mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-11-01 07:43:04 +00:00
Adding new algorithms of adquisition:
gps_l1_ca_pcps_multithread_acquisition
gps_l1_ca_pcps_tong_acquisition
galileo_e1_pcps_cccwsr_ambiguous_acquisition
galileo_e1_pcps_tong_ambiguous_acquisition
galileo_e1_pcps_8ms_ambiguous_acquisition
and test for all the algorithms.
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@411 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
@@ -17,10 +17,15 @@
|
||||
#
|
||||
|
||||
set(ACQ_ADAPTER_SOURCES
|
||||
galileo_e1_pcps_ambiguous_acquisition.cc
|
||||
gps_l1_ca_pcps_acquisition.cc
|
||||
gps_l1_ca_pcps_acquisition.cc
|
||||
gps_l1_ca_pcps_multithread_acquisition.cc
|
||||
gps_l1_ca_pcps_assisted_acquisition.cc
|
||||
gps_l1_ca_pcps_acquisition_fine_doppler.cc
|
||||
gps_l1_ca_pcps_tong_acquisition.cc
|
||||
galileo_e1_pcps_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_tong_ambiguous_acquisition.cc
|
||||
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
|
||||
)
|
||||
|
||||
include_directories(
|
||||
|
||||
@@ -0,0 +1,312 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_8ms_ambiguous_acquisition.cc
|
||||
* \brief Adapts a Galileo PCPS 8ms acquisition block to an
|
||||
* AcquisitionInterface for Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "galileo_e1_pcps_8ms_ambiguous_acquisition.h"
|
||||
#include "galileo_e1_signal_processing.h"
|
||||
#include "Galileo_E1.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::GalileoE1Pcps8msAmbiguousAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
boost::shared_ptr<gr::msg_queue> queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "../data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
|
||||
|
||||
if (sampled_ms_ % 4 != 0)
|
||||
{
|
||||
sampled_ms_ = (int)(sampled_ms_/4) * 4;
|
||||
LOG_AT_LEVEL(WARNING) << "coherent_integration_time should be multiple of "
|
||||
<< "Galileo code length (4 ms). coherent_integration_time = "
|
||||
<< sampled_ms_ << " ms will be used.";
|
||||
|
||||
}
|
||||
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code (4 ms) -----------------
|
||||
|
||||
code_length_ = round(
|
||||
fs_in_
|
||||
/ (Galileo_E1_CODE_CHIP_RATE_HZ
|
||||
/ Galileo_E1_B_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * (int)(sampled_ms_/4);
|
||||
|
||||
int samples_per_ms = code_length_ / 4;
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = galileo_pcps_8ms_make_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, samples_per_ms, code_length_,
|
||||
queue_, dump_, dump_filename_);
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
DLOG(INFO) << "stream_to_vector("
|
||||
<< stream_to_vector_->unique_id() << ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::~GalileoE1Pcps8msAmbiguousAcquisition()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
|
||||
float pfa = configuration_->property(role_+ boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_gnss_synchro(
|
||||
Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
bool cboc = configuration_->property(
|
||||
"Acquisition" + boost::lexical_cast<std::string>(channel_)
|
||||
+ ".cboc", false);
|
||||
|
||||
std::complex<float> * code = new std::complex<float>[code_length_];
|
||||
|
||||
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
|
||||
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_/4; i++)
|
||||
{
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
float GalileoE1Pcps8msAmbiguousAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1Pcps8msAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1Pcps8msAmbiguousAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,159 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_8ms_ambiguous_acquisition.h
|
||||
* \brief Adapts a PCPS 8ms acquisition block to an
|
||||
* AcquisitionInterface for Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GALILEO_E1_PCPS_8MS_AMBIGUOUS_ACQUISITION_H_
|
||||
#define GNSS_SDR_GALILEO_E1_PCPS_8MS_AMBIGUOUS_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "galileo_pcps_8ms_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief Adapts a PCPS 8ms acquisition block to an
|
||||
* AcquisitionInterface for Galileo E1 Signals
|
||||
*/
|
||||
class GalileoE1Pcps8msAmbiguousAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GalileoE1Pcps8msAmbiguousAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GalileoE1Pcps8msAmbiguousAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for Galileo E1 PCPS acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
galileo_pcps_8ms_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GALILEO_E1_PCPS_8MS_AMBIGUOUS_ACQUISITION_H_ */
|
||||
@@ -6,7 +6,7 @@
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
@@ -61,30 +61,51 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".sampled_ms", 4);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
|
||||
|
||||
if (sampled_ms_ % 4 != 0)
|
||||
{
|
||||
sampled_ms_ = (int)(sampled_ms_/4) * 4;
|
||||
LOG_AT_LEVEL(WARNING) << "coherent_integration_time should be multiple of "
|
||||
<< "Galileo code length (4 ms). coherent_integration_time = "
|
||||
<< sampled_ms_ << " ms will be used.";
|
||||
|
||||
}
|
||||
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
|
||||
if (!bit_transition_flag_)
|
||||
{
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
max_dwells_ = 2;
|
||||
}
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code (4 ms) -----------------
|
||||
|
||||
vector_length_ = round(
|
||||
code_length_ = round(
|
||||
fs_in_
|
||||
/ (Galileo_E1_CODE_CHIP_RATE_HZ
|
||||
/ Galileo_E1_B_CODE_LENGTH_CHIPS));
|
||||
|
||||
int samples_per_ms = vector_length_ / 4;
|
||||
vector_length_ = code_length_ * (int)(sampled_ms_/4);
|
||||
|
||||
vector_length_ = samples_per_ms * 4;
|
||||
int samples_per_ms = code_length_ / 4;
|
||||
|
||||
code_ = new gr_complex[samples_per_ms*sampled_ms_];
|
||||
code_ = new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_,
|
||||
shift_resolution_, if_, fs_in_, samples_per_ms, vector_length_,
|
||||
queue_, dump_, dump_filename_);
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, samples_per_ms * sampled_ms_);
|
||||
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, samples_per_ms, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
DLOG(INFO) << "stream_to_vector("
|
||||
<< stream_to_vector_->unique_id() << ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
@@ -124,13 +145,13 @@ GalileoE1PcpsAmbiguousAcquisition::set_threshold(float threshold)
|
||||
if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
@@ -150,7 +171,6 @@ GalileoE1PcpsAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -162,7 +182,6 @@ GalileoE1PcpsAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -211,6 +230,7 @@ GalileoE1PcpsAmbiguousAcquisition::init()
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsAmbiguousAcquisition::set_local_code()
|
||||
{
|
||||
@@ -220,18 +240,20 @@ GalileoE1PcpsAmbiguousAcquisition::set_local_code()
|
||||
"Acquisition" + boost::lexical_cast<std::string>(channel_)
|
||||
+ ".cboc", false);
|
||||
|
||||
std::complex<float> * code = new std::complex<float>[vector_length_];
|
||||
std::complex<float> * code = new std::complex<float>[code_length_];
|
||||
|
||||
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
|
||||
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_/4; i++)
|
||||
{
|
||||
memcpy(&(code_[i*vector_length_]), code,
|
||||
sizeof(gr_complex)*vector_length_);
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -255,14 +277,14 @@ float GalileoE1PcpsAmbiguousAcquisition::calculate_threshold(float pfa)
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
@@ -273,11 +295,9 @@ GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
@@ -288,14 +308,12 @@ GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
}
|
||||
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
* Galileo E1 Signals
|
||||
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
*
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
@@ -42,8 +41,8 @@
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts a PCPS acquisition block to an AcquisitionInterface
|
||||
* for Galileo E1 Signals
|
||||
* \brief This class adapts a PCPS acquisition block to an
|
||||
* AcquisitionInterface for Galileo E1 Signals
|
||||
*/
|
||||
class GalileoE1PcpsAmbiguousAcquisition: public AcquisitionInterface
|
||||
{
|
||||
@@ -116,7 +115,6 @@ public:
|
||||
/*!
|
||||
* \brief Sets local code for Galileo E1 PCPS acquisition algorithm.
|
||||
*/
|
||||
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
@@ -136,13 +134,15 @@ private:
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
//unsigned int satellite_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
|
||||
@@ -0,0 +1,303 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
|
||||
* \brief Adapts a PCPS CCCWSR acquisition block to an AcquisitionInterface for
|
||||
* Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "galileo_e1_pcps_cccwsr_ambiguous_acquisition.h"
|
||||
#include "galileo_e1_signal_processing.h"
|
||||
#include "Galileo_E1.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <volk/volk.h>
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::GalileoE1PcpsCccwsrAmbiguousAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
boost::shared_ptr<gr::msg_queue> queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "../data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
|
||||
|
||||
if (sampled_ms_ % 4 != 0)
|
||||
{
|
||||
sampled_ms_ = (int)(sampled_ms_/4) * 4;
|
||||
LOG_AT_LEVEL(WARNING) << "coherent_integration_time should be multiple of "
|
||||
<< "Galileo code length (4 ms). coherent_integration_time = "
|
||||
<< sampled_ms_ << " ms will be used.";
|
||||
}
|
||||
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code (4 ms) -----------------
|
||||
|
||||
code_length_ = round(
|
||||
fs_in_
|
||||
/ (Galileo_E1_CODE_CHIP_RATE_HZ
|
||||
/ Galileo_E1_B_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * (int)(sampled_ms_/4);
|
||||
|
||||
int samples_per_ms = code_length_ / 4;
|
||||
|
||||
code_data_ = new gr_complex[vector_length_];
|
||||
code_pilot_ = new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_cccwsr_make_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, samples_per_ms, code_length_,
|
||||
queue_, dump_, dump_filename_);
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
DLOG(INFO) << "stream_to_vector("
|
||||
<< stream_to_vector_->unique_id() << ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::~GalileoE1PcpsCccwsrAmbiguousAcquisition()
|
||||
{
|
||||
delete[] code_data_;
|
||||
delete[] code_pilot_;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
|
||||
// float pfa = configuration_->property(role_+ boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
// if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
|
||||
// if(pfa==0.0)
|
||||
// {
|
||||
// threshold_ = threshold;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// threshold_ = calculate_threshold(pfa);
|
||||
// }
|
||||
|
||||
threshold_ = threshold;
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_gnss_synchro(
|
||||
Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
bool cboc = configuration_->property(
|
||||
"Acquisition" + boost::lexical_cast<std::string>(channel_)
|
||||
+ ".cboc", false);
|
||||
|
||||
char signal[3];
|
||||
|
||||
strcpy(signal, "1B");
|
||||
|
||||
galileo_e1_code_gen_complex_sampled(code_data_, signal,
|
||||
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
|
||||
|
||||
strcpy(signal, "1C");
|
||||
|
||||
galileo_e1_code_gen_complex_sampled(code_pilot_, signal,
|
||||
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
|
||||
|
||||
acquisition_cc_->set_local_code(code_data_, code_pilot_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float GalileoE1PcpsCccwsrAmbiguousAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsCccwsrAmbiguousAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsCccwsrAmbiguousAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,158 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_cccwsr_ambiguous_acquisition.h
|
||||
* \brief Adapts a PCPS CCCWSR acquisition block to an AcquisitionInterface for
|
||||
* Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GALILEO_E1_PCPS_CCCWSR_AMBIGUOUS_ACQUISITION_H_
|
||||
#define GNSS_SDR_GALILEO_E1_PCPS_CCCWSR_AMBIGUOUS_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_cccwsr_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief Adapts a PCPS CCCWSR acquisition block to an AcquisitionInterface
|
||||
* for Galileo E1 Signals
|
||||
*/
|
||||
class GalileoE1PcpsCccwsrAmbiguousAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GalileoE1PcpsCccwsrAmbiguousAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GalileoE1PcpsCccwsrAmbiguousAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of CCCWSR algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_cccwsr_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
//unsigned int satellite_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_data_;
|
||||
std::complex<float> * code_pilot_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GALILEO_E1_PCPS_CCCWSR_AMBIGUOUS_ACQUISITION_H_ */
|
||||
@@ -0,0 +1,316 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_tong_ambiguous_acquisition.cc
|
||||
* \brief Adapts a PCPS Tong acquisition block to an Acq1uisitionInterface for
|
||||
* Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "galileo_e1_pcps_tong_ambiguous_acquisition.h"
|
||||
#include "galileo_e1_signal_processing.h"
|
||||
#include "Galileo_E1.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::GalileoE1PcpsTongAmbiguousAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
boost::shared_ptr<gr::msg_queue> queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "../data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
|
||||
|
||||
if (sampled_ms_ % 4 != 0)
|
||||
{
|
||||
sampled_ms_ = (int)(sampled_ms_/4) * 4;
|
||||
LOG_AT_LEVEL(WARNING) << "coherent_integration_time should be multiple of "
|
||||
<< "Galileo code length (4 ms). coherent_integration_time = "
|
||||
<< sampled_ms_ << " ms will be used.";
|
||||
|
||||
}
|
||||
|
||||
tong_init_val_ = configuration->property(role + ".tong_init_val", 1);
|
||||
tong_max_val_ = configuration->property(role + ".tong_max_val", 2);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code (4 ms) -----------------
|
||||
|
||||
code_length_ = round(
|
||||
fs_in_
|
||||
/ (Galileo_E1_CODE_CHIP_RATE_HZ
|
||||
/ Galileo_E1_B_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * (int)(sampled_ms_/4);
|
||||
|
||||
int samples_per_ms = code_length_ / 4;
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_tong_make_acquisition_cc(sampled_ms_, shift_resolution_,
|
||||
if_, fs_in_, samples_per_ms, code_length_, tong_init_val_,
|
||||
tong_max_val_, queue_, dump_, dump_filename_);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
DLOG(INFO) << "stream_to_vector("
|
||||
<< stream_to_vector_->unique_id() << ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::~GalileoE1PcpsTongAmbiguousAcquisition()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
|
||||
float pfa = configuration_->property(role_+ boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0) pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_gnss_synchro(
|
||||
Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
bool cboc = configuration_->property(
|
||||
"Acquisition" + boost::lexical_cast<std::string>(channel_)
|
||||
+ ".cboc", false);
|
||||
|
||||
std::complex<float> * code = new std::complex<float>[code_length_];
|
||||
|
||||
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
|
||||
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_/4; i++)
|
||||
{
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float GalileoE1PcpsTongAmbiguousAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
GalileoE1PcpsTongAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsTongAmbiguousAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE1PcpsTongAmbiguousAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,161 @@
|
||||
/*!
|
||||
* \file galileo_e1_pcps_tong_ambiguous_acquisition.h
|
||||
* \brief Adapts a PCPS Tong acquisition block to an AcquisitionInterface for
|
||||
* Galileo E1 Signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GALILEO_E1_PCPS_TONG_AMBIGUOUS_ACQUISITION_H_
|
||||
#define GNSS_SDR_GALILEO_E1_PCPS_TONG_AMBIGUOUS_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_tong_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief Adapts a PCPS Tong acquisition block to an AcquisitionInterface
|
||||
* for Galileo E1 Signals
|
||||
*/
|
||||
class GalileoE1PcpsTongAmbiguousAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GalileoE1PcpsTongAmbiguousAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GalileoE1PcpsTongAmbiguousAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of TONG algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for Galileo E1 TONG acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_tong_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int tong_init_val_;
|
||||
unsigned int tong_max_val_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GALILEO_E1_PCPS_TONG_AMBIGUOUS_ACQUISITION_H_ */
|
||||
@@ -1,10 +1,11 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_acquisition.cc
|
||||
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
|
||||
* GPS L1 C/A Signals
|
||||
* GPS L1 C/A signals
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@@ -57,33 +58,45 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
// std::cout << "role " << role_ << std::endl;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 10000);
|
||||
sampled_ms_ = configuration_->property(role + ".sampled_ms", 1);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
|
||||
if (!bit_transition_flag_)
|
||||
{
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
max_dwells_ = 2;
|
||||
}
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
vector_length_ = round(fs_in_
|
||||
code_length_ = round(fs_in_
|
||||
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
code_= new gr_complex[vector_length_ * sampled_ms_];
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
code_= new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_,
|
||||
shift_resolution_, if_, fs_in_, vector_length_, vector_length_, queue_,
|
||||
dump_, dump_filename_);
|
||||
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_*sampled_ms_);
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
||||
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
|
||||
<< ")";
|
||||
@@ -154,9 +167,9 @@ void GpsL1CaPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -185,13 +198,13 @@ void GpsL1CaPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
signed int GpsL1CaPcpsAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -201,24 +214,28 @@ void GpsL1CaPcpsAcquisition::init()
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
std::complex<float>* code = new std::complex<float>[vector_length_];
|
||||
std::complex<float>* code = new std::complex<float>[code_length_];
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*vector_length_]), code,
|
||||
sizeof(gr_complex)*vector_length_);
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
@@ -227,6 +244,7 @@ void GpsL1CaPcpsAcquisition::reset()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float GpsL1CaPcpsAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
@@ -243,12 +261,13 @@ float GpsL1CaPcpsAcquisition::calculate_threshold(float pfa)
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@@ -119,7 +120,6 @@ public:
|
||||
/*!
|
||||
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
|
||||
*/
|
||||
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
@@ -139,13 +139,15 @@ private:
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
//unsigned int satellite_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
|
||||
@@ -64,7 +64,7 @@ GpsL1CaPcpsAcquisitionFineDoppler::GpsL1CaPcpsAcquisitionFineDoppler(
|
||||
dump_ = configuration->property(role + ".dump", false);
|
||||
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
|
||||
doppler_min_ = configuration->property(role + ".doppler_min", -5000);
|
||||
sampled_ms_ = configuration->property(role + ".sampled_ms", 1);
|
||||
sampled_ms_ = configuration->property(role + ".coherent_integration_time_ms", 1);
|
||||
max_dwells_= configuration->property(role + ".max_dwells", 1);
|
||||
dump_filename_ = configuration->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
@@ -132,7 +132,6 @@ private:
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
//unsigned int satellite_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
int doppler_max_;
|
||||
|
||||
@@ -63,7 +63,7 @@ GpsL1CaPcpsAssistedAcquisition::GpsL1CaPcpsAssistedAcquisition(
|
||||
dump_ = configuration->property(role + ".dump", false);
|
||||
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
|
||||
doppler_min_ = configuration->property(role + ".doppler_min", -5000);
|
||||
sampled_ms_ = configuration->property(role + ".sampled_ms", 1);
|
||||
sampled_ms_ = configuration->property(role + ".coherent_integration_time_ms", 1);
|
||||
max_dwells_= configuration->property(role + ".max_dwells", 1);
|
||||
dump_filename_ = configuration->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
@@ -0,0 +1,296 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_multithread_acquisition.cc
|
||||
* \brief Adapts a multithread PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_pcps_multithread_acquisition.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <stdexcept>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaPcpsMultithreadAcquisition::GpsL1CaPcpsMultithreadAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
gr::msg_queue::sptr queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
bit_transition_flag_ = configuration_->property("Acquisition.bit_transition_flag", false);
|
||||
|
||||
if (!bit_transition_flag_)
|
||||
{
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
max_dwells_ = 2;
|
||||
}
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_
|
||||
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
code_= new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_make_multithread_acquisition_cc(sampled_ms_, max_dwells_,
|
||||
shift_resolution_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, queue_, dump_, dump_filename_);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
||||
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
|
||||
<< ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsMultithreadAcquisition::~GpsL1CaPcpsMultithreadAcquisition()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
}
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsMultithreadAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
std::complex<float>* code = new std::complex<float>[code_length_];
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float GpsL1CaPcpsMultithreadAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsMultithreadAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsMultithreadAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsMultithreadAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,162 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_multithread_acquisition.h
|
||||
* \brief Adapts a multithread PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_multithread_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts a multithread PCPS acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
*/
|
||||
class GpsL1CaPcpsMultithreadAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaPcpsMultithreadAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GpsL1CaPcpsMultithreadAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "GPS_L1_CA_PCPS_Multithread_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "GPS_L1_CA_PCPS_Multithread_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_multithread_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_ */
|
||||
@@ -0,0 +1,284 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_tong_acquisition.cc
|
||||
* \brief Adapts a PCPS Tong acquisition block to an AcquisitionInterface for
|
||||
* GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l1_ca_pcps_tong_acquisition.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
#include <iostream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <stdexcept>
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaPcpsTongAcquisition::GpsL1CaPcpsTongAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams,
|
||||
gr::msg_queue::sptr queue) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
|
||||
{
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".ifreq", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
tong_init_val_ = configuration->property(role + ".tong_init_val", 1);
|
||||
tong_max_val_ = configuration->property(role + ".tong_max_val", 2);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_
|
||||
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
code_= new gr_complex[vector_length_];
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
acquisition_cc_ = pcps_tong_make_acquisition_cc(sampled_ms_, shift_resolution_, if_, fs_in_,
|
||||
code_length_, code_length_, tong_init_val_, tong_max_val_,
|
||||
queue_, dump_, dump_filename_);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
||||
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
|
||||
<< ")";
|
||||
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_AT_LEVEL(WARNING) << item_type_
|
||||
<< " unknown acquisition item type";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsTongAcquisition::~GpsL1CaPcpsTongAcquisition()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel(channel_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_threshold(float threshold)
|
||||
{
|
||||
float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
|
||||
|
||||
if(pfa==0.0)
|
||||
{
|
||||
pfa = configuration_->property(role_+".pfa", 0.0);
|
||||
}
|
||||
if(pfa==0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
else
|
||||
{
|
||||
threshold_ = calculate_threshold(pfa);
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
|
||||
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_threshold(threshold_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_max(doppler_max_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_doppler_step(doppler_step_);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_channel_queue(
|
||||
concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
channel_internal_queue_ = channel_internal_queue;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_channel_queue(channel_internal_queue_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
{
|
||||
gnss_synchro_ = gnss_synchro;
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsTongAcquisition::mag()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
return acquisition_cc_->mag();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_local_code()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
std::complex<float>* code = new std::complex<float>[code_length_];
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*code_length_]), code,
|
||||
sizeof(gr_complex)*code_length_);
|
||||
}
|
||||
|
||||
acquisition_cc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::reset()
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
acquisition_cc_->set_active(true);
|
||||
}
|
||||
}
|
||||
|
||||
float GpsL1CaPcpsTongAcquisition::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
|
||||
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
|
||||
|
||||
unsigned int ncells = vector_length_*frequency_bins;
|
||||
double exponent = 1/(double)ncells;
|
||||
double val = pow(1.0-pfa,exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (item_type_.compare("gr_complex") == 0)
|
||||
{
|
||||
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsTongAcquisition::get_left_block()
|
||||
{
|
||||
return stream_to_vector_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsTongAcquisition::get_right_block()
|
||||
{
|
||||
return acquisition_cc_;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,165 @@
|
||||
/*!
|
||||
* \file gps_l1_ca_pcps_tong_acquisition.h
|
||||
* \brief Adapts a PCPS Tong acquisition block to an AcquisitionInterface for
|
||||
* GPS L1 C/A signals
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L1_CA_TONG_ACQUISITION_H_
|
||||
#define GNSS_SDR_GPS_L1_CA_TONG_ACQUISITION_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "acquisition_interface.h"
|
||||
#include "pcps_tong_acquisition_cc.h"
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/blocks/stream_to_vector.h>
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts a PCPS Tong acquisition block to an
|
||||
* AcquisitionInterface for GPS L1 C/A signals
|
||||
*/
|
||||
class GpsL1CaPcpsTongAcquisition: public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaPcpsTongAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
|
||||
|
||||
virtual ~GpsL1CaPcpsTongAcquisition();
|
||||
|
||||
std::string role()
|
||||
{
|
||||
return role_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns "GPS_L1_CA_PCPS_Tong_Acquisition"
|
||||
*/
|
||||
std::string implementation()
|
||||
{
|
||||
return "GPS_L1_CA_PCPS_Tong_Acquisition";
|
||||
}
|
||||
size_t item_size()
|
||||
{
|
||||
return item_size_;
|
||||
}
|
||||
|
||||
void connect(gr::top_block_sptr top_block);
|
||||
void disconnect(gr::top_block_sptr top_block);
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to efficiently exchange synchronization data between acquisition and
|
||||
* tracking blocks
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
*/
|
||||
void set_channel(unsigned int channel);
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of TONG algorithm
|
||||
*/
|
||||
void set_threshold(float threshold);
|
||||
|
||||
/*! bit_transition_flag_ = configuration_->property("Acquisition.bit_transition_flag", false);
|
||||
|
||||
* \brief Set maximum Doppler off grid search
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max);
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step);
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for GPS L1/CA TONG acquisition algorithm.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search
|
||||
*/
|
||||
signed int mag();
|
||||
|
||||
/*!
|
||||
* \brief Restart acquisition algorithm
|
||||
*/// std::cout << "role " << role_ << std::endl;
|
||||
|
||||
void reset();
|
||||
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
pcps_tong_acquisition_cc_sptr acquisition_cc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int shift_resolution_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int tong_init_val_;
|
||||
unsigned int tong_max_val_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
boost::shared_ptr<gr::msg_queue> queue_;
|
||||
concurrent_queue<int> *channel_internal_queue_;
|
||||
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GPS_L1_CA_TONG_ACQUISITION_H_ */
|
||||
@@ -17,9 +17,13 @@
|
||||
#
|
||||
|
||||
set(ACQ_GR_BLOCKS_SOURCES
|
||||
pcps_acquisition_cc.cc
|
||||
pcps_acquisition_cc.cc
|
||||
pcps_multithread_acquisition_cc.cc
|
||||
pcps_assisted_acquisition_cc.cc
|
||||
pcps_acquisition_fine_doppler_cc.cc
|
||||
pcps_tong_acquisition_cc.cc
|
||||
pcps_cccwsr_acquisition_cc.cc
|
||||
galileo_pcps_8ms_acquisition_cc.cc
|
||||
)
|
||||
|
||||
include_directories(
|
||||
|
||||
@@ -0,0 +1,404 @@
|
||||
/*!
|
||||
* \file galileo_pcps_8ms_acquisition_cc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition for
|
||||
* Galileo E1 signals with coherent integration time = 8 ms (two codes)
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "galileo_pcps_8ms_acquisition_cc.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc_sptr galileo_pcps_8ms_make_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return galileo_pcps_8ms_acquisition_cc_sptr(
|
||||
new galileo_pcps_8ms_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("galileo_pcps_8ms_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_code_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_fft_code_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
free(d_fft_code_A);
|
||||
free(d_fft_code_B);
|
||||
free(d_magnitude);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
|
||||
|
||||
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[d_samples_per_code],
|
||||
&code[d_samples_per_code], gr_complex(-1,0),
|
||||
d_samples_per_code);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_code_B,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_B,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void galileo_pcps_8ms_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
unsigned int indext_A = 0;
|
||||
unsigned int indext_B = 0;
|
||||
float magt = 0.0;
|
||||
float magt_A = 0.0;
|
||||
float magt_B = 0.0;
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_A, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext_A, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt_A = d_magnitude[indext_A] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_B, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext_B, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt_B = d_magnitude[indext_B] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
if (magt_A >= magt_B)
|
||||
{
|
||||
magt = magt_A;
|
||||
indext = indext_A;
|
||||
}
|
||||
else
|
||||
{
|
||||
magt = magt_B;
|
||||
indext = indext_B;
|
||||
}
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// 6.1- Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// 6.2- Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -0,0 +1,218 @@
|
||||
/*!
|
||||
* \file galileo_pcps_8ms_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition for
|
||||
* Galileo E1 signals with coherent integration time = 8 ms (two codes)
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_8MS_ACQUISITION_CC_H_
|
||||
#define GNSS_SDR_PCPS_8MS_ACQUISITION_CC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include <queue>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
|
||||
class galileo_pcps_8ms_acquisition_cc;
|
||||
|
||||
typedef boost::shared_ptr<galileo_pcps_8ms_acquisition_cc> galileo_pcps_8ms_acquisition_cc_sptr;
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc_sptr
|
||||
galileo_pcps_8ms_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition for
|
||||
* Galileo E1 signals with coherent integration time = 8 ms (two codes)
|
||||
*/
|
||||
class galileo_pcps_8ms_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend galileo_pcps_8ms_acquisition_cc_sptr
|
||||
galileo_pcps_8ms_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
|
||||
galileo_pcps_8ms_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_code_A;
|
||||
gr_complex* d_fft_code_B;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~galileo_pcps_8ms_acquisition_cc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_8MS_ACQUISITION_CC_H_*/
|
||||
@@ -44,39 +44,48 @@
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_acquisition_cc_sptr pcps_make_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump, std::string dump_filename)
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return pcps_acquisition_cc_sptr(
|
||||
new pcps_acquisition_cc(sampled_ms, doppler_max, freq, fs_in,
|
||||
samples_per_ms, samples_per_code, queue, dump, dump_filename));
|
||||
new pcps_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
|
||||
pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump, std::string dump_filename) :
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("pcps_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
@@ -94,11 +103,9 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
}
|
||||
|
||||
|
||||
|
||||
pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
{
|
||||
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
@@ -115,6 +122,7 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
@@ -122,7 +130,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
@@ -141,7 +148,6 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
@@ -151,7 +157,11 @@ void pcps_acquisition_cc::init()
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins=floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@@ -165,7 +175,6 @@ void pcps_acquisition_cc::init()
|
||||
}
|
||||
|
||||
|
||||
|
||||
int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
@@ -181,31 +190,46 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
* 6. Declare positive or negative acquisition using a message queue
|
||||
*/
|
||||
|
||||
if (!d_active)
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
d_sample_counter += d_fft_size * noutput_items; // sample counter
|
||||
consume_each(noutput_items);
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
else
|
||||
|
||||
case 1:
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
bool positive_acquisition = false;
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
//aux vars
|
||||
unsigned int i;
|
||||
float fft_normalization_factor;
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
@@ -214,19 +238,22 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_u(d_magnitude, in, d_fft_size);
|
||||
for (i = 0; i < d_fft_size; i++)
|
||||
d_input_power += d_magnitude[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
}
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
|
||||
// for(int i =0; i < 10 ;i++){
|
||||
// DLOG(INFO) << "d_magnitude["<< i <<"] " << d_magnitude[i];
|
||||
// }
|
||||
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
|
||||
// DLOG(INFO) << "d_input_power before " << d_input_power;
|
||||
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// DLOG(INFO) << "d_fft_size " << d_fft_size;
|
||||
// DLOG(INFO) << "d_input_power " << d_input_power;
|
||||
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
@@ -234,16 +261,8 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
}
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
@@ -251,43 +270,15 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_x2_multiply_32fc_u(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
}
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
indext = 0;
|
||||
magt = 0.0;
|
||||
|
||||
fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_u(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
for (i = 0; i < d_fft_size; i++)
|
||||
{
|
||||
if(d_magnitude[i] > magt)
|
||||
{
|
||||
magt = d_magnitude[i];
|
||||
indext = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
|
||||
}
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
@@ -296,8 +287,17 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
|
||||
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
@@ -315,51 +315,90 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
}
|
||||
}
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
|
||||
// 6- Declare positive or negative acquisition using a message queue
|
||||
if (d_test_statistics > d_threshold)
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
positive_acquisition = true;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// 6.1- Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
if (positive_acquisition)
|
||||
{
|
||||
acquisition_message = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
acquisition_message = 2;
|
||||
}
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// 6.2- Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -66,9 +66,12 @@ class pcps_acquisition_cc;
|
||||
typedef boost::shared_ptr<pcps_acquisition_cc> pcps_acquisition_cc_sptr;
|
||||
|
||||
pcps_acquisition_cc_sptr
|
||||
pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump, std::string dump_filename);
|
||||
pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
@@ -80,13 +83,20 @@ class pcps_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_acquisition_cc_sptr
|
||||
pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump, std::string dump_filename);
|
||||
pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
pcps_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump, std::string dump_filename);
|
||||
|
||||
pcps_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
@@ -98,10 +108,12 @@ private:
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
@@ -109,17 +121,19 @@ private:
|
||||
gr_complex* d_fft_codes;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
@@ -0,0 +1,420 @@
|
||||
/*!
|
||||
* \file pcps_cccwsr_acquisition_cc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search acquisition
|
||||
* with Coherent Channel Combining With Sign Recovery scheme.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* D.Borio, C.O'Driscoll, G.Lachapelle, "Coherent, Noncoherent and
|
||||
* Differentially Coherent Combining Techniques for Acquisition of
|
||||
* New Composite GNSS Signals", IEEE Transactions On Aerospace and
|
||||
* Electronic Systems vol. 45 no. 3, July 2009, section IV
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "pcps_cccwsr_acquisition_cc.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
#include <gperftools/profiler.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_cccwsr_acquisition_cc_sptr pcps_cccwsr_make_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
|
||||
{
|
||||
|
||||
return pcps_cccwsr_acquisition_cc_sptr(
|
||||
new pcps_cccwsr_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in,
|
||||
samples_per_ms, samples_per_code, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("pcps_cccwsr_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_code_data, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_fft_code_pilot, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_data_correlation, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_pilot_correlation, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_correlation_plus, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_correlation_minus, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
free(d_fft_code_data);
|
||||
free(d_fft_code_pilot);
|
||||
free(d_data_correlation);
|
||||
free(d_pilot_correlation);
|
||||
free(d_correlation_plus);
|
||||
free(d_correlation_minus);
|
||||
free(d_magnitude);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
|
||||
std::complex<float> * code_pilot)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code_data, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
|
||||
memcpy(d_fft_if->get_inbuf(), code_pilot, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code,
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_code_pilot,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_code_pilot,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_cccwsr_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
unsigned int indext_plus = 0;
|
||||
unsigned int indext_minus = 0;
|
||||
float magt = 0.0;
|
||||
float magt_plus = 0.0;
|
||||
float magt_minus = 0.0;
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference {data+j*pilot} using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_data, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
memcpy(d_data_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_code_pilot, d_fft_size);
|
||||
|
||||
d_ifft->execute();
|
||||
|
||||
memcpy(d_pilot_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
for (unsigned int i = 0; i < d_fft_size; i++)
|
||||
{
|
||||
d_correlation_plus[i] = std::complex<float>(
|
||||
d_data_correlation[i].real() - d_pilot_correlation[i].imag(),
|
||||
d_data_correlation[i].imag() + d_pilot_correlation[i].real());
|
||||
|
||||
d_correlation_minus[i] = std::complex<float>(
|
||||
d_data_correlation[i].real() + d_pilot_correlation[i].imag(),
|
||||
d_data_correlation[i].imag() - d_pilot_correlation[i].real());
|
||||
}
|
||||
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_correlation_plus, d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext_plus, d_magnitude, d_fft_size);
|
||||
magt_plus = d_magnitude[indext_plus] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_correlation_minus, d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext_minus, d_magnitude, d_fft_size);
|
||||
magt_minus = d_magnitude[indext_minus] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
if (magt_plus >= magt_minus)
|
||||
{
|
||||
magt = magt_plus;
|
||||
indext = indext_plus;
|
||||
}
|
||||
else
|
||||
{
|
||||
magt = magt_minus;
|
||||
indext = indext_minus;
|
||||
}
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
|
||||
// 6- Declare positive or negative acquisition using a message queue
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// 6.1- Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// 6.2- Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -0,0 +1,230 @@
|
||||
/*!
|
||||
* \file pcps_cccwsr_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search acquisition
|
||||
* with Coherent Channel Combining With Sign Recovery scheme.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* D.Borio, C.O'Driscoll, G.Lachapelle, "Coherent, Noncoherent and
|
||||
* Differentially Coherent Combining Techniques for Acquisition of
|
||||
* New Composite GNSS Signals", IEEE Transactions On Aerospace and
|
||||
* Electronic Systems vol. 45 no. 3, July 2009, section IV
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_CCCWSR_ACQUISITION_CC_H_
|
||||
#define GNSS_SDR_PCPS_CCCWSR_ACQUISITION_CC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include <queue>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include <boost/shared_array.hpp>
|
||||
|
||||
class pcps_cccwsr_acquisition_cc;
|
||||
|
||||
typedef boost::shared_ptr<pcps_cccwsr_acquisition_cc> pcps_cccwsr_acquisition_cc_sptr;
|
||||
|
||||
pcps_cccwsr_acquisition_cc_sptr
|
||||
pcps_cccwsr_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with
|
||||
* Coherent Channel Combining With Sign Recovery scheme.
|
||||
*/
|
||||
class pcps_cccwsr_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_cccwsr_acquisition_cc_sptr
|
||||
pcps_cccwsr_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
|
||||
pcps_cccwsr_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_code_data;
|
||||
gr_complex* d_fft_code_pilot;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
gr_complex* d_data_correlation;
|
||||
gr_complex* d_pilot_correlation;
|
||||
gr_complex* d_correlation_plus;
|
||||
gr_complex* d_correlation_minus;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~pcps_cccwsr_acquisition_cc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for CCCWSR acquisition algorithm.
|
||||
* \param data_code - Pointer to the data PRN code.
|
||||
* \param pilot_code - Pointer to the pilot PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code_data, std::complex<float> * code_pilot);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of CCCWSR algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Coherent Channel Combining With Sign Recovery Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_CCCWSR_ACQUISITION_CC_H_*/
|
||||
@@ -0,0 +1,401 @@
|
||||
/*!
|
||||
* \file pcps_multithread_acquisition_cc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "pcps_multithread_acquisition_cc.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_multithread_acquisition_cc_sptr pcps_make_multithread_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return pcps_multithread_acquisition_cc_sptr(
|
||||
new pcps_multithread_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename) :
|
||||
gr::block("pcps_multithread_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
free(d_fft_codes);
|
||||
free(d_magnitude);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in, unsigned int samplestamp)
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 3; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 4; // Negative acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 1; // Process next block
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 3; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 4; // Negative acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 1; // Process next block
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_multithread_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_multithread_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
boost::thread(&pcps_multithread_acquisition_cc::perform_acquisition, this, in, d_sample_counter);
|
||||
d_state = 2;
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
|
||||
// Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 4:
|
||||
{
|
||||
// Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -0,0 +1,243 @@
|
||||
/*!
|
||||
* \file pcps_multithread_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation
|
||||
* <li> Doppler serial search loop
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search)
|
||||
* <li> Record the maximum peak and the associated synchronization parameters
|
||||
* <li> Compute the test statistics and compare to the threshold
|
||||
* <li> Declare positive or negative acquisition using a message queue
|
||||
* </ol>
|
||||
*
|
||||
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach", Birkha user, 2007. pp 81-84
|
||||
*
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_
|
||||
#define GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include <queue>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
|
||||
class pcps_multithread_acquisition_cc;
|
||||
|
||||
typedef boost::shared_ptr<pcps_multithread_acquisition_cc> pcps_multithread_acquisition_cc_sptr;
|
||||
|
||||
pcps_multithread_acquisition_cc_sptr
|
||||
pcps_make_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
*
|
||||
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
|
||||
* Algorithm 1, for a pseudocode description of this implementation.
|
||||
*/
|
||||
class pcps_multithread_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_multithread_acquisition_cc_sptr
|
||||
pcps_make_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
|
||||
pcps_multithread_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag,
|
||||
gr::msg_queue::sptr queue, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~pcps_multithread_acquisition_cc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
void perform_acquisition(const gr_complex* in, const unsigned int samplestamp);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_*/
|
||||
@@ -0,0 +1,408 @@
|
||||
/*!
|
||||
* \file pcps_tong_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with
|
||||
* Tong algorithm.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* Acquisition strategy (Kaplan book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation.
|
||||
* <li> Doppler serial search loop.
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search).
|
||||
* <li> Compute the tests statistics for all the cells.
|
||||
* <li> Accumulate the grid of tests statistics with the previous grids.
|
||||
* <li> Record the maximum peak and the associated synchronization parameters.
|
||||
* <li> Compare the maximum averaged test statistics with a threshold.
|
||||
* <li> If the test statistics exceeds the threshold, increment the Tong counter.
|
||||
* <li> Otherwise, decrement the Tong counter.
|
||||
* <li> If the Tong counter is equal to a given maximum value, declare positive
|
||||
* <li> acquisition. If the Tong counter is equa to zero, declare negative
|
||||
* <li> acquisition. Otherwise, process the next block.
|
||||
* </ol>
|
||||
*
|
||||
* Kaplan book: D.Kaplan, J.Hegarty, "Understanding GPS. Principles
|
||||
* and Applications", Artech House, 2006, pp 223-227
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "pcps_tong_acquisition_cc.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <glog/log_severity.h>
|
||||
#include <glog/logging.h>
|
||||
#include <volk/volk.h>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_tong_acquisition_cc_sptr pcps_tong_make_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, unsigned int tong_init_val,
|
||||
unsigned int tong_max_val, gr::msg_queue::sptr queue,
|
||||
bool dump, std::string dump_filename)
|
||||
{
|
||||
return pcps_tong_acquisition_cc_sptr(
|
||||
new pcps_tong_acquisition_cc(sampled_ms, doppler_max, freq, fs_in, samples_per_ms, samples_per_code,
|
||||
tong_init_val, tong_max_val, queue, dump, dump_filename));
|
||||
}
|
||||
|
||||
|
||||
pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
|
||||
unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, unsigned int tong_init_val,
|
||||
unsigned int tong_max_val, gr::msg_queue::sptr queue,
|
||||
bool dump, std::string dump_filename) :
|
||||
gr::block("pcps_tong_acquisition_cc",
|
||||
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
|
||||
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
|
||||
{
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_queue = queue;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_well_count = 0;
|
||||
d_tong_max_val = tong_max_val;
|
||||
d_tong_init_val = tong_init_val;
|
||||
d_tong_count = d_tong_init_val;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
}
|
||||
|
||||
|
||||
pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
|
||||
{
|
||||
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
free(d_grid_doppler_wipeoffs[doppler_index]);
|
||||
free(d_grid_data[doppler_index]);
|
||||
}
|
||||
|
||||
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
delete[] d_grid_data;
|
||||
}
|
||||
|
||||
free(d_fft_codes);
|
||||
free(d_magnitude);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void pcps_tong_acquisition_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
|
||||
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
|
||||
{
|
||||
d_num_doppler_bins++;
|
||||
}
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
d_grid_data = new float*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
|
||||
d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
|
||||
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
|
||||
d_freq + doppler, d_fs_in, d_fft_size);
|
||||
|
||||
if (posix_memalign((void**)&(d_grid_data[doppler_index]), 16,
|
||||
d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
for (unsigned int i = 0; i < d_fft_size; i++)
|
||||
{
|
||||
d_grid_data[doppler_index][i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int pcps_tong_acquisition_cc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_tong_count = d_tong_init_val;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_fft_size; i++)
|
||||
{
|
||||
d_grid_data[doppler_index][i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
unsigned int indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
// 1- Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= (float)d_fft_size;
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
|
||||
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
|
||||
|
||||
volk_32f_s32f_multiply_32f_a(d_magnitude, d_magnitude,
|
||||
1/(fft_normalization_factor*fft_normalization_factor*d_input_power),
|
||||
d_fft_size);
|
||||
|
||||
volk_32f_x2_add_32f_a(d_grid_data[doppler_index], d_magnitude, d_grid_data[doppler_index], d_fft_size);
|
||||
|
||||
volk_32f_index_max_16u_a(&indext, d_grid_data[doppler_index], d_fft_size);
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_grid_data[doppler_index][indext];
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
filename << "../data/test_statistics_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag;
|
||||
|
||||
if (d_test_statistics > d_threshold*d_well_count)
|
||||
{
|
||||
d_tong_count++;
|
||||
if (d_tong_count == d_tong_max_val)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_tong_count--;
|
||||
if (d_tong_count == 0)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(1);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 2:
|
||||
{
|
||||
// 6.1- Declare positive acquisition using a message queue
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 1;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 3:
|
||||
{
|
||||
// 6.2- Declare negative acquisition using a message queue
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
acquisition_message = 2;
|
||||
d_channel_internal_queue->push(acquisition_message);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -0,0 +1,239 @@
|
||||
/*!
|
||||
* \file pcps_tong_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with
|
||||
* Tong algorithm.
|
||||
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
|
||||
*
|
||||
* Acquisition strategy (Kaplan book + CFAR threshold).
|
||||
* <ol>
|
||||
* <li> Compute the input signal power estimation.
|
||||
* <li> Doppler serial search loop.
|
||||
* <li> Perform the FFT-based circular convolution (parallel time search).
|
||||
* <li> Compute the tests statistics for all the cells.
|
||||
* <li> Accumulate the grid of tests statistics with the previous grids.
|
||||
* <li> Record the maximum peak and the associated synchronization parameters.
|
||||
* <li> Compare the maximum averaged test statistics with a threshold.
|
||||
* <li> If the test statistics exceeds the threshold, increment the Tong counter.
|
||||
* <li> Otherwise, decrement the Tong counter.
|
||||
* <li> If the Tong counter is equal to a given maximum value, declare positive
|
||||
* <li> acquisition. If the Tong counter is equa to zero, declare negative
|
||||
* <li> acquisition. Otherwise, process the next block.
|
||||
* </ol>
|
||||
*
|
||||
* Kaplan book: D.Kaplan, J.Hegarty, "Understanding GPS. Principles
|
||||
* and Applications", Artech House, 2006, pp 223-227
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_PCPS_TONG_acquisition_cc_H_
|
||||
#define GNSS_SDR_PCPS_TONG_acquisition_cc_H_
|
||||
|
||||
#include <fstream>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/msg_queue.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
#include <queue>
|
||||
#include <boost/thread/mutex.hpp>
|
||||
#include <boost/thread/thread.hpp>
|
||||
#include "concurrent_queue.h"
|
||||
#include "gnss_synchro.h"
|
||||
|
||||
class pcps_tong_acquisition_cc;
|
||||
|
||||
typedef boost::shared_ptr<pcps_tong_acquisition_cc> pcps_tong_acquisition_cc_sptr;
|
||||
|
||||
pcps_tong_acquisition_cc_sptr
|
||||
pcps_tong_make_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, unsigned int tong_init_val,
|
||||
unsigned int tong_max_val, gr::msg_queue::sptr queue,
|
||||
bool dump, std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with
|
||||
* Tong algorithm.
|
||||
*/
|
||||
class pcps_tong_acquisition_cc: public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_tong_acquisition_cc_sptr
|
||||
pcps_tong_make_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, unsigned int tong_init_val,
|
||||
unsigned int tong_max_val, gr::msg_queue::sptr queue,
|
||||
bool dump, std::string dump_filename);
|
||||
|
||||
|
||||
pcps_tong_acquisition_cc(unsigned int sampled_ms, unsigned int doppler_max,
|
||||
long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, unsigned int tong_init_val,
|
||||
unsigned int tong_max_val, gr::msg_queue::sptr queue,
|
||||
bool dump, std::string dump_filename);
|
||||
|
||||
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
|
||||
int doppler_offset);
|
||||
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_tong_count;
|
||||
unsigned int d_tong_init_val;
|
||||
unsigned int d_tong_max_val;
|
||||
unsigned int d_fft_size;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
float** d_grid_data;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
gr::msg_queue::sptr d_queue;
|
||||
concurrent_queue<int> *d_channel_internal_queue;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~pcps_tong_acquisition_cc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for TONG acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active)
|
||||
{
|
||||
d_active = active;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of TONG algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel internal queue.
|
||||
* \param channel_internal_queue - Channel's internal blocks information queue.
|
||||
*/
|
||||
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
|
||||
{
|
||||
d_channel_internal_queue = channel_internal_queue;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_TONG_acquisition_cc_H_ */
|
||||
@@ -40,6 +40,9 @@
|
||||
//!Generates complex GPS L1 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
|
||||
void gps_l1_ca_code_gen_complex(std::complex<float>* _dest, signed int _prn, unsigned int _chip_shift);
|
||||
|
||||
//! Generates N complex GPS L1 C/A codes for the desired SV ID and code shift
|
||||
void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, signed int _fs, unsigned int _chip_shift, unsigned int _ncodes);
|
||||
|
||||
//! Generates complex GPS L1 C/A code for the desired SV ID and code shift
|
||||
void gps_l1_ca_code_gen_complex_sampled(std::complex<float>* _dest, unsigned int _prn, signed int _fs, unsigned int _chip_shift);
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
/*!
|
||||
* \file signal_generator.cc
|
||||
* \brief Signal generator.
|
||||
* \brief Adapter of a class that generates synthesized GNSS signal.
|
||||
* \author Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
*
|
||||
*
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* \file signal_generator_c.h
|
||||
* \file signal_generator_c.cc
|
||||
* \brief GNU Radio source block that generates synthesized GNSS signal.
