_codeI, d_acquisition_gnss_synchro->PRN, sig);
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0;
d_acc_carrier_phase_rad = 0;
d_acc_code_phase_secs = 0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of Galileo E5a signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Galileo E5a starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_state = 1;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary()
{
// 1. Transform replica to 1 and -1
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(i) == '0')
{
sec_code_signed[i] = 1;
}
else
{
sec_code_signed[i] = -1;
}
}
// 2. Transform buffer to 1 and -1
int in_corr[static_cast<unsigned int>(FLAGS_cn0_samples)];
for (unsigned int i = 0; i < static_cast<unsigned int>(FLAGS_cn0_samples); i++)
{
if (d_Prompt_buffer[i].real() > 0)
{
in_corr[i] = 1;
}
else
{
in_corr[i] = -1;
}
}
// 3. Serial search
int out_corr;
int current_best_ = 0;
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{
out_corr = 0;
for (unsigned int j = 0; j < static_cast<unsigned int>(FLAGS_cn0_samples); j++)
{
//reverse replica sign since i*i=-1 (conjugated complex)
out_corr += in_corr[j] * -sec_code_signed[(j + i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
}
if (abs(out_corr) > current_best_)
{
current_best_ = abs(out_corr);
d_secondary_delay = i;
}
}
if (current_best_ == FLAGS_cn0_samples) // all bits correlate
{
d_secondary_lock = true;
d_secondary_delay = (d_secondary_delay + static_cast<unsigned int>(FLAGS_cn0_samples) - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
}
}
int Galileo_E5a_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); //block output streams pointer
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
/* States: 0 Tracking not enabled
* 1 Pull-in of primary code (alignment).
* 3 Tracking algorithm. Correlates EPL each loop and accumulates the result
* until it reaches integration time.
*/
switch (d_state)
{
case 0:
{
d_Early = gr_complex(0, 0);
d_Prompt = gr_complex(0, 0);
d_Late = gr_complex(0, 0);
d_Prompt_data = gr_complex(0, 0);
current_synchro_data.Tracking_sample_counter = d_sample_counter;
break;
}
case 1:
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
DLOG(INFO) << " samples_offset=" << samples_offset;
d_state = 2; // start in Ti = 1 code, until secondary code lock.
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.fs = d_fs_in;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 0;
break;
}
case 2:
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //PRN start block alignment
gr_complex sec_sign_Q;
gr_complex sec_sign_I;
// Secondary code Chip
if (d_secondary_lock)
{
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(d_secondary_delay) == '0' ? -1 : 1), 0);
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0);
}
else
{
sec_sign_Q = gr_complex(1.0, 0.0);
sec_sign_I = gr_complex(1.0, 0.0);
}
// Reset integration counter
if (d_integration_counter == d_current_ti_ms)
{
d_integration_counter = 0;
}
//Generate local code and carrier replicas (using \hat{f}_d(k-1))
if (d_integration_counter == 0)
{
// Reset accumulated values
d_Early = gr_complex(0, 0);
d_Prompt = gr_complex(0, 0);
d_Late = gr_complex(0, 0);
}
// perform carrier wipe-off and compute Early, Prompt and Late
// correlation of 1 primary code
multicorrelator_cpu_Q.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeQ, d_local_code_shift_chips);
multicorrelator_cpu_I.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeI, &d_local_code_shift_chips[1]);
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu_Q.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu_I.set_input_output_vectors(d_Single_Prompt_data, in);
double carr_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
double code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in));
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
multicorrelator_cpu_Q.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_chips,
code_phase_step_chips,
d_current_prn_length_samples);
multicorrelator_cpu_I.Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_chips,
code_phase_step_chips,
d_current_prn_length_samples);
// Accumulate results (coherent integration since there are no bit transitions in pilot signal)
d_Early += (*d_Single_Early) * sec_sign_Q;
d_Prompt += (*d_Single_Prompt) * sec_sign_Q;
d_Late += (*d_Single_Late) * sec_sign_Q;
d_Prompt_data = (*d_Single_Prompt_data);
d_Prompt_data *= sec_sign_I;
d_integration_counter++;
// ################## PLL ##########################################################
// PLL discriminator
if (d_integration_counter == d_current_ti_ms)
{
if (d_secondary_lock == true)
{
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
else
{
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
}
// carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad -= 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0 * GALILEO_PI);
// ################## DLL ##########################################################
if (d_integration_counter == d_current_ti_ms)
{
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_Early, d_Late); //[chips/Ti]
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
}
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples - 1)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
// ATTEMPT SECONDARY CODE ACQUISITION
if (d_secondary_lock == false)
{
acquire_secondary(); // changes d_secondary_lock and d_secondary_delay
if (d_secondary_lock == true)
{
std::cout << "Galileo E5a secondary code locked for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
d_current_ti_ms = d_ti_ms;
// Change loop parameters ==========================================
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz);
}
else
{
//std::cout << "Secondary code delay couldn't be resolved." << std::endl;
d_carrier_lock_fail_counter++;
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_state = 0; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
}
else // Secondary lock achieved, monitor carrier lock.
