1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-10-30 14:53:03 +00:00

Code cleaning

This commit is contained in:
Carles Fernandez
2015-02-27 18:21:25 +01:00
parent 9e1017ed23
commit 2a2740cb01
5 changed files with 271 additions and 280 deletions

View File

@@ -51,50 +51,52 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::string default_dump_file = "./data/signal_source.dat";
std::string default_item_type = "cshort";
// UHD COMMON PARAMETERS
uhd::device_addr_t dev_addr;
device_address_= configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
// UHD COMMON PARAMETERS
uhd::device_addr_t dev_addr;
device_address_ = configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
subdevice_=configuration->property(role + ".subdevice", empty);
RF_channels_=configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
subdevice_ = configuration->property(role + ".subdevice", empty);
RF_channels_ = configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
if (RF_channels_==1)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples", 0));
dump_.push_back(configuration->property(role + ".dump", false));
dump_filename_.push_back(configuration->property(role + ".dump_filename", default_dump_file));
if (RF_channels_ == 1)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples", 0));
dump_.push_back(configuration->property(role + ".dump", false));
dump_filename_.push_back(configuration->property(role + ".dump_filename", default_dump_file));
freq_.push_back(configuration->property(role + ".freq", GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain", (double)50.0));
freq_.push_back(configuration->property(role + ".freq", GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain", (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2));
}else{
// multiple RF channels selected
for (int i=0;i<RF_channels_;i++)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples" + boost::lexical_cast<std::string>(i), 0));
dump_.push_back(configuration->property(role + ".dump" + boost::lexical_cast<std::string>(i), false));
dump_filename_.push_back(configuration->property(role + ".dump_filename" + boost::lexical_cast<std::string>(i), default_dump_file));
}
else
{
// multiple RF channels selected
for (int i = 0; i < RF_channels_; i++)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples" + boost::lexical_cast<std::string>(i), 0));
dump_.push_back(configuration->property(role + ".dump" + boost::lexical_cast<std::string>(i), false));
dump_filename_.push_back(configuration->property(role + ".dump_filename" + boost::lexical_cast<std::string>(i), default_dump_file));
freq_.push_back(configuration->property(role + ".freq" + boost::lexical_cast<std::string>(i), GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain" + boost::lexical_cast<std::string>(i), (double)50.0));
freq_.push_back(configuration->property(role + ".freq" + boost::lexical_cast<std::string>(i), GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain" + boost::lexical_cast<std::string>(i), (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz" + boost::lexical_cast<std::string>(i), sample_rate_/2));
}
}
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz" + boost::lexical_cast<std::string>(i), sample_rate_/2));
}
}
// 1. Make the uhd driver instance
//uhd_source_= uhd::usrp::multi_usrp::make(dev_addr);
@@ -108,44 +110,44 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
if (item_type_.compare("cbyte") == 0)
{
item_size_ = sizeof(lv_8sc_t);
uhd_stream_args_=uhd::stream_args_t("sc8");
uhd_stream_args_ = uhd::stream_args_t("sc8");
}
else if (item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
uhd_stream_args_=uhd::stream_args_t("sc16");
uhd_stream_args_ = uhd::stream_args_t("sc16");
}
else if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
uhd_stream_args_=uhd::stream_args_t("fc32");
uhd_stream_args_ = uhd::stream_args_t("fc32");
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type. Using cshort.";
item_size_ = sizeof(lv_16sc_t);
uhd_stream_args_=uhd::stream_args_t("sc16");
uhd_stream_args_ = uhd::stream_args_t("sc16");
}
// select the number of channels and the subdevice specifications
for (int i=0;i<RF_channels_;i++)
{
uhd_stream_args_.channels.push_back(i);
}
for (int i = 0; i< RF_channels_; i++)
{
uhd_stream_args_.channels.push_back(i);
}
// 1.2 Make the UHD source object
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd_stream_args_);
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
// Dual channel example: "A:0 B:0"
// TODO: Add support for multiple motherboards (i.e. four channels "A:0 B:0 A:1 B1")
uhd_source_->set_subdev_spec(subdevice_, 0);
uhd_source_->set_subdev_spec(subdevice_, 0);
// 2.1 set sampling clock reference
// Set the clock source for the usrp device.
@@ -159,70 +161,69 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::cout << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate()) << std::endl;
LOG(INFO) << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate());
std::vector<std::string> sensor_names;
std::vector<std::string> sensor_names;
for (int i=0;i<RF_channels_;i++)
{
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
for (int i = 0; i < RF_channels_; i++)
{
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i)) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i)) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
// Check out the status of the lo_locked sensor (boolean for LO lock state)
sensor_names = uhd_source_->get_sensor_names(i);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", i);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
}
// Check out the status of the lo_locked sensor (boolean for LO lock state)
sensor_names = uhd_source_->get_sensor_names(i);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", i);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
}
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
}
}
@@ -230,56 +231,55 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
UhdSignalSource::~UhdSignalSource()
{}
void UhdSignalSource::connect(gr::top_block_sptr top_block)
{
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
}
}
else
{
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
}
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
}
}
else
{
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
}
}
}
}
void UhdSignalSource::disconnect(gr::top_block_sptr top_block)
{
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->disconnect(uhd_source_, i, valve_.at(i), 0);
LOG(INFO) << "UHD source disconnected";
if (dump_.at(i))
{
top_block->disconnect(valve_.at(i), 0, file_sink_.at(i), 0);
}
}
else
{
if (dump_.at(i))
{
top_block->disconnect(uhd_source_, i, file_sink_.at(i), 0);
}
}
}
for (int i = 0; i < RF_channels_