|
||||
* \author Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
*
|
||||
@@ -27,9 +27,9 @@
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
//#ifdef HAVE_CONFIG_H
|
||||
//#include "config.h"
|
||||
//#endif
|
||||
|
||||
#include "signal_generator_c.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
@@ -73,7 +73,7 @@ signal_generator_c::signal_generator_c (std::vector<std::string> system, const s
|
||||
fs_in_(fs_in),
|
||||
num_sats_(PRN.size()),
|
||||
vector_length_(vector_length),
|
||||
BW_BB_(BW_BB*(float)fs_in/2)
|
||||
BW_BB_(BW_BB*(float)fs_in/2.0)
|
||||
{
|
||||
init();
|
||||
generate_codes();
|
||||
@@ -122,14 +122,14 @@ void signal_generator_c::init()
|
||||
// for (unsigned int i = 0; i < num_sats_; i++)
|
||||
// {
|
||||
// std::cout << "Sat " << i << ": " << std::endl;
|
||||
// std::cout << "System " << system_[i] << ": " << std::endl;
|
||||
// std::cout << " System " << system_[i] << ": " << std::endl;
|
||||
// std::cout << " PRN: " << PRN_[i] << std::endl;
|
||||
// std::cout << " CN0: " << CN0_dB_[i] << std::endl;
|
||||
// std::cout << " Doppler: " << doppler_Hz_[i] << std::endl;
|
||||
// std::cout << " Delay: " << delay_chips_[i] << std::endl;
|
||||
// std::cout << "Samples per code = " << samples_per_code_[i] << std::endl;
|
||||
// std::cout << "codes per vector = " << num_of_codes_per_vector_[i] << std::endl;
|
||||
// std::cout << "data_bit_duration = " << data_bit_duration_ms_[i] << std::endl;
|
||||
// std::cout << " Samples per code = " << samples_per_code_[i] << std::endl;
|
||||
// std::cout << " codes per vector = " << num_of_codes_per_vector_[i] << std::endl;
|
||||
// std::cout << " data_bit_duration = " << data_bit_duration_ms_[i] << std::endl;
|
||||
// }
|
||||
}
|
||||
|
||||
@@ -152,9 +152,12 @@ void signal_generator_c::generate_codes()
|
||||
(int)GPS_L1_CA_CODE_LENGTH_CHIPS-delay_chips_[sat]);
|
||||
|
||||
// Obtain the desired CN0 assuming that Pn = 1.
|
||||
for (unsigned int i = 0; i < samples_per_code_[sat]; i++)
|
||||
if (noise_flag_)
|
||||
{
|
||||
code[i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_);
|
||||
for (unsigned int i = 0; i < samples_per_code_[sat]; i++)
|
||||
{
|
||||
code[i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_);
|
||||
}
|
||||
}
|
||||
|
||||
// Concatenate "num_of_codes_per_vector_" codes
|
||||
@@ -175,9 +178,12 @@ void signal_generator_c::generate_codes()
|
||||
(int)Galileo_E1_B_CODE_LENGTH_CHIPS-delay_chips_[sat]);
|
||||
|
||||
// Obtain the desired CN0 assuming that Pn = 1.
|
||||
for (unsigned int i = 0; i < samples_per_code_[sat]; i++)
|
||||
if (noise_flag_)
|
||||
{
|
||||
code[i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_/2);
|
||||
for (unsigned int i = 0; i < samples_per_code_[sat]; i++)
|
||||
{
|
||||
code[i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_/2);
|
||||
}
|
||||
}
|
||||
|
||||
// Concatenate "num_of_codes_per_vector_" codes
|
||||
@@ -197,9 +203,12 @@ void signal_generator_c::generate_codes()
|
||||
(int)Galileo_E1_B_CODE_LENGTH_CHIPS-delay_chips_[sat], true);
|
||||
|
||||
// Obtain the desired CN0 assuming that Pn = 1.
|
||||
for (unsigned int i = 0; i < vector_length_; i++)
|
||||
if (noise_flag_)
|
||||
{
|
||||
sampled_code_pilot_[sat][i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_/2);
|
||||
for (unsigned int i = 0; i < vector_length_; i++)
|
||||
{
|
||||
sampled_code_pilot_[sat][i] *= sqrt(pow(10,CN0_dB_[sat]/10)/BW_BB_/2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -257,21 +266,20 @@ signal_generator_c::general_work (int noutput_items,
|
||||
|
||||
for (i = 0; i < num_of_codes_per_vector_[sat]; i++)
|
||||
{
|
||||
gr_complex prev_data_bit = current_data_bits_[sat];
|
||||
for (k = 0; k < delay_samples; k++)
|
||||
{
|
||||
out[out_idx] += sampled_code_data_[sat][out_idx]
|
||||
* current_data_bits_[sat]
|
||||
* complex_phase_[out_idx];
|
||||
out_idx++;
|
||||
}
|
||||
|
||||
if (ms_counter_[sat] == 0 && data_flag_)
|
||||
{
|
||||
// New random data bit
|
||||
current_data_bits_[sat] = gr_complex((rand()%2) == 0 ? 1 : -1, 0);
|
||||
}
|
||||
|
||||
for (k = 0; k < delay_samples; k++)
|
||||
{
|
||||
out[out_idx] += sampled_code_data_[sat][out_idx]
|
||||
* prev_data_bit
|
||||
* complex_phase_[out_idx];
|
||||
out_idx++;
|
||||
}
|
||||
|
||||
for (k = delay_samples; k < samples_per_code_[sat]; k++)
|
||||
{
|
||||
out[out_idx] += sampled_code_data_[sat][out_idx]
|
||||
@@ -292,21 +300,20 @@ signal_generator_c::general_work (int noutput_items,
|
||||
|
||||
for (i = 0; i < num_of_codes_per_vector_[sat]; i++)
|
||||
{
|
||||
gr_complex prev_data_bit = current_data_bits_[sat];
|
||||
if (ms_counter_[sat] == 0 && data_flag_)
|
||||
{
|
||||
// New random data bit
|
||||
current_data_bits_[sat] = gr_complex((rand()%2) == 0 ? -1 : 1, 0);
|
||||
}
|
||||
|
||||
for (k = 0; k < delay_samples; k++)
|
||||
{
|
||||
out[out_idx] += (sampled_code_data_[sat][out_idx] * prev_data_bit
|
||||
out[out_idx] += (sampled_code_data_[sat][out_idx] * current_data_bits_[sat]
|
||||
- sampled_code_pilot_[sat][out_idx])
|
||||
* complex_phase_[out_idx];
|
||||
out_idx++;
|
||||
}
|
||||
|
||||
if (ms_counter_[sat] == 0 && data_flag_)
|
||||
{
|
||||
// New random data bit
|
||||
current_data_bits_[sat] = gr_complex((rand()%2) == 0 ? 1 : -1, 0);
|
||||
}
|
||||
|
||||
for (k = delay_samples; k < samples_per_code_[sat]; k++)
|
||||
{
|
||||
out[out_idx] += (sampled_code_data_[sat][out_idx] * current_data_bits_[sat]
|
||||
|
||||
@@ -17,4 +17,4 @@
|
||||
#
|
||||
|
||||
add_subdirectory(adapters)
|
||||
#add_subdirectory(gnuradio_blocks)
|
||||
#add_subdirectory(gnuradio_blocks)
|
||||
|
||||
Reference in New Issue
Block a user