1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-10-30 23:03:05 +00:00

Adding documentation and improving code formatting.

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@103 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Carles Fernandez
2011-12-28 21:36:45 +00:00
parent 48719c3075
commit 2ce62706af
80 changed files with 1568 additions and 1498 deletions

View File

@@ -1,11 +1,13 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking.cc
* \brief code DLL + carrier FLL/PLL tracking
* \brief Implementation of an adapter of a code DLL + carrier FLL/PLL tracking
* loop for GPS L1 C/A to a TrackingInterface
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) + carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL) stage
* according to the algorithms described in [1]
* [1] E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* This file implements the code Delay Locked Loop (DLL) + carrier Phase
* Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
@@ -40,18 +42,21 @@
#include <boost/math/special_functions/round.hpp>
#endif
#include <gnuradio/gr_io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
using google::LogMessage;
GpsL1CaDllFllPllTracking::GpsL1CaDllFllPllTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams, unsigned int
out_streams,
gr_msg_queue_sptr queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(
queue)
role_(role),
in_streams_(in_streams),
out_streams_(out_streams),
queue_(queue)
{
DLOG(INFO) << "role " << role;

View File

@@ -1,11 +1,13 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking.h
* \brief code DLL + carrier FLL/PLL tracking
* \brief Interface of an adapter of a code DLL + carrier FLL/PLL tracking
* loop for GPS L1 C/A to a TrackingInterface
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) + carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL) stage
* according to the algorithms described in [1]
* [1] E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* This is the interface of a code Delay Locked Loop (DLL) + carrier
* Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------

View File

@@ -1,12 +1,14 @@
/*!
* \file gps_l1_ca_dll_pll_tracking.cc
* \brief code DLL + carrier PLL
* \brief Implementation of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in [1]
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, Birkha user, 2007
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
@@ -40,7 +42,6 @@
#include <boost/math/special_functions/round.hpp>
#endif
#include <gnuradio/gr_io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
@@ -50,8 +51,8 @@ GpsL1CaDllPllTracking::GpsL1CaDllPllTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
gr_msg_queue_sptr queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(
queue)
role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue)
{
DLOG(INFO) << "role " << role;
@@ -82,22 +83,22 @@ GpsL1CaDllPllTracking::GpsL1CaDllPllTracking(
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
#ifdef GNSS_SDR_USE_BOOST_ROUND
#ifdef GNSS_SDR_USE_BOOST_ROUND
vector_length = round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
#else
#else
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
#endif
#endif
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l1_ca_dll_pll_make_tracking_cc(satellite_, f_if,
fs_in, vector_length, queue_, dump, dump_filename, pll_bw_hz,dll_bw_hz,early_late_space_chips);
}
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l1_ca_dll_pll_make_tracking_cc(satellite_, f_if,
fs_in, vector_length, queue_, dump, dump_filename, pll_bw_hz,dll_bw_hz,early_late_space_chips);
}
else
{
LOG_AT_LEVEL(WARNING) << item_type << " unknown tracking item type.";
}
{
LOG_AT_LEVEL(WARNING) << item_type << " unknown tracking item type.";
}
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
@@ -111,7 +112,7 @@ void GpsL1CaDllPllTracking::start_tracking()
tracking_->start_tracking();
}
/*!
/*
* Set satellite ID
*/
void GpsL1CaDllPllTracking::set_satellite(unsigned int satellite)
@@ -121,7 +122,7 @@ void GpsL1CaDllPllTracking::set_satellite(unsigned int satellite)
DLOG(INFO) << "satellite set to " << satellite_;
}
/*!
/*
* Set tracking channel unique ID
*/
void GpsL1CaDllPllTracking::set_channel(unsigned int channel)
@@ -130,7 +131,7 @@ void GpsL1CaDllPllTracking::set_channel(unsigned int channel)
tracking_->set_channel(channel);
}
/*!
/*
* Set tracking channel internal queue
*/
void GpsL1CaDllPllTracking::set_channel_queue(
@@ -141,21 +142,24 @@ void GpsL1CaDllPllTracking::set_channel_queue(
tracking_->set_channel_queue(channel_internal_queue_);
}
/*!
/*
* Set acquisition code phase in samples
*/
void GpsL1CaDllPllTracking::set_prn_code_phase(signed int phase_samples)
{
return tracking_->set_acq_code_phase((float)phase_samples);
}
/*!
/*
* Set acquisition Doppler frequency in Hz.
*/
void GpsL1CaDllPllTracking::set_doppler_freq_shift(float doppler_freq_hz)
{
return tracking_->set_acq_doppler(doppler_freq_hz);
}
/*!
/*
* Set acquisition sample stamp in samples, in order to detect the delay between acquisition and tracking
*/
void GpsL1CaDllPllTracking::set_acq_sample_stamp(
@@ -163,6 +167,7 @@ void GpsL1CaDllPllTracking::set_acq_sample_stamp(
{
return tracking_->set_acq_sample_stamp(sample_stamp);
}
void GpsL1CaDllPllTracking::connect(gr_top_block_sptr top_block)
{
//nothing to connect, now the tracking uses gr_sync_decimator

View File

@@ -1,12 +1,14 @@
/*!
* \file gps_l1_ca_dll_pll_tracking.h
* \brief code DLL + carrier PLL
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in [1]
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, Birkha user, 2007
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
@@ -76,14 +78,37 @@ public:
gr_basic_block_sptr get_left_block();
gr_basic_block_sptr get_right_block();
/*!
* \brief Set satellite ID
*/
void set_satellite(unsigned int satellite);
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set acquisition code phase in samples
*/
void set_prn_code_phase(signed int phase_samples);
/*!
* \brief Set acquisition Doppler frequency in Hz.
*/
void set_doppler_freq_shift(float doppler_freq_hz);
/*!
* \brief Set tracking channel internal queue
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
void start_tracking();
/*!
* \brief Set acquisition sample stamp in samples, in order to detect
* the delay between acquisition and tracking
*/
void set_acq_sample_stamp(unsigned long int sample_stamp);
private:

View File

@@ -1,11 +1,12 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking_cc.cc
* \brief code DLL + carrier FLL/PLL tracking
* \brief Implementation of a code DLL + carrier FLL/PLL tracking block
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) + carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL) stage
* according to the algorithms described in [1]
* [1] E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* This file implements the code Delay Locked Loop (DLL) + carrier
* Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL)
* according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------
@@ -39,16 +40,13 @@
#include "tracking_discriminators.h"
#include "CN_estimators.h"
#include "tracking_FLL_PLL_filter.h"
#include "control_message_factory.h"
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <sstream>
#include <cmath>
#include "math.h"
#include <gnuradio/gr_io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
@@ -124,7 +122,7 @@ gps_l1_ca_dll_fll_pll_tracking_cc::gps_l1_ca_dll_fll_pll_tracking_cc(unsigned in
void gps_l1_ca_dll_fll_pll_tracking_cc::start_tracking(){
/*!
/*
* correct the code phase according to the delay between acq and trk
*/
unsigned long int acq_trk_diff_samples;
@@ -242,7 +240,7 @@ gps_l1_ca_dll_fll_pll_tracking_cc::~gps_l1_ca_dll_fll_pll_tracking_cc() {
delete[] d_Prompt_buffer;
}
/*! Tracking signal processing
/* Tracking signal processing
* Notice that this is a class derived from gr_sync_decimator, so each of the ninput_items has vector_length samples
*/
@@ -268,7 +266,7 @@ int gps_l1_ca_dll_fll_pll_tracking_cc::general_work (int noutput_items, gr_vecto
d_Late=gr_complex(0,0);
if (d_enable_tracking==true){
/*!
/*
* Receiver signal alignment
*/
if (d_pull_in==true)
@@ -329,7 +327,7 @@ int gps_l1_ca_dll_fll_pll_tracking_cc::general_work (int noutput_items, gr_vecto
d_Late += bb_signal_sample*d_late_code[i];
}
/*!
/*
* DLL, FLL, and PLL discriminators
*/
// Compute DLL error

View File

@@ -1,12 +1,12 @@
/*!
* \file gps_l1_ca_dll_fll_pll_tracking_cc.h
* \brief code DLL + carrier FLL/PLL tracking
* \brief Interface of a code DLL + carrier FLL/PLL tracking block
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* This file implements the code Delay Locked Loop (DLL) +
* carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked Loop (FLL) stage
* according to the algorithms described in [1]
* [1] E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* This is the interface of a code Delay Locked Loop (DLL) +
* carrier Phase Locked Loop (PLL) helped with a carrier Frequency Locked
* Loop (FLL) according to the algorithms described in:
* E.D. Kaplan and C. Hegarty, Understanding GPS. Principles and
* Applications, Second Edition, Artech House Publishers, 2005.
*
* -------------------------------------------------------------------------

View File

@@ -1,12 +1,13 @@
/*!
* \file gps_l1_ca_dll_pll_tracking_cc.cc
* \brief code DLL + carrier PLL
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in [1]
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, Birkha user, 2007
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
@@ -139,7 +140,7 @@ gps_l1_ca_dll_pll_tracking_cc::gps_l1_ca_dll_pll_tracking_cc(unsigned int satell
}
void gps_l1_ca_dll_pll_tracking_cc::start_tracking(){
/*!
/*
* correct the code phase according to the delay between acq and trk
*/
unsigned long int acq_trk_diff_samples;
@@ -270,7 +271,7 @@ gps_l1_ca_dll_pll_tracking_cc::~gps_l1_ca_dll_pll_tracking_cc() {
delete[] d_Prompt_buffer;
}
/*! Tracking signal processing
/* Tracking signal processing
* Notice that this is a class derived from gr_sync_decimator, so each of the ninput_items has vector_length samples
*/
@@ -295,7 +296,7 @@ int gps_l1_ca_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_in
d_Late=gr_complex(0,0);
if (d_enable_tracking==true){
/*!
/*
* Receiver signal alignment
*/
if (d_pull_in==true)

View File

@@ -1,12 +1,13 @@
/*!
* \file gps_l1_ca_dll_pll_tracking_cc.h
* \brief code DLL + carrier PLL
* \brief Interface of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in [1]
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, Birkha user, 2007
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*

View File

@@ -1,25 +1,18 @@
/*!
* \file CN_estimators.cc
* \brief Library with a set of Carrier to Noise estimators and lock detectors.
* SNV_CN0 is a Carrier-to-Noise (CN0) estimator based on the Signal-to-Noise Variance (SNV) estimator [1].
*
* \brief Implementation of a library with a set of Carrier to Noise
* estimators and lock detectors. SNV_CN0 is a Carrier-to-Noise (CN0) estimator
* based on the Signal-to-Noise Variance (SNV) estimator [1].
* Carrier lock detector using normalised estimate of the cosine
* of twice the carrier phase error [2].
*
*
* [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
* IEEE 10th International Symposium on Spread Spectrum Techniques and
* Applications, pp.28-30, August 2008.
*
*
*
* [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
* Applications,
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
* Inc.: 329-407.
*
*
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
*
@@ -52,7 +45,7 @@
#include <gnuradio/gr_complex.h>
#include <math.h>
/*!
/*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
@@ -66,36 +59,37 @@
* CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}),
* \f}
* where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length.
*
*/
float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in)
{
// estimate CN0 using buffered values
// MATLAB CODE
//Psig=((1/N)*sum(abs(imag(x((n-N+1):n)))))^2;
//Ptot=(1/N)*sum(abs(x((n-N+1):n)).^2);
//SNR_SNV(count)=Psig/(Ptot-Psig);
//CN0_SNV_dB=10*log10(SNR_SNV)+10*log10(BW)-10*log10(PRN_length);
float SNR, SNR_dB_Hz;
float tmp_abs_I,tmp_abs_Q;
float Psig,Ptot;
//float M2,M4;
Psig=0;
Ptot=0;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
Psig+=tmp_abs_I;
Ptot+=Prompt_buffer[i].imag()*Prompt_buffer[i].imag()+Prompt_buffer[i].real()*Prompt_buffer[i].real();
}
Psig=Psig/(float)length;
Psig=Psig*Psig;
SNR=Psig/(Ptot/(float)length-Psig);
SNR_dB_Hz=10*log10(SNR)+10*log10(fs_in/2)-10*log10(GPS_L1_CA_CODE_LENGTH_CHIPS);
return SNR_dB_Hz;
// estimate CN0 using buffered values
// MATLAB CODE
//Psig=((1/N)*sum(abs(imag(x((n-N+1):n)))))^2;
//Ptot=(1/N)*sum(abs(x((n-N+1):n)).^2);
//SNR_SNV(count)=Psig/(Ptot-Psig);
//CN0_SNV_dB=10*log10(SNR_SNV)+10*log10(BW)-10*log10(PRN_length);
float SNR, SNR_dB_Hz;
float tmp_abs_I,tmp_abs_Q;
float Psig,Ptot;
//float M2,M4;
Psig=0;
Ptot=0;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
Psig+=tmp_abs_I;
Ptot+=Prompt_buffer[i].imag()*Prompt_buffer[i].imag()+Prompt_buffer[i].real()*Prompt_buffer[i].real();
}
Psig=Psig/(float)length;
Psig=Psig*Psig;
SNR=Psig/(Ptot/(float)length-Psig);
SNR_dB_Hz=10*log10(SNR)+10*log10(fs_in/2)-10*log10(GPS_L1_CA_CODE_LENGTH_CHIPS);
return SNR_dB_Hz;
}
/*!
/*
* The Carrier Phase Lock Detector block uses the normalised estimate of the cosine of twice the carrier phase error is given by
* \f{equation}
* C2\phi=\frac{NBD}{NBP},
@@ -104,38 +98,37 @@ float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in)
* \f$NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2\f$, and
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*/
float carrier_lock_detector(gr_complex* Prompt_buffer, int length)
{
/*!
* \todo Code lock detector
*/
// estimate using buffered values
// MATLAB CODE
// lock detector operation
//NBD=sum(abs(imag(x((n-N+1):n))))^2 + sum(abs(real(x((n-N+1):n))))^2;
//NBP=sum(imag(x((n-N+1):n)).^2) - sum(real(x((n-N+1):n)).^2);
//LOCK(count)=NBD/NBP;
float tmp_abs_I,tmp_abs_Q;
float tmp_sum_abs_I,tmp_sum_abs_Q;
float tmp_sum_sqr_I,tmp_sum_sqr_Q;
tmp_sum_abs_I=0;
tmp_sum_abs_Q=0;
tmp_sum_sqr_I=0;
tmp_sum_sqr_Q=0;
float NBD,NBP;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
tmp_sum_abs_I+=tmp_abs_I;
tmp_sum_abs_Q+=tmp_abs_Q;
tmp_sum_sqr_I+=(Prompt_buffer[i].imag()*Prompt_buffer[i].imag());
tmp_sum_sqr_Q+=(Prompt_buffer[i].real()*Prompt_buffer[i].real());
}
NBD=tmp_sum_abs_I*tmp_sum_abs_I+tmp_sum_abs_Q*tmp_sum_abs_Q;
NBP=tmp_sum_sqr_I-tmp_sum_sqr_Q;
return NBD/NBP;
/*!
* \todo Code lock detector
*/
// estimate using buffered values
// MATLAB CODE
// lock detector operation
//NBD=sum(abs(imag(x((n-N+1):n))))^2 + sum(abs(real(x((n-N+1):n))))^2;
//NBP=sum(imag(x((n-N+1):n)).^2) - sum(real(x((n-N+1):n)).^2);
//LOCK(count)=NBD/NBP;
float tmp_abs_I,tmp_abs_Q;
float tmp_sum_abs_I,tmp_sum_abs_Q;
float tmp_sum_sqr_I,tmp_sum_sqr_Q;
tmp_sum_abs_I=0;
tmp_sum_abs_Q=0;
tmp_sum_sqr_I=0;
tmp_sum_sqr_Q=0;
float NBD,NBP;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
tmp_sum_abs_I+=tmp_abs_I;
tmp_sum_abs_Q+=tmp_abs_Q;
tmp_sum_sqr_I+=(Prompt_buffer[i].imag()*Prompt_buffer[i].imag());
tmp_sum_sqr_Q+=(Prompt_buffer[i].real()*Prompt_buffer[i].real());
}
NBD=tmp_sum_abs_I*tmp_sum_abs_I+tmp_sum_abs_Q*tmp_sum_abs_Q;
NBP=tmp_sum_sqr_I-tmp_sum_sqr_Q;
return NBD/NBP;
}

View File

@@ -1,10 +1,9 @@
/*!
* \file CN_estimators.h
* \brief Library with a set of Carrier to Noise estimators and lock detectors
* \brief Interface of a library with a set of Carrier to Noise
* estimators and lock detectors.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Library with a set of Carrier to Noise estimators and lock detectors
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
@@ -35,8 +34,43 @@
#include <gnuradio/gr_complex.h>
/*! brief SNV_CN0 is a Carrier-to-Noise (CN0) estimator
* based on the Signal-to-Noise Variance (SNV) estimator
*
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the receiver bandwidth and the PRN code gain, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}),
* \f}
* where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length.
* Ref: Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
* IEEE 10th International Symposium on Spread Spectrum Techniques and
* Applications, pp.28-30, August 2008.
*/
float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in);
/*! \brief A carrier lock detector
*
* The Carrier Phase Lock Detector block uses the normalised estimate of the cosine of twice the carrier phase error is given by
* \f{equation}
* C2\phi=\frac{NBD}{NBP},
* \f}
* where \f$NBD=(\sum^{N-1}_{i=0}|Im(Pc(i))|)^2+(\sum^{N-1}_{i=0}|Re(Pc(i))|)^2\f$,
* \f$NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2\f$, and
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
* Ref: Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
* Applications,
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
* Inc.: 329-407.
*/
float carrier_lock_detector(gr_complex* Prompt_buffer, int length);
#endif

View File

@@ -1,11 +1,12 @@
/*!
* \file tracking_2nd_DLL_filter.cc
* \brief Class that implements 2 order DLL filter for code tracking loop.
* \brief Implementation of a 2nd order DLL filter for code tracking loop.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements 2 order PLL filter for code tracking loop. The algorithm is described in [1]
*
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.~H.~Jensen, A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Class that implements 2 order PLL filter for code tracking loop.
* The algorithm is described in :
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.~H.~Jensen, A Software-Defined
* GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007, Applied and Numerical Harmonic Analysis.
*
* -------------------------------------------------------------------------
@@ -38,19 +39,19 @@
void tracking_2nd_DLL_filter::calculate_lopp_coef(float* tau1,float* tau2, float lbw, float zeta, float k){
// Solve natural frequency
float Wn;
Wn = lbw*8*zeta / (4*zeta*zeta + 1);
// solve for t1 & t2
*tau1 = k / (Wn * Wn);
*tau2 = (2.0 * zeta) / Wn;
// Solve natural frequency
float Wn;
Wn = lbw*8*zeta / (4*zeta*zeta + 1);
// solve for t1 & t2
*tau1 = k / (Wn * Wn);
*tau2 = (2.0 * zeta) / Wn;
}
void tracking_2nd_DLL_filter::set_DLL_BW(float dll_bw_hz)
{
//Calculate filter coefficient values
d_dllnoisebandwidth=dll_bw_hz;
calculate_lopp_coef(&d_tau1_code, &d_tau2_code, d_dllnoisebandwidth, d_dlldampingratio,1.0);// Calculate filter coefficient values
//Calculate filter coefficient values
d_dllnoisebandwidth=dll_bw_hz;
calculate_lopp_coef(&d_tau1_code, &d_tau2_code, d_dllnoisebandwidth, d_dlldampingratio,1.0);// Calculate filter coefficient values
}
void tracking_2nd_DLL_filter::initialize(float d_acq_code_phase_samples)
{
@@ -62,17 +63,17 @@ void tracking_2nd_DLL_filter::initialize(float d_acq_code_phase_samples)
float tracking_2nd_DLL_filter::get_code_nco(float DLL_discriminator)
{
float code_nco;
code_nco = d_old_code_nco + (d_tau2_code/d_tau1_code)*(DLL_discriminator - d_old_code_error) + DLL_discriminator * (d_pdi_code/d_tau1_code);
d_old_code_nco = code_nco;
d_old_code_error = DLL_discriminator; //[chips]
return code_nco;
float code_nco;
code_nco = d_old_code_nco + (d_tau2_code/d_tau1_code)*(DLL_discriminator - d_old_code_error) + DLL_discriminator * (d_pdi_code/d_tau1_code);
d_old_code_nco = code_nco;
d_old_code_error = DLL_discriminator; //[chips]
return code_nco;
}
tracking_2nd_DLL_filter::tracking_2nd_DLL_filter ()
{
d_pdi_code = 0.001;// Summation interval for code
d_dlldampingratio=0.7;
d_pdi_code = 0.001;// Summation interval for code
d_dlldampingratio=0.7;
}
tracking_2nd_DLL_filter::~tracking_2nd_DLL_filter ()

View File

@@ -1,10 +1,12 @@
/*!
* \file tracking_2nd_DLL_filter.h
* \brief Class that implements 2 order DLL filter for code tracking loop.
* \brief Interface of a 2nd order DLL filter for code tracking loop.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements 2 order PLL filter for code tracking loop. The algorithm is described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S. H. Jensen, A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Class that implements a 2nd order PLL filter for code tracking loop.
* The algorithm is described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S. H. Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007, Applied and Numerical Harmonic Analysis.
*
* -------------------------------------------------------------------------

View File

@@ -1,11 +1,12 @@
/*!
* \file tracking_2nd_PLL_filter.cc
* \brief Class that implements 2 order PLL filter for tracking carrier loop.
* \brief Implementation of a 2nd order PLL filter for tracking carrier loop.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements 2 order PLL filter for tracking carrier loop. The algorithm is described in [1]
*
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.~H.~Jensen, A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Class that implements 2 order PLL filter for tracking carrier loop. The algorithm
* is described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.~H.~Jensen, A Software-Defined
* GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007, Applied and Numerical Harmonic Analysis.
*
* -------------------------------------------------------------------------

View File

@@ -1,10 +1,12 @@
/*!
* \file tracking_2nd_PLL_filter.h
* \brief Class that implements 2 order PLL filter for carrier tracking loop
* \brief Interface of a 2nd order PLL filter for carrier tracking loop
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements 2 order PLL filter for tracking carrier loop. The algorithm is described in
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.~H.~Jensen, A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Class that implements 2 order PLL filter for tracking carrier loop.
* The algorithm is described in
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H. Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007, Applied and Numerical Harmonic Analysis.
*
* -------------------------------------------------------------------------

View File

@@ -1,6 +1,6 @@
/*!
* \file tracking_FLL_PLL_filter.cc
* \brief Class that implements hybrid FLL and PLL filter for tracking carrier loop
* \brief Implementation of a hybrid FLL and PLL filter for tracking carrier loop
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements hybrid FLL and PLL filter for tracking carrier loop
@@ -36,76 +36,76 @@
void tracking_FLL_PLL_filter::set_params(float fll_bw_hz,float pll_bw_hz, int order)
{
/*!
/*
* Filter design (Kaplan 2nd ed., Pag. 181 Fig. 181)
*/
d_order=order;
d_order=order;
if (d_order==3)
{
/*!
* 3rd order PLL with 2nd order FLL assist
*/
d_pll_b3 = 2.400;
d_pll_a3 = 1.100;
d_pll_a2 = 1.414;
d_pll_w0p = pll_bw_hz/0.7845;
d_pll_w0p2 = d_pll_w0p*d_pll_w0p;
d_pll_w0p3 = d_pll_w0p2*d_pll_w0p;
{
/*
* 3rd order PLL with 2nd order FLL assist
*/
d_pll_b3 = 2.400;
d_pll_a3 = 1.100;
d_pll_a2 = 1.414;
d_pll_w0p = pll_bw_hz/0.7845;
d_pll_w0p2 = d_pll_w0p*d_pll_w0p;
d_pll_w0p3 = d_pll_w0p2*d_pll_w0p;
d_pll_w0f = fll_bw_hz/0.53;
d_pll_w0f2 = d_pll_w0f*d_pll_w0f;
}else
{
/*!
* 2rd order PLL with 1st order FLL assist
*/
d_pll_a2 = 1.414;
d_pll_w0p = pll_bw_hz/0.53;
d_pll_w0p2 = d_pll_w0p*d_pll_w0p;
d_pll_w0f = fll_bw_hz/0.25;
}
d_pll_w0f = fll_bw_hz/0.53;
d_pll_w0f2 = d_pll_w0f*d_pll_w0f;
}else
{
/*
* 2nd order PLL with 1st order FLL assist
*/
d_pll_a2 = 1.414;
d_pll_w0p = pll_bw_hz/0.53;
d_pll_w0p2 = d_pll_w0p*d_pll_w0p;
d_pll_w0f = fll_bw_hz/0.25;
}
}
void tracking_FLL_PLL_filter::initialize(float d_acq_carrier_doppler_hz)
{
if (d_order==3)
{
d_pll_x = 2.0*d_acq_carrier_doppler_hz;
d_pll_w = 0;
}else{
d_pll_w = d_acq_carrier_doppler_hz;
d_pll_x = 0;
}
if (d_order==3)
{
d_pll_x = 2.0*d_acq_carrier_doppler_hz;
d_pll_w = 0;
}else{
d_pll_w = d_acq_carrier_doppler_hz;
d_pll_x = 0;
}
}
float tracking_FLL_PLL_filter::get_carrier_error(float FLL_discriminator, float PLL_discriminator, float correlation_time_s)
{
float carrier_error_hz;
if (d_order==3)
{
/*!
* 3rd order PLL with 2nd order FLL assist
*/
d_pll_w = d_pll_w + correlation_time_s * (d_pll_w0p3 * PLL_discriminator + d_pll_w0f2 * FLL_discriminator);
d_pll_x = d_pll_x + correlation_time_s * (0.5*d_pll_w + d_pll_a2 * d_pll_w0f * FLL_discriminator + d_pll_a3 * d_pll_w0p2 * PLL_discriminator);
carrier_error_hz = 0.5*d_pll_x + d_pll_b3 * d_pll_w0p * PLL_discriminator;
}else
{
/*!
* 2rd order PLL with 1st order FLL assist
*/
float pll_w_new;
pll_w_new = d_pll_w + PLL_discriminator*d_pll_w0p2*correlation_time_s + FLL_discriminator*d_pll_w0f*correlation_time_s ;
carrier_error_hz = 0.5*(pll_w_new + d_pll_w)+d_pll_a2 * d_pll_w0p*PLL_discriminator;
d_pll_w =pll_w_new;
/*std::cout<<" d_pll_w = "<<carrier_error_hz<<
float carrier_error_hz;
if (d_order==3)
{
/*
* 3rd order PLL with 2nd order FLL assist
*/
d_pll_w = d_pll_w + correlation_time_s * (d_pll_w0p3 * PLL_discriminator + d_pll_w0f2 * FLL_discriminator);
d_pll_x = d_pll_x + correlation_time_s * (0.5*d_pll_w + d_pll_a2 * d_pll_w0f * FLL_discriminator + d_pll_a3 * d_pll_w0p2 * PLL_discriminator);
carrier_error_hz = 0.5*d_pll_x + d_pll_b3 * d_pll_w0p * PLL_discriminator;
}else
{
/*
* 2nd order PLL with 1st order FLL assist
*/
float pll_w_new;
pll_w_new = d_pll_w + PLL_discriminator*d_pll_w0p2*correlation_time_s + FLL_discriminator*d_pll_w0f*correlation_time_s ;
carrier_error_hz = 0.5*(pll_w_new + d_pll_w)+d_pll_a2 * d_pll_w0p*PLL_discriminator;
d_pll_w =pll_w_new;
/*std::cout<<" d_pll_w = "<<carrier_error_hz<<
", pll_w_new = "<<pll_w_new
<<", PLL_discriminator=" <<PLL_discriminator
<<" FLL_discriminator ="<<FLL_discriminator
<<" correlation_time_s = "<<correlation_time_s<<"\r\n";*/
}
}
return carrier_error_hz;
return carrier_error_hz;
}

View File

@@ -1,10 +1,8 @@
/*!
* \file tracking_FLL_PLL_filter.h
* \brief Class that implements hybrid FLL and PLL filter for tracking carrier loop
* \brief Interface of a hybrid FLL and PLL filter for tracking carrier loop
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Class that implements hybrid FLL and PLL filter for tracking carrier loop
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)

View File

@@ -1,6 +1,7 @@
/*!
* \file tracking_discriminators.cc
* \brief Library with a set of code tracking and carrier tracking discriminators that is used by the tracking algorithms
* \brief Implementation of a library with a set of code tracking
* and carrier tracking discriminators that is used by the tracking algorithms.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
*
@@ -33,7 +34,7 @@
#include <math.h>
// All the outputs are in RADIANS
/*!
/*
* FLL four quadrant arctan discriminator:
* \f{equation}
* \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2},
@@ -45,13 +46,14 @@
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2,float t1, float t2)
{
float cross,dot;
dot=prompt_s1.imag()*prompt_s2.imag()+prompt_s1.real()*prompt_s2.real();
cross=prompt_s1.imag()*prompt_s2.real()-prompt_s2.imag()*prompt_s1.real();
return atan2(cross,dot)/(t2-t1);
float cross,dot;
dot=prompt_s1.imag()*prompt_s2.imag()+prompt_s1.real()*prompt_s2.real();
cross=prompt_s1.imag()*prompt_s2.real()-prompt_s2.imag()*prompt_s1.real();
return atan2(cross,dot)/(t2-t1);
}
/*!
/*
* PLL four quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN2(Q_{PS},I_{PS}),
@@ -60,27 +62,29 @@ float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2,float t1
*/
float pll_four_quadrant_atan(gr_complex prompt_s1)
{
return atan2(prompt_s1.real(),prompt_s1.imag());
return atan2(prompt_s1.real(),prompt_s1.imag());
}
/*!
/*
* PLL Costas loop two quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right),
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
{
if (prompt_s1.imag()!=0.0)
{
return atan(prompt_s1.real()/prompt_s1.imag());
}else{
return 0;
}
if (prompt_s1.imag()!=0.0)
{
return atan(prompt_s1.real()/prompt_s1.imag());
}else{
return 0;
}
}
/*!
/*
* DLL Noncoherent Early minus Late envelope normalized discriminator:
* \f{equation}
* error=\frac{E-L}{E+L},
@@ -90,8 +94,8 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
*/
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
{
float P_early, P_late;
P_early=std::abs(early_s1);
P_late=std::abs(late_s1);
return (P_early-P_late)/((P_early+P_late));
float P_early, P_late;
P_early=std::abs(early_s1);
P_late=std::abs(late_s1);
return (P_early-P_late)/((P_early+P_late));
}

View File

@@ -1,9 +1,11 @@
/*!
* \file tracking_discriminators.h
* \brief Library with a set of code tracking and carrier tracking disctiminators
* \brief Interface of a library with a set of code tracking and carrier
* tracking discriminators.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Library with a set of code tracking and carrier tracking disctiminators that is used by the tracking algorithms
* Library with a set of code tracking and carrier tracking discriminators
* that is used by the tracking algorithms.
*
* -------------------------------------------------------------------------
*
@@ -35,12 +37,50 @@
#include <gnuradio/gr_complex.h>
/*! brief FLL four quadrant arctan discriminator
*
* FLL four quadrant arctan discriminator:
* \f{equation}
* \frac{\phi_2-\phi_1}{t_2-t1}=\frac{ATAN2(cross,dot)}{t_1-t_2},
* \f}
* where \f$cross=I_{PS1}Q_{PS2}-I_{PS2}Q_{PS1}\f$ and \f$dot=I_{PS1}I_{PS2}+Q_{PS1}Q_{PS2}\f$,
* \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
*/
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2,float t1, float t2);
/*! \brief PLL four quadrant arctan discriminator
*
* PLL four quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN2(Q_{PS},I_{PS}),
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_four_quadrant_atan(gr_complex prompt_s1);
/*! \brief PLL Costas loop two quadrant arctan discriminator
*
* PLL Costas loop two quadrant arctan discriminator:
* \f{equation}
* \phi=ATAN\left(\frac{Q_{PS}}{I_{PS}}\right),
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
/*! \brief DLL Noncoherent Early minus Late envelope normalized discriminator
*
* DLL Noncoherent Early minus Late envelope normalized discriminator:
* \f{equation}
* error=\frac{E-L}{E+L},
* \f}
* where \f$E=\sqrt{I_{ES}^2,Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2,Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
*/
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);