{
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples), d_fs_in, d_current_ti_ms * Galileo_E5a_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples));
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_state = 0;
}
}
}
d_cn0_estimation_counter = 0;
}
if (d_secondary_lock && (d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == 0)
{
d_first_transition = true;
}
// ########### Output the tracking data to navigation and PVT ##########
// The first Prompt output not equal to 0 is synchronized with the transition of a navigation data bit.
if (d_secondary_lock && d_first_transition)
{
current_synchro_data.Prompt_I = static_cast<double>(d_Prompt_data.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_Prompt_data.imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
}
else
{
// make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0;
current_synchro_data.Tracking_sample_counter = d_sample_counter;
current_synchro_data.Carrier_phase_rads = 0.0;
current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_symbol_output = false;
}
break;
}
}
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = GALILEO_E5a_CODE_PERIOD_MS;
if (current_synchro_data.Flag_valid_symbol_output)
{
*out[0] = current_synchro_data;
}
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
double tmp_double;
prompt_I = (d_Prompt_data).real();
prompt_Q = (d_Prompt_data).imag();
if (d_integration_counter == d_current_ti_ms)
{
tmp_E = std::abs<float>(d_Early);
tmp_P = std::abs<float>(d_Prompt);
tmp_L = std::abs<float>(d_Late);
}
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
d_secondary_delay = (d_secondary_delay + 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
d_sample_counter += d_current_prn_length_samples;
consume_each(d_current_prn_length_samples);
if (current_synchro_data.Flag_valid_symbol_output)
{
return 1;
}
else
{
return 0;
}
}
void Galileo_E5a_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
int Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
void Galileo_E5a_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@ -1,207 +0,0 @@
/*!
* \file galileo_e5a_dll_pll_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL
* tracking block for Galileo E5a signals
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
#define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class Galileo_E5a_Dll_Pll_Tracking_cc;
typedef boost::shared_ptr<Galileo_E5a_Dll_Pll_Tracking_cc>
galileo_e5a_dll_pll_tracking_cc_sptr;
galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_narrowhz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class Galileo_E5a_Dll_Pll_Tracking_cc : public gr::block
{
public:
~Galileo_E5a_Dll_Pll_Tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend galileo_e5a_dll_pll_tracking_cc_sptr
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
Galileo_E5a_Dll_Pll_Tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int ti_ms,
float early_late_space_chips);
void acquire_secondary();
// tracking configuration vars
unsigned int d_vector_length;
int d_current_ti_ms;
int d_ti_ms;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
double d_dll_bw_hz;
double d_pll_bw_hz;
double d_dll_bw_narrow_hz;
double d_pll_bw_narrow_hz;
gr_complex* d_codeQ;
gr_complex* d_codeI;
gr_complex d_Early;
gr_complex d_Prompt;
gr_complex d_Late;
gr_complex d_Prompt_data;
gr_complex* d_Single_Early;
gr_complex* d_Single_Prompt;
gr_complex* d_Single_Late;
gr_complex* d_Single_Prompt_data;
float tmp_E;
float tmp_P;
float tmp_L;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu_I;
cpu_multicorrelator multicorrelator_cpu_Q;
// tracking vars
double d_code_freq_chips;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
double d_code_error_filt_secs;
double d_code_phase_step_chips;
double d_carrier_phase_step_rad;
//PRN period in samples
int d_current_prn_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
int d_state;
bool d_first_transition;
// Secondary code acquisition
bool d_secondary_lock;
int d_secondary_delay;
int d_integration_counter;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ */