1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-10-30 14:53:03 +00:00

Merging branch 'next' of git://github.com/Arribas/gnss-sdr

This commit is contained in:
Carles Fernandez
2015-11-27 13:32:21 +01:00
41 changed files with 2802 additions and 799 deletions

View File

@@ -28,6 +28,7 @@ set(TRACKING_ADAPTER_SOURCES
gps_l1_ca_dll_fll_pll_tracking.cc
gps_l1_ca_dll_pll_optim_tracking.cc
gps_l1_ca_dll_pll_tracking.cc
gps_l1_ca_dll_pll_artemisa_tracking.cc
gps_l1_ca_tcp_connector_tracking.cc
galileo_e5a_dll_pll_tracking.cc
gps_l2_m_dll_pll_tracking.cc

View File

@@ -0,0 +1,159 @@
/*!
* \file gps_l1_ca_dll_pll_artemisa_tracking.cc
* \brief Implementation of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_pll_artemisa_tracking.h"
#include <glog/logging.h>
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
using google::LogMessage;
GpsL1CaDllPllArtemisaTracking::GpsL1CaDllPllArtemisaTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue)
{
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
item_type = configuration->property(role + ".item_type", default_item_type);
//vector_length = configuration->property(role + ".vector_length", 2048);
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = gps_l1_ca_dll_pll_artemisa_make_tracking_cc(
f_if,
fs_in,
vector_length,
queue_,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
early_late_space_chips);
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type << " unknown tracking item type.";
}
channel_ = 0;
channel_internal_queue_ = 0;
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GpsL1CaDllPllArtemisaTracking::~GpsL1CaDllPllArtemisaTracking()
{}
void GpsL1CaDllPllArtemisaTracking::start_tracking()
{
tracking_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GpsL1CaDllPllArtemisaTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
/*
* Set tracking channel internal queue
*/
void GpsL1CaDllPllArtemisaTracking::set_channel_queue(
concurrent_queue<int> *channel_internal_queue)
{
channel_internal_queue_ = channel_internal_queue;
tracking_->set_channel_queue(channel_internal_queue_);
}
void GpsL1CaDllPllArtemisaTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GpsL1CaDllPllArtemisaTracking::connect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GpsL1CaDllPllArtemisaTracking::disconnect(gr::top_block_sptr top_block)
{
if(top_block) { /* top_block is not null */};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GpsL1CaDllPllArtemisaTracking::get_left_block()
{
return tracking_;
}
gr::basic_block_sptr GpsL1CaDllPllArtemisaTracking::get_right_block()
{
return tracking_;
}

View File

@@ -0,0 +1,114 @@
/*!
* \file gps_l1_ca_dll_pll_artemisa_tracking.h
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for GPS L1 C/A to a TrackingInterface
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_H_
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_H_
#include <string>
#include <gnuradio/msg_queue.h>
#include "tracking_interface.h"
#include "gps_l1_ca_dll_pll_artemisa_tracking_cc.h"
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GpsL1CaDllPllArtemisaTracking : public TrackingInterface
{
public:
GpsL1CaDllPllArtemisaTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams,
boost::shared_ptr<gr::msg_queue> queue);
virtual ~GpsL1CaDllPllArtemisaTracking();
std::string role()
{
return role_;
}
//! Returns "gps_l1_ca_dll_pll_artemisa_tracking"
std::string implementation()
{
return "gps_l1_ca_dll_pll_artemisa_tracking";
}
size_t item_size()
{
return item_size_;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
/*!
* \brief Set tracking channel internal queue
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
void start_tracking();
private:
gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
boost::shared_ptr<gr::msg_queue> queue_;
concurrent_queue<int> *channel_internal_queue_;
};
#endif // GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_H_

View File

@@ -236,7 +236,7 @@ void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
{
double tcode_half_chips;
float rem_code_phase_half_chips;
double rem_code_phase_half_chips;
int associated_chip_index;
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
double code_phase_step_chips;
@@ -246,11 +246,11 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
int epl_loop_length_samples;
// unified loop for VE, E, P, L, VL code vectors
code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0 * d_code_freq_chips) / (static_cast<double>(d_fs_in));
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
tcode_half_chips = - rem_code_phase_half_chips;
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
@@ -310,10 +310,11 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
if (d_enable_tracking == true)
{
@@ -323,7 +324,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
*/
int samples_offset;
float acq_trk_shif_correction_samples;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
@@ -372,7 +373,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
@@ -383,7 +384,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@@ -395,7 +396,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
@@ -460,9 +461,9 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
@@ -547,19 +548,28 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
tmp_float = carr_error_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = carr_error_filt_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
tmp_float = code_error_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = code_error_filt_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));

View File

@@ -126,8 +126,8 @@ private:
long d_if_freq;
long d_fs_in;
float d_early_late_spc_chips;
float d_very_early_late_spc_chips;
double d_early_late_spc_chips;
double d_very_early_late_spc_chips;
gr_complex* d_ca_code;
@@ -146,22 +146,22 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_acc_code_phase_secs;
@@ -175,9 +175,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -387,7 +387,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_ve
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);

View File

@@ -217,18 +217,18 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity;
double radial_velocity;
radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz)/Galileo_E5a_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
@@ -236,13 +236,13 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds;
double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds;
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff;
double N_prn_diff;
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
@@ -358,7 +358,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
tcode_chips = -rem_code_phase_chips;
@@ -383,7 +383,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_carrier()
{
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(2 * GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
float phase_step_rad = static_cast<float>(2.0 * GALILEO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in));
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
@@ -400,10 +400,10 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
@@ -451,7 +451,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
case 1:
{
int samples_offset;
float acq_trk_shif_correction_samples;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
@@ -561,11 +561,11 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
{
if (d_secondary_lock == true)
{
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / static_cast<float>(GALILEO_PI) * 2;
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
else
{
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / static_cast<float>(GALILEO_PI) * 2;
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
}
// Carrier discriminator filter
@@ -576,10 +576,10 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
}
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_acc_carrier_phase_rad -= 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI);
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0*GALILEO_PI);
// ################## DLL ##########################################################
if (d_integration_counter == d_current_ti_ms)
@@ -600,7 +600,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in);
@@ -694,9 +694,9 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_current_prn_length_samples) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_tracking = false;
@@ -781,39 +781,42 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
}
try
{
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (std::ifstream::failure e)
{

View File

@@ -137,10 +137,10 @@ private:
long d_fs_in;
double d_early_late_spc_chips;
float d_dll_bw_hz;
float d_pll_bw_hz;
float d_dll_bw_init_hz;
float d_pll_bw_init_hz;
double d_dll_bw_hz;
double d_pll_bw_hz;
double d_dll_bw_init_hz;
double d_pll_bw_init_hz;
gr_complex* d_codeQ;
gr_complex* d_codeI;
@@ -160,26 +160,26 @@ private:
float tmp_P;
float tmp_L;
// remaining code phase and carrier phase between tracking loops
float d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_code_phase_samples;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
float d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
float d_code_error_filt_secs;
double d_code_freq_chips;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
double d_code_error_filt_secs;
//PRN period in samples
int d_current_prn_length_samples;
@@ -191,9 +191,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -253,7 +253,7 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
{
double tcode_half_chips;
float rem_code_phase_half_chips;
double rem_code_phase_half_chips;
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
double code_phase_step_chips;
double code_phase_step_half_chips;
@@ -262,11 +262,11 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
int epl_loop_length_samples;
// unified loop for VE, E, P, L, VL code vectors
code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
code_phase_step_chips = (d_code_freq_chips) / (static_cast<double>(d_fs_in));
code_phase_step_half_chips = (2.0 * d_code_freq_chips) / (static_cast<double>(d_fs_in));
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
tcode_half_chips = - rem_code_phase_half_chips;
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
@@ -287,9 +287,9 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
// Compute the carrier phase step for the K-1 carrier doppler estimation
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_step_rad = static_cast<float> (GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in));
// Initialize the carrier phase with the remanent carrier phase of the K-2 loop
phase_rad = d_rem_carr_phase_rad;
phase_rad = static_cast<float> (d_rem_carr_phase_rad);
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
//volk_gnsssdr_s32f_x2_update_local_carrier_32fc_manual(d_carr_sign, phase_rad, phase_step_rad, d_current_prn_length_samples, "generic");
@@ -340,10 +340,10 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
if (d_enable_tracking == true)
{
@@ -353,7 +353,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
*/
int samples_offset;
float acq_trk_shif_correction_samples;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
@@ -419,7 +419,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
// New code Doppler frequency estimation
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
//carrier phase accumulator for (K) Doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
@@ -430,7 +430,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@@ -442,7 +442,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
@@ -507,9 +507,9 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
@@ -594,19 +594,28 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
tmp_float = carr_error_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = carr_error_filt_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
tmp_float = code_error_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = code_error_filt_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));

View File

@@ -126,8 +126,8 @@ private:
long d_if_freq;
long d_fs_in;
float d_early_late_spc_chips;
float d_very_early_late_spc_chips;
double d_early_late_spc_chips;
double d_very_early_late_spc_chips;
gr_complex* d_ca_code;
@@ -162,22 +162,22 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_acc_code_phase_secs;
@@ -191,9 +191,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -315,7 +315,7 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_carrier()
phase += phase_step;
}
d_rem_carr_phase = fmod(phase, GPS_TWO_PI);
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + phase;
d_acc_carrier_phase_rad -= d_acc_carrier_phase_rad + phase;
}
@@ -439,6 +439,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
if (d_FLL_wait == 1)
{
d_Prompt_prev = *d_Prompt;
d_FLL_discriminator_hz=0.0;
d_FLL_wait = 0;
}
else
@@ -532,7 +533,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
T_prn_samples = T_prn_seconds * d_fs_in;
float code_error_filt_samples;
code_error_filt_samples = T_prn_seconds * code_error_filt_chips * T_chip_seconds * static_cast<double>(d_fs_in); //[seconds]
code_error_filt_samples = GPS_L1_CA_CODE_PERIOD * code_error_filt_chips * GPS_L1_CA_CHIP_PERIOD * static_cast<double>(d_fs_in); //[seconds]
d_acc_code_phase_samples = d_acc_code_phase_samples + code_error_filt_samples;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_samples;

View File

@@ -0,0 +1,588 @@
/*!
* \file gps_l1_ca_dll_pll_artemisa_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Javier Arribas, 2015. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_dll_pll_artemisa_tracking_cc.h"
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include <glog/logging.h>
#include "gnss_synchro.h"
#include "gps_sdr_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GPS_L1_CA.h"
#include "control_message_factory.h"
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85
using google::LogMessage;
gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr
gps_l1_ca_dll_pll_artemisa_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr(new gps_l1_ca_dll_pll_artemisa_tracking_cc(if_freq,
fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void gps_l1_ca_dll_pll_artemisa_tracking_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
gps_l1_ca_dll_pll_artemisa_tracking_cc::gps_l1_ca_dll_pll_artemisa_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) :
gr::block("gps_l1_ca_dll_pll_artemisa_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_correlation_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex*>(volk_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps=3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex*>(volk_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_get_alignment()));
for (int n=0;n<d_n_correlator_taps;n++)
{
d_correlator_outs[n] = gr_complex(0,0);
}
d_local_code_shift_chips = static_cast<float*>(volk_malloc(d_n_correlator_taps*sizeof(float), volk_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0]=-d_early_late_spc_chips;
d_local_code_shift_chips[1]=0.0;
d_local_code_shift_chips[2]=d_early_late_spc_chips;
multicorrelator_cpu.init(2*d_correlation_length_samples,d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carrier_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
d_last_seg = 0;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
systemName["S"] = std::string("SBAS");
set_relative_rate(1.0/((double)d_vector_length*2));
d_channel_internal_queue = 0;
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_code_phase_samples = 0.0;
d_pll_to_dll_assist_secs_Ti=0.0;
//set_min_output_buffer((long int)300);
}
void gps_l1_ca_dll_pll_artemisa_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad=GPS_TWO_PI*d_carrier_doppler_hz/static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); //The carrier loop filter implements the Doppler accumulator
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS),d_ca_code,d_local_code_shift_chips);
for (int n=0;n<d_n_correlator_taps;n++)
{
d_correlator_outs[n] = gr_complex(0,0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carrier_phase_rad = 0.0;
d_rem_code_phase_chips =0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti=0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0,1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
gps_l1_ca_dll_pll_artemisa_tracking_cc::~gps_l1_ca_dll_pll_artemisa_tracking_cc()
{
d_dump_file.close();
volk_free(d_local_code_shift_chips);
volk_free(d_correlator_outs);
volk_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars
double code_error_chips_Ti=0.0;
double code_error_filt_chips=0.0;
double code_error_filt_secs_Ti=0.0;
double CURRENT_INTEGRATION_TIME_S;
double CORRECTED_INTEGRATION_TIME_S;
double dll_code_error_secs_Ti=0.0;
double carr_phase_error_secs_Ti=0.0;
double old_d_rem_code_phase_samples;
if (d_enable_tracking == true)
{
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter += samples_offset; //count for the processed samples
d_pull_in = false;
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
*out[0] = current_synchro_data;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
}
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,d_carrier_phase_step_rad,d_rem_code_phase_chips,d_code_phase_step_chips,d_correlation_length_samples);
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
// ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1])/GPS_TWO_PI; //prompt output
// Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
// Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz*CURRENT_INTEGRATION_TIME_S)/GPS_L1_FREQ_HZ;
// code Doppler frequency update
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); //[chips/Ti] //early and late
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
// DLL code error estimation [s/Ti]
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
dll_code_error_secs_Ti=-code_error_filt_secs_Ti;//+d_pll_to_dll_assist_secs_Ti;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
// UPDATE REMNANT CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
//remnant carrier phase [rad]
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S,GPS_TWO_PI);
// UPDATE CARRIER PHASE ACCUULATOR
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz*CORRECTED_INTEGRATION_TIME_S;
//################### PLL COMMANDS #################################################
//carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad=GPS_TWO_PI*d_carrier_doppler_hz/static_cast<double>(d_fs_in);
//################### DLL COMMANDS #################################################
//code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
//remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
std::unique_ptr<ControlMessageFactory> cmf(new ControlMessageFactory());
if (d_queue != gr::msg_queue::sptr())
{
d_queue->handle(cmf->GetQueueMessage(d_channel, 2));
}
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + old_d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI*d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
DLOG(INFO) << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
}
}
}
else
{
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
}
for (int n=0;n<d_n_correlator_taps;n++)
{
d_correlator_outs[n] = gr_complex(0,0);
}
current_synchro_data.System = {'G'};
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
}
if(d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_cycles), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure* e)
{
LOG(WARNING) << "Exception writing trk dump file " << e->what();
}
}
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_correlation_length_samples; //count for the processed samples
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void gps_l1_ca_dll_pll_artemisa_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (const std::ifstream::failure* e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl;
}
}
}
}
void gps_l1_ca_dll_pll_artemisa_tracking_cc::set_channel_queue(concurrent_queue<int> *channel_internal_queue)
{
d_channel_internal_queue = channel_internal_queue;
}
void gps_l1_ca_dll_pll_artemisa_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@@ -0,0 +1,182 @@
/*!
* \file gps_l1_ca_dll_pll_artemisa_tracking_cc.h
* \brief Interface of a code DLL + carrier PLL tracking block
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
* Javier Arribas, 2011. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
* Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_CC_H
#define GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_CC_H
#include <fstream>
#include <queue>
#include <map>
#include <string>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include "concurrent_queue.h"
#include "gps_sdr_signal_processing.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_FLL_PLL_filter.h"
#include "cpu_multicorrelator.h"
class gps_l1_ca_dll_pll_artemisa_tracking_cc;
typedef boost::shared_ptr<gps_l1_ca_dll_pll_artemisa_tracking_cc>
gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr;
gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr
gps_l1_ca_dll_pll_artemisa_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class gps_l1_ca_dll_pll_artemisa_tracking_cc: public gr::block
{
public:
~gps_l1_ca_dll_pll_artemisa_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast (int noutput_items, gr_vector_int &ninput_items_required);
private:
friend gps_l1_ca_dll_pll_artemisa_tracking_cc_sptr
gps_l1_ca_dll_pll_artemisa_make_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
gps_l1_ca_dll_pll_artemisa_tracking_cc(long if_freq,
long fs_in, unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
// tracking configuration vars
boost::shared_ptr<gr::msg_queue> d_queue;
concurrent_queue<int> *d_channel_internal_queue;
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
int d_last_seg;
long d_if_freq;
long d_fs_in;
double d_early_late_spc_chips;
int d_n_correlator_taps;
gr_complex* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carrier_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_FLL_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_cycles;
double d_code_phase_samples;
double d_pll_to_dll_assist_secs_Ti;
//Integration period in samples
int d_correlation_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
};
#endif //GNSS_SDR_GPS_L1_CA_DLL_PLL_ARTEMISA_TRACKING_CC_H

View File

@@ -183,29 +183,29 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity;
double radial_velocity;
radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
@@ -338,10 +338,10 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
{
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
if (d_enable_tracking == true)
{
@@ -398,7 +398,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
#endif
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
@@ -406,7 +406,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
//remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
@@ -417,7 +417,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@@ -428,7 +428,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
@@ -563,23 +563,32 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
//tmp_float=(float)d_sample_counter;
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// carrier and code frequency
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
d_dump_file.write((char*)&d_code_freq_chips, sizeof(float));
tmp_float = d_carrier_doppler_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//PLL commands
d_dump_file.write((char*)&carr_error_hz, sizeof(float));
d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float));
tmp_float = carr_error_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = carr_error_filt_hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
//DLL commands
d_dump_file.write((char*)&code_error_chips, sizeof(float));
d_dump_file.write((char*)&code_error_filt_chips, sizeof(float));
tmp_float = code_error_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = code_error_filt_chips;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// CN0 and carrier lock test
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write((char*)&tmp_float, sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write((char*)&tmp_float, sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;

View File

@@ -135,24 +135,24 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
//PRN period in samples
int d_current_prn_length_samples;
@@ -164,9 +164,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -190,17 +190,17 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
float acq_trk_diff_seconds;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
@@ -208,11 +208,11 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
@@ -297,7 +297,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_code()
void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
{
float sin_f, cos_f;
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * static_cast<float>(d_carrier_doppler_hz) / static_cast<float>(d_fs_in);
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
@@ -336,10 +336,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz;
float carr_error_filt_hz;
float code_error_chips;
float code_error_filt_chips;
double carr_error_hz;
double carr_error_filt_hz;
double code_error_chips;
double code_error_filt_chips;
// Block input data and block output stream pointers
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
@@ -355,7 +355,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
if (d_pull_in == true)
{
int samples_offset;
float acq_trk_shif_correction_samples;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
@@ -414,7 +414,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
@@ -422,7 +422,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
@@ -433,7 +433,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@@ -504,9 +504,9 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_pseudorange = false;
*out[0] = current_synchro_data;
@@ -579,41 +579,41 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
tmp_L = std::abs<float>(*d_Late);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
tmp_float=d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
// EPR
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (std::ifstream::failure e)
{

View File

@@ -139,24 +139,24 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
//PRN period in samples
int d_current_prn_length_samples;
@@ -168,9 +168,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -47,7 +47,8 @@
#include "lock_detectors.h"
#include "GPS_L1_CA.h"
#include "control_message_factory.h"
#include <volk/volk.h> // volk_alignment
#include <volk/volk.h> //volk_alignement
// includes
#include <cuda_profiler_api.h>
@@ -115,41 +116,29 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
//d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
multicorrelator_gpu = new cuda_multicorrelator();
int N_CORRELATORS = 3;
//local code resampler on CPU (old)
//multicorrelator_gpu->init_cuda(0, NULL, 2 * d_vector_length , 2 * d_vector_length , N_CORRELATORS);
//local code resampler on GPU (new)
multicorrelator_gpu->init_cuda_integrated_resampler(0, NULL, 2 * d_vector_length , GPS_L1_CA_CODE_LENGTH_CHIPS , N_CORRELATORS);
// Get space for the resampled early / prompt / late local replicas
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped );
// Set GPU flags
cudaSetDeviceFlags(cudaDeviceMapHost);
//allocate host memory
//pinned memory mode - use special function to get OS-pinned memory
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped );
int N_CORRELATORS = 3;
// Get space for a vector with the C/A code replica sampled 1x/chip
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// Get space for the resampled early / prompt / late local replicas
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
// correlator outputs (scalar)
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
//old local codes vector
// (cudaHostAlloc((void**)&d_local_codes_gpu, (V_LEN * sizeof(gr_complex))*N_CORRELATORS, cudaHostAllocWriteCombined ));
//new integrated shifts
// (cudaHostAlloc((void**)&d_local_codes_gpu, (2 * d_vector_length * sizeof(gr_complex)), cudaHostAllocWriteCombined ));
// correlator outputs (scalar)
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocWriteCombined );
//map to EPL pointers
//map to EPL pointers
d_Early = &d_corr_outs_gpu[0];
d_Prompt = &d_corr_outs_gpu[1];
d_Late = &d_corr_outs_gpu[2];
//--- Perform initializations ------------------------------
multicorrelator_gpu = new cuda_multicorrelator();
//local code resampler on GPU
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length, GPS_L1_CA_CODE_LENGTH_CHIPS, 3);
multicorrelator_gpu->set_input_output_vectors(d_corr_outs_gpu, in_gpu);
// define initial code frequency basis of NCO
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
@@ -249,7 +238,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
d_local_code_shift_chips[1]=0.0;
d_local_code_shift_chips[2]=d_early_late_spc_chips;
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS,d_ca_code, d_local_code_shift_chips,3);
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS, d_ca_code, d_local_code_shift_chips, 3);
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
@@ -280,17 +269,13 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
{
d_dump_file.close();
cudaFreeHost(in_gpu);
cudaFreeHost(d_carr_sign_gpu);
cudaFreeHost(d_corr_outs_gpu);
cudaFreeHost(d_local_code_shift_chips);
cudaFreeHost(d_ca_code);
multicorrelator_gpu->free_cuda();
delete(multicorrelator_gpu);
volk_free(d_ca_code);
delete[] d_Prompt_buffer;
}
@@ -340,16 +325,9 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
float code_phase_step_chips = static_cast<float>(d_code_freq_chips) / static_cast<float>(d_fs_in);
float rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
memcpy(in_gpu, in, sizeof(gr_complex) * d_current_prn_length_samples);
cudaProfilerStart();
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(
d_corr_outs_gpu,
in,
d_rem_carr_phase_rad,
phase_step_rad,
code_phase_step_chips,
rem_code_phase_chips,
d_current_prn_length_samples,
3);
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(d_rem_carr_phase_rad, phase_step_rad, code_phase_step_chips, rem_code_phase_chips, d_current_prn_length_samples, 3);
cudaProfilerStop();
// ################## PLL ##########################################################
@@ -362,7 +340,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);

View File

@@ -128,13 +128,9 @@ private:
//GPU HOST PINNED MEMORY IN/OUT VECTORS
gr_complex* in_gpu;
gr_complex* d_carr_sign_gpu;
gr_complex* d_local_codes_gpu;
float* d_local_code_shift_chips;
gr_complex* d_corr_outs_gpu;
cuda_multicorrelator *multicorrelator_gpu;
gr_complex* d_ca_code;
gr_complex *d_Early;

View File

@@ -199,11 +199,11 @@ void gps_l2_m_dll_pll_tracking_cc::start_tracking()
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
double radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ;
T_chip_mod_seconds = 1/d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
@@ -211,11 +211,11 @@ void gps_l2_m_dll_pll_tracking_cc::start_tracking()
d_current_prn_length_samples = round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
double T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
@@ -276,7 +276,7 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_code()
int epl_loop_length_samples;
// unified loop for E, P, L code vectors
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
tcode_chips = -rem_code_phase_chips;
@@ -301,7 +301,7 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_carrier()
{
float phase_rad, phase_step_rad;
phase_step_rad = static_cast<float>(GPS_L2_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
phase_rad = d_rem_carr_phase_rad;
for(int i = 0; i < d_current_prn_length_samples; i++)
{
@@ -337,10 +337,10 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error_hz=0;
float carr_error_filt_hz=0;
float code_error_chips=0;
float code_error_filt_chips=0;
double carr_error_hz = 0;
double carr_error_filt_hz = 0;
double code_error_chips = 0;
double code_error_filt_chips = 0;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@@ -355,7 +355,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
if (d_pull_in == true)
{
int samples_offset;
float acq_trk_shif_correction_samples;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = (d_sample_counter - (d_acq_sample_stamp-d_current_prn_length_samples));
acq_trk_shif_correction_samples = -fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
@@ -419,7 +419,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
// ################## PLL ##########################################################
// PLL discriminator
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_L2_TWO_PI);
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_L2_TWO_PI;
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
@@ -427,7 +427,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
// New code Doppler frequency estimation
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ);
//carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
d_acc_carrier_phase_rad -= GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L2_TWO_PI);
@@ -438,7 +438,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator
float code_error_filt_secs;
double code_error_filt_secs;
code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
@@ -449,7 +449,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
double T_prn_samples;
double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
@@ -502,16 +502,16 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
current_synchro_data.Code_phase_secs = 0;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_tracking = true;
*out[0] = current_synchro_data;
@@ -596,27 +596,27 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}

View File

@@ -137,24 +137,24 @@ private:
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
float d_rem_carr_phase_rad;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
float d_acq_code_phase_samples;
float d_acq_carrier_doppler_hz;
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
Correlator d_correlator;
// tracking vars
double d_code_freq_chips;
float d_carrier_doppler_hz;
float d_acc_carrier_phase_rad;
float d_code_phase_samples;
float d_acc_code_phase_secs;
double d_carrier_doppler_hz;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
double d_acc_code_phase_secs;
//PRN period in samples
int d_current_prn_length_samples;
@@ -166,9 +166,9 @@ private:
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
float d_carrier_lock_test;
float d_CN0_SNV_dB_Hz;
float d_carrier_lock_threshold;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars

View File

@@ -32,6 +32,7 @@ endif(ENABLE_CUDA)
set(TRACKING_LIB_SOURCES
correlator.cc
cpu_multicorrelator.cc
lock_detectors.cc
tcp_communication.cc
tcp_packet_data.cc

View File

@@ -0,0 +1,163 @@
/*!
* \file cpu_multicorrelator.cc
* \brief High optimized CPU vector multiTAP correlator class
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* </ul>
*
* Class that implements a high optimized vector multiTAP correlator class for CPUs
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "cpu_multicorrelator.h"
#include <cmath>
#include <iostream>
#include <gnuradio/fxpt.h> // fixed point sine and cosine
#include <volk/volk.h>
bool cpu_multicorrelator::init(
int max_signal_length_samples,
int n_correlators
)
{
// ALLOCATE MEMORY FOR INTERNAL vectors
size_t size = max_signal_length_samples * sizeof(std::complex<float>);
// NCO signal
d_nco_in = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
// Doppler-free signal
d_sig_doppler_wiped = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
d_local_codes_resampled = new std::complex<float>*[n_correlators];
for (int n = 0; n < n_correlators; n++)
{
d_local_codes_resampled[n] = static_cast<std::complex<float>*>(volk_malloc(size, volk_get_alignment()));
}
d_n_correlators = n_correlators;
return true;
}
bool cpu_multicorrelator::set_local_code_and_taps(
int code_length_chips,
const std::complex<float>* local_code_in,
float *shifts_chips
)
{
d_local_code_in = local_code_in;
d_shifts_chips = shifts_chips;
d_code_length_chips = code_length_chips;
return true;
}
bool cpu_multicorrelator::set_input_output_vectors(std::complex<float>* corr_out, const std::complex<float>* sig_in)
{
// Save CPU pointers
d_sig_in = sig_in;
d_corr_out = corr_out;
return true;
}
void cpu_multicorrelator::update_local_code(int correlator_length_samples,float rem_code_phase_chips, float code_phase_step_chips)
{
float local_code_chip_index;
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
{
for (int n = 0; n < correlator_length_samples; n++)
{
// resample code for current tap
local_code_chip_index = fmod(code_phase_step_chips*static_cast<float>(n)+ d_shifts_chips[current_correlator_tap] - rem_code_phase_chips, d_code_length_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0.0) local_code_chip_index += d_code_length_chips;
d_local_codes_resampled[current_correlator_tap][n] = d_local_code_in[static_cast<int>(round(local_code_chip_index))];
}
}
}
void cpu_multicorrelator::update_local_carrier(int correlator_length_samples, float rem_carr_phase_rad, float phase_step_rad)
{
float sin_f, cos_f;
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
int phase_rad_i = gr::fxpt::float_to_fixed(rem_carr_phase_rad);
for(int i = 0; i < correlator_length_samples; i++)
{
gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
d_nco_in[i] = std::complex<float>(cos_f, -sin_f);
phase_rad_i += phase_step_rad_i;
}
}
bool cpu_multicorrelator::Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad,
float phase_step_rad,
float rem_code_phase_chips,
float code_phase_step_chips,
int signal_length_samples)
{
update_local_carrier(signal_length_samples, rem_carrier_phase_in_rad, phase_step_rad);
update_local_code(signal_length_samples,rem_code_phase_chips, code_phase_step_chips);
volk_32fc_x2_multiply_32fc(d_sig_doppler_wiped, d_sig_in, d_nco_in, signal_length_samples);
for (int current_correlator_tap = 0; current_correlator_tap < d_n_correlators; current_correlator_tap++)
{
volk_32fc_x2_dot_prod_32fc(&d_corr_out[current_correlator_tap], d_sig_doppler_wiped, d_local_codes_resampled[current_correlator_tap], signal_length_samples);
}
return true;
}
cpu_multicorrelator::cpu_multicorrelator()
{
d_sig_in = NULL;
d_nco_in = NULL;
d_sig_doppler_wiped = NULL;
d_local_code_in = NULL;
d_shifts_chips = NULL;
d_corr_out = NULL;
d_code_length_chips = 0;
d_n_correlators = 0;
}
bool cpu_multicorrelator::free()
{
// Free memory
if (d_sig_doppler_wiped != NULL) volk_free(d_sig_doppler_wiped);
if (d_nco_in != NULL) volk_free(d_nco_in);
for (int n = 0; n < d_n_correlators; n++)
{
volk_free(d_local_codes_resampled[n]);
}
delete d_local_codes_resampled;
return true;
}

View File

@@ -0,0 +1,98 @@
/*!
* \file cpu_multicorrelator.h
* \brief High optimized CPU vector multiTAP correlator class
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* </ul>
*
* Class that implements a high optimized vector multiTAP correlator class for CPUs
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_CPU_MULTICORRELATOR_H_
#define GNSS_SDR_CPU_MULTICORRELATOR_H_
#include <complex>
/*!
* \brief Class that implements carrier wipe-off and correlators.
*/
class cpu_multicorrelator
{
public:
cpu_multicorrelator();
bool init(
int max_signal_length_samples,
int n_correlators
);
bool set_local_code_and_taps(
int code_length_chips,
const std::complex<float>* local_code_in,
float *shifts_chips
);
bool set_input_output_vectors(
std::complex<float>* corr_out,
const std::complex<float>* sig_in
);
void update_local_code(
int correlator_length_samples,
float rem_code_phase_chips,
float code_phase_step_chips
);
void update_local_carrier(
int correlator_length_samples,
float rem_carr_phase_rad,
float phase_step_rad
);
bool Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad,
float phase_step_rad,
float rem_code_phase_chips,
float code_phase_step_chips,
int signal_length_samples);
bool free();
private:
// Allocate the device input vectors
const std::complex<float> *d_sig_in;
std::complex<float> *d_nco_in;
std::complex<float> **d_local_codes_resampled;
std::complex<float> *d_sig_doppler_wiped;
const std::complex<float> *d_local_code_in;
std::complex<float> *d_corr_out;
float *d_shifts_chips;
int d_code_length_chips;
int d_n_correlators;
bool update_local_code();
bool update_local_carrier();
};
#endif /* CPU_MULTICORRELATOR_H_ */

View File

@@ -32,26 +32,14 @@
* -------------------------------------------------------------------------
*/
///////////////////////////////////////////////////////////////////////////////
// On G80-class hardware 24-bit multiplication takes 4 clocks per warp
// (the same as for floating point multiplication and addition),
// whereas full 32-bit multiplication takes 16 clocks per warp.
// So if integer multiplication operands are guaranteed to fit into 24 bits
// (always lie withtin [-8M, 8M - 1] range in signed case),
// explicit 24-bit multiplication is preferred for performance.
///////////////////////////////////////////////////////////////////////////////
#define IMUL(a, b) __mul24(a, b)
#include "cuda_multicorrelator.h"
#include <stdio.h>
#include <iostream>
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
#define ACCUM_N 256
#define ACCUM_N 128
__global__ void scalarProdGPUCPXxN_shifts_chips(
GPU_Complex *d_corr_out,
@@ -90,15 +78,17 @@ __global__ void scalarProdGPUCPXxN_shifts_chips(
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//original sample code
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
//sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos+d_shifts_samples[vec]]);
//custom code for multitap correlator
// 1.resample local code for the current shift
float local_code_chip_index= fmod(code_phase_step_chips*(float)pos + d_shifts_chips[vec] - rem_code_phase_chips, code_length_chips);
//TODO: Take into account that in multitap correlators, the shifts can be negative!
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index<0.0) local_code_chip_index+=code_length_chips;
//printf("vec= %i, pos %i, chip_idx=%i chip_shift=%f \r\n",vec, pos,__float2int_rd(local_code_chip_index),local_code_chip_index);
// 2.correlate
sum.multiply_acc(d_sig_in[pos],d_local_code_in[__float2int_rd(local_code_chip_index)]);
@@ -127,163 +117,6 @@ __global__ void scalarProdGPUCPXxN_shifts_chips(
}
}
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
// Parameters restrictions:
// 1) ElementN is strongly preferred to be a multiple of warp size to
// meet alignment constraints of memory coalescing.
// 2) ACCUM_N must be a power of two.
///////////////////////////////////////////////////////////////////////////////
__global__ void scalarProdGPUCPXxN_shifts(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
GPU_Complex *d_local_codes_in,
int *d_shifts_samples,
int vectorN,
int elementN
)
{
//Accumulators cache
__shared__ GPU_Complex accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
int vectorBase = IMUL(elementN, vec);
int vectorEnd = vectorBase + elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
GPU_Complex sum = GPU_Complex(0,0);
for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
{
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
sum.multiply_acc(d_sig_in[pos-vectorBase],d_local_codes_in[pos-vectorBase+d_shifts_samples[vec]]);
}
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
{
accumResult[iAccum] += accumResult[stride + iAccum];
}
}
if (threadIdx.x == 0)
{
d_corr_out[vec] = accumResult[0];
}
}
}
__global__ void scalarProdGPUCPXxN(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
GPU_Complex *d_local_codes_in,
int vectorN,
int elementN
)
{
//Accumulators cache
__shared__ GPU_Complex accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
//int vectorBase = IMUL(elementN, vec);
//int vectorEnd = vectorBase + elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
GPU_Complex sum = GPU_Complex(0,0);
//for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
//sum.multiply_acc(d_sig_in[pos-vectorBase],d_local_codes_in[pos]);
sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos]);
}
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
{
accumResult[iAccum] += accumResult[stride + iAccum];
}
}
if (threadIdx.x == 0)
{
d_corr_out[vec] = accumResult[0];
}
}
}
//*********** CUDA processing **************
// Treads: a minimal parallel execution code on GPU
// Blocks: a set of N threads
/**
* CUDA Kernel Device code
*
* Computes the vectorial product of A and B into C. The 3 vectors have the same
* number of elements numElements.
*/
__global__ void CUDA_32fc_x2_multiply_32fc( GPU_Complex *A, GPU_Complex *B, GPU_Complex *C, int numElements)
{
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i += blockDim.x * gridDim.x)
{
C[i] = A[i] * B[i];
}
}
/**
* CUDA Kernel Device code
*
@@ -292,21 +125,7 @@ __global__ void CUDA_32fc_x2_multiply_32fc( GPU_Complex *A, GPU_Complex *B,
__global__ void
CUDA_32fc_Doppler_wipeoff( GPU_Complex *sig_out, GPU_Complex *sig_in, float rem_carrier_phase_in_rad, float phase_step_rad, int numElements)
{
//*** NCO CPU code (GNURadio FXP NCO)
//float sin_f, cos_f;
//float phase_step_rad = static_cast<float>(2 * GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
//int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
//int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
//
//for(int i = 0; i < d_current_prn_length_samples; i++)
// {
// gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f);
// d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
// phase_rad_i += phase_step_rad_i;
// }
// CUDA version of floating point NCO and vector dot product integrated
float sin;
float cos;
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
@@ -319,110 +138,101 @@ CUDA_32fc_Doppler_wipeoff( GPU_Complex *sig_out, GPU_Complex *sig_in, float rem
}
/**
* CUDA Kernel Device code
*
* Computes the vectorial product of A and B into C. The 3 vectors have the same
* number of elements numElements.
*/
__global__ void
CUDA_32fc_x2_add_32fc( GPU_Complex *A, GPU_Complex *B, GPU_Complex *C, int numElements)
__global__ void Doppler_wippe_scalarProdGPUCPXxN_shifts_chips(
GPU_Complex *d_corr_out,
GPU_Complex *d_sig_in,
GPU_Complex *d_sig_wiped,
GPU_Complex *d_local_code_in,
float *d_shifts_chips,
float code_length_chips,
float code_phase_step_chips,
float rem_code_phase_chips,
int vectorN,
int elementN,
float rem_carrier_phase_in_rad,
float phase_step_rad
)
{
//Accumulators cache
__shared__ GPU_Complex accumResult[ACCUM_N];
// CUDA version of floating point NCO and vector dot product integrated
float sin;
float cos;
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < numElements;
i < elementN;
i += blockDim.x * gridDim.x)
{
C[i] = A[i] + B[i];
__sincosf(rem_carrier_phase_in_rad + i*phase_step_rad, &sin, &cos);
d_sig_wiped[i] = d_sig_in[i] * GPU_Complex(cos,-sin);
}
__syncthreads();
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
//int vectorBase = IMUL(elementN, vec);
//int vectorEnd = elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
GPU_Complex sum = GPU_Complex(0,0);
float local_code_chip_index;
//float code_phase;
for (int pos = iAccum; pos < elementN; pos += ACCUM_N)
{
//original sample code
//sum = sum + d_sig_in[pos-vectorBase] * d_nco_in[pos-vectorBase] * d_local_codes_in[pos];
//sum = sum + d_sig_in[pos-vectorBase] * d_local_codes_in[pos];
//sum.multiply_acc(d_sig_in[pos],d_local_codes_in[pos+d_shifts_samples[vec]]);
//custom code for multitap correlator
// 1.resample local code for the current shift
local_code_chip_index= fmodf(code_phase_step_chips*__int2float_rd(pos)+ d_shifts_chips[vec] - rem_code_phase_chips, code_length_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index<0.0) local_code_chip_index+=code_length_chips;
//printf("vec= %i, pos %i, chip_idx=%i chip_shift=%f \r\n",vec, pos,__float2int_rd(local_code_chip_index),local_code_chip_index);
// 2.correlate
sum.multiply_acc(d_sig_wiped[pos],d_local_code_in[__float2int_rd(local_code_chip_index)]);
}
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
{
accumResult[iAccum] += accumResult[stride + iAccum];
}
}
if (threadIdx.x == 0)
{
d_corr_out[vec] = accumResult[0];
}
}
}
bool cuda_multicorrelator::init_cuda(const int argc, const char **argv, int signal_length_samples, int local_codes_length_samples, int n_correlators)
{
// use command-line specified CUDA device, otherwise use device with highest Gflops/s
// findCudaDevice(argc, (const char **)argv);
// cudaDeviceProp prop;
// int num_devices, device;
// cudaGetDeviceCount(&num_devices);
// if (num_devices > 1) {
// int max_multiprocessors = 0, max_device = 0;
// for (device = 0; device < num_devices; device++) {
// cudaDeviceProp properties;
// cudaGetDeviceProperties(&properties, device);
// if (max_multiprocessors < properties.multiProcessorCount) {
// max_multiprocessors = properties.multiProcessorCount;
// max_device = device;
// }
// printf("Found GPU device # %i\n",device);
// }
// //cudaSetDevice(max_device);
//
// //set random device!
// cudaSetDevice(rand() % num_devices); //generates a random number between 0 and num_devices to split the threads between GPUs
//
// cudaGetDeviceProperties( &prop, max_device );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }else{
// int whichDevice;
// cudaGetDevice( &whichDevice );
// cudaGetDeviceProperties( &prop, whichDevice );
// //debug code
// if (prop.canMapHostMemory != 1) {
// printf( "Device can not map memory.\n" );
// }
//
// printf("L2 Cache size= %u \n",prop.l2CacheSize);
// printf("maxThreadsPerBlock= %u \n",prop.maxThreadsPerBlock);
// printf("maxGridSize= %i \n",prop.maxGridSize[0]);
// printf("sharedMemPerBlock= %lu \n",prop.sharedMemPerBlock);
// printf("deviceOverlap= %i \n",prop.deviceOverlap);
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
// }
// (cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
// ALLOCATE GPU MEMORY FOR INPUT/OUTPUT and INTERNAL vectors
size_t size = signal_length_samples * sizeof(GPU_Complex);
cudaMalloc((void **)&d_sig_in, size);
// (cudaMalloc((void **)&d_nco_in, size));
cudaMalloc((void **)&d_sig_doppler_wiped, size);
// old version: all local codes are independent vectors
// (cudaMalloc((void **)&d_local_codes_in, size*n_correlators));
// new version: only one vector with extra samples to shift the local code for the correlator set
// Required: The last correlator tap in d_shifts_samples has the largest sample shift
size_t size_local_code_bytes = local_codes_length_samples * sizeof(GPU_Complex);
cudaMalloc((void **)&d_local_codes_in, size_local_code_bytes);
cudaMalloc((void **)&d_shifts_samples, sizeof(int)*n_correlators);
//scalars
cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators);
// Launch the Vector Add CUDA Kernel
threadsPerBlock = 256;
blocksPerGrid =(int)(signal_length_samples+threadsPerBlock-1)/threadsPerBlock;
cudaStreamCreate (&stream1) ;
cudaStreamCreate (&stream2) ;
return true;
}
bool cuda_multicorrelator::init_cuda_integrated_resampler(
const int argc, const char **argv,
int signal_length_samples,
int code_length_chips,
int n_correlators
@@ -480,34 +290,45 @@ bool cuda_multicorrelator::init_cuda_integrated_resampler(
// (cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
// ALLOCATE GPU MEMORY FOR INPUT/OUTPUT and INTERNAL vectors
size_t size = signal_length_samples * sizeof(GPU_Complex);
cudaMalloc((void **)&d_sig_in, size);
cudaMemset(d_sig_in,0,size);
//********* ZERO COPY VERSION ************
// Set flag to enable zero copy access
// Optimal in shared memory devices (like Jetson K1)
cudaSetDeviceFlags(cudaDeviceMapHost);
// (cudaMalloc((void **)&d_nco_in, size));
//******** CudaMalloc version ***********
// input signal GPU memory (can be mapped to CPU memory in shared memory devices!)
// cudaMalloc((void **)&d_sig_in, size);
// cudaMemset(d_sig_in,0,size);
// Doppler-free signal (internal GPU memory)
cudaMalloc((void **)&d_sig_doppler_wiped, size);
cudaMemset(d_sig_doppler_wiped,0,size);
// Local code GPU memory (can be mapped to CPU memory in shared memory devices!)
cudaMalloc((void **)&d_local_codes_in, sizeof(std::complex<float>)*code_length_chips);
cudaMemset(d_local_codes_in,0,sizeof(std::complex<float>)*code_length_chips);
d_code_length_chips=code_length_chips;
// Vector with the chip shifts for each correlator tap
//GPU memory (can be mapped to CPU memory in shared memory devices!)
cudaMalloc((void **)&d_shifts_chips, sizeof(float)*n_correlators);
cudaMemset(d_shifts_chips,0,sizeof(float)*n_correlators);
//scalars
cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators);
cudaMemset(d_corr_out,0,sizeof(std::complex<float>)*n_correlators);
//cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators);
//cudaMemset(d_corr_out,0,sizeof(std::complex<float>)*n_correlators);
// Launch the Vector Add CUDA Kernel
threadsPerBlock = 256;
// TODO: write a smart load balance using device info!
threadsPerBlock = 64;
blocksPerGrid =(int)(signal_length_samples+threadsPerBlock-1)/threadsPerBlock;
cudaStreamCreate (&stream1) ;
cudaStreamCreate (&stream2) ;
//cudaStreamCreate (&stream2) ;
return true;
}
@@ -518,103 +339,57 @@ bool cuda_multicorrelator::set_local_code_and_taps(
int n_correlators
)
{
// local code CPU -> GPU copy memory
//********* ZERO COPY VERSION ************
// // Get device pointer from host memory. No allocation or memcpy
// cudaError_t code;
// // local code CPU -> GPU copy memory
// code=cudaHostGetDevicePointer((void **)&d_local_codes_in, (void *) local_codes_in, 0);
// if (code!=cudaSuccess)
// {
// printf("cuda cudaHostGetDevicePointer error in set_local_code_and_taps \r\n");
// }
// // Correlator shifts vector CPU -> GPU copy memory (fractional chip shifts are allowed!)
// code=cudaHostGetDevicePointer((void **)&d_shifts_chips, (void *) shifts_chips, 0);
// if (code!=cudaSuccess)
// {
// printf("cuda cudaHostGetDevicePointer error in set_local_code_and_taps \r\n");
// }
//******** CudaMalloc version ***********
//local code CPU -> GPU copy memory
cudaMemcpyAsync(d_local_codes_in, local_codes_in, sizeof(GPU_Complex)*code_length_chips, cudaMemcpyHostToDevice,stream1);
d_code_length_chips=(float)code_length_chips;
// Correlator shifts vector CPU -> GPU copy memory (fractional chip shifts are allowed!)
//Correlator shifts vector CPU -> GPU copy memory (fractional chip shifts are allowed!)
cudaMemcpyAsync(d_shifts_chips, shifts_chips, sizeof(float)*n_correlators,
cudaMemcpyHostToDevice,stream1);
return true;
}
bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_cuda(
bool cuda_multicorrelator::set_input_output_vectors(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
const std::complex<float>* local_codes_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
const int *shifts_samples,
int signal_length_samples,
int n_correlators)
std::complex<float>* sig_in
)
{
// Save CPU pointers
d_sig_in_cpu =sig_in;
d_corr_out_cpu = corr_out;
// Zero Copy version
// Get device pointer from host memory. No allocation or memcpy
cudaError_t code;
code=cudaHostGetDevicePointer((void **)&d_sig_in, (void *) sig_in, 0);
code=cudaHostGetDevicePointer((void **)&d_corr_out, (void *) corr_out, 0);
if (code!=cudaSuccess)
{
printf("cuda cudaHostGetDevicePointer error \r\n");
}
return true;
size_t memSize = signal_length_samples * sizeof(std::complex<float>);
// input signal CPU -> GPU copy memory
cudaMemcpyAsync(d_sig_in, sig_in, memSize,
cudaMemcpyHostToDevice, stream1);
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
// (cudaMemcpyAsync(d_nco_in, nco_in, memSize,
// cudaMemcpyHostToDevice, stream1));
// old version: all local codes are independent vectors
// (cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize*n_correlators,
// cudaMemcpyHostToDevice, stream2));
// new version: only one vector with extra samples to shift the local code for the correlator set
// Required: The last correlator tap in d_shifts_samples has the largest sample shift
// local code CPU -> GPU copy memory
cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize+sizeof(std::complex<float>)*shifts_samples[n_correlators-1],
cudaMemcpyHostToDevice, stream2);
// Correlator shifts vector CPU -> GPU copy memory
cudaMemcpyAsync(d_shifts_samples, shifts_samples, sizeof(int)*n_correlators,
cudaMemcpyHostToDevice, stream2);
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
cudaStreamSynchronize(stream1);
CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream1>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
//printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);
//wait for Doppler wipeoff end...
cudaStreamSynchronize(stream1);
cudaStreamSynchronize(stream2);
// (cudaDeviceSynchronize());
//old
// scalarProdGPUCPXxN<<<blocksPerGrid, threadsPerBlock,0 ,stream2>>>(
// d_corr_out,
// d_sig_doppler_wiped,
// d_local_codes_in,
// 3,
// signal_length_samples
// );
//new
//launch the multitap correlator
scalarProdGPUCPXxN_shifts<<<blocksPerGrid, threadsPerBlock,0 ,stream2>>>(
d_corr_out,
d_sig_doppler_wiped,
d_local_codes_in,
d_shifts_samples,
n_correlators,
signal_length_samples
);
cudaGetLastError();
//wait for correlators end...
cudaStreamSynchronize(stream2);
// Copy the device result vector in device memory to the host result vector
// in host memory.
//scalar products (correlators outputs)
cudaMemcpy(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
cudaMemcpyDeviceToHost);
return true;
}
bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
float code_phase_step_chips,
@@ -623,26 +398,40 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
int n_correlators)
{
size_t memSize = signal_length_samples * sizeof(std::complex<float>);
// cudaMemCpy version
//size_t memSize = signal_length_samples * sizeof(std::complex<float>);
// input signal CPU -> GPU copy memory
cudaMemcpyAsync(d_sig_in, sig_in, memSize,
cudaMemcpyHostToDevice, stream2);
//cudaMemcpyAsync(d_sig_in, d_sig_in_cpu, memSize,
// cudaMemcpyHostToDevice, stream2);
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
cudaStreamSynchronize(stream2);
//cudaStreamSynchronize(stream2);
CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream2>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
//CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream1>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
//wait for Doppler wipeoff end...
cudaStreamSynchronize(stream1);
cudaStreamSynchronize(stream2);
//cudaStreamSynchronize(stream1);
//cudaStreamSynchronize(stream2);
//launch the multitap correlator with integrated local code resampler!
scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
// scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
// d_corr_out,
// d_sig_doppler_wiped,
// d_local_codes_in,
// d_shifts_chips,
// d_code_length_chips,
// code_phase_step_chips,
// rem_code_phase_chips,
// n_correlators,
// signal_length_samples
// );
Doppler_wippe_scalarProdGPUCPXxN_shifts_chips<<<blocksPerGrid, threadsPerBlock,0 ,stream1>>>(
d_corr_out,
d_sig_in,
d_sig_doppler_wiped,
d_local_codes_in,
d_shifts_chips,
@@ -650,23 +439,33 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
code_phase_step_chips,
rem_code_phase_chips,
n_correlators,
signal_length_samples
);
signal_length_samples,
rem_carrier_phase_in_rad,
phase_step_rad
);
cudaGetLastError();
//debug
// std::complex<float>* debug_signal;
// debug_signal=static_cast<std::complex<float>*>(malloc(memSize));
// cudaMemcpyAsync(debug_signal, d_sig_doppler_wiped, memSize,
// cudaMemcpyDeviceToHost,stream1);
// cudaStreamSynchronize(stream1);
// std::cout<<"d_sig_doppler_wiped GPU="<<debug_signal[456]<<","<<debug_signal[1]<<","<<debug_signal[2]<<","<<debug_signal[3]<<std::endl;
//cudaGetLastError();
//wait for correlators end...
cudaStreamSynchronize(stream1);
//cudaStreamSynchronize(stream1);
// Copy the device result vector in device memory to the host result vector
// in host memory.
//scalar products (correlators outputs)
cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
cudaMemcpyDeviceToHost,stream1);
//cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
// cudaMemcpyDeviceToHost,stream1);
cudaStreamSynchronize(stream1);
return true;
}
cuda_multicorrelator::cuda_multicorrelator()
{
d_sig_in=NULL;
@@ -689,22 +488,16 @@ bool cuda_multicorrelator::free_cuda()
if (d_sig_doppler_wiped!=NULL) cudaFree(d_sig_doppler_wiped);
if (d_local_codes_in!=NULL) cudaFree(d_local_codes_in);
if (d_corr_out!=NULL) cudaFree(d_corr_out);
if (d_shifts_samples!=NULL) cudaFree(d_shifts_samples);
if (d_shifts_chips!=NULL) cudaFree(d_shifts_chips);
cudaStreamDestroy(stream1) ;
cudaStreamDestroy(stream2) ;
// Reset the device and exit
// cudaDeviceReset causes the driver to clean up all state. While
// not mandatory in normal operation, it is good practice. It is also
// needed to ensure correct operation when the application is being
// profiled. Calling cudaDeviceReset causes all profile data to be
// flushed before the application exits
// (cudaDeviceReset());
cudaDeviceReset();
return true;
}

View File

@@ -32,8 +32,8 @@
* -------------------------------------------------------------------------
*/
#ifndef CUDA_MULTICORRELATOR_H_
#define CUDA_MULTICORRELATOR_H_
#ifndef GNSS_SDR_CUDA_MULTICORRELATOR_H_
#define GNSS_SDR_CUDA_MULTICORRELATOR_H_
#ifdef __CUDACC__
@@ -107,6 +107,8 @@ struct GPU_Complex_Short
return GPU_Complex_Short(r+a.r, i+a.i);
}
};
/*!
* \brief Class that implements carrier wipe-off and correlators using NVIDIA CUDA GPU accelerators.
*/
@@ -114,9 +116,7 @@ class cuda_multicorrelator
{
public:
cuda_multicorrelator();
bool init_cuda(const int argc, const char **argv, int signal_length_samples, int local_codes_length_samples, int n_correlators);
bool init_cuda_integrated_resampler(
const int argc, const char **argv,
int signal_length_samples,
int code_length_chips,
int n_correlators
@@ -127,19 +127,12 @@ public:
float *shifts_chips,
int n_correlators
);
bool set_input_output_vectors(
std::complex<float>* corr_out,
std::complex<float>* sig_in
);
bool free_cuda();
bool Carrier_wipeoff_multicorrelator_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
const std::complex<float>* local_codes_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
const int *shifts_samples,
int signal_length_samples,
int n_correlators);
bool Carrier_wipeoff_multicorrelator_resampler_cuda(
std::complex<float>* corr_out,
const std::complex<float>* sig_in,
float rem_carrier_phase_in_rad,
float phase_step_rad,
float code_phase_step_chips,
@@ -154,6 +147,11 @@ private:
GPU_Complex *d_sig_doppler_wiped;
GPU_Complex *d_local_codes_in;
GPU_Complex *d_corr_out;
//
std::complex<float> *d_sig_in_cpu;
std::complex<float> *d_corr_out_cpu;
int *d_shifts_samples;
float *d_shifts_chips;
float d_code_length_chips;
@@ -162,10 +160,10 @@ private:
int blocksPerGrid;
cudaStream_t stream1;
cudaStream_t stream2;
//cudaStream_t stream2;
int num_gpu_devices;
int selected_device;
};
#endif /* CUDA_MULTICORRELATOR_H_ */
#endif /* GNSS_SDR_CUDA_MULTICORRELATOR_H_ */

View File

@@ -46,9 +46,9 @@
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
*/
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t1, float t2)
double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2)
{
float cross, dot;
double cross, dot;
dot = prompt_s1.real()*prompt_s2.real() + prompt_s1.imag()*prompt_s2.imag();
cross = prompt_s1.real()*prompt_s2.imag() - prompt_s2.real()*prompt_s1.imag();
return atan2(cross, dot) / (t2-t1);
@@ -62,7 +62,7 @@ float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_four_quadrant_atan(gr_complex prompt_s1)
double pll_four_quadrant_atan(gr_complex prompt_s1)
{
return atan2(prompt_s1.imag(), prompt_s1.real());
}
@@ -75,7 +75,7 @@ float pll_four_quadrant_atan(gr_complex prompt_s1)
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
double pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
{
if (prompt_s1.real() != 0.0)
{
@@ -96,12 +96,12 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
*/
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
{
float P_early, P_late;
double P_early, P_late;
P_early = std::abs(early_s1);
P_late = std::abs(late_s1);
return (P_early - P_late) / ((P_early + P_late));
return 0.5*(P_early - P_late) / ((P_early + P_late));
}
/*
@@ -113,9 +113,9 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
*/
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1)
double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1)
{
float P_early, P_late;
double P_early, P_late;
P_early = std::sqrt(std::norm(very_early_s1) + std::norm(early_s1));
P_late = std::sqrt(std::norm(very_late_s1) + std::norm(late_s1));
return (P_early - P_late) / ((P_early + P_late));

View File

@@ -50,7 +50,7 @@
* \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
*/
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t1, float t2);
double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2);
/*! \brief PLL four quadrant arctan discriminator
@@ -61,7 +61,7 @@ float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_four_quadrant_atan(gr_complex prompt_s1);
double pll_four_quadrant_atan(gr_complex prompt_s1);
/*! \brief PLL Costas loop two quadrant arctan discriminator
@@ -72,7 +72,7 @@ float pll_four_quadrant_atan(gr_complex prompt_s1);
* \f}
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
*/
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
double pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
/*! \brief DLL Noncoherent Early minus Late envelope normalized discriminator
@@ -84,7 +84,7 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
*/
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
/*! \brief DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator
@@ -97,7 +97,7 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
*/
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
#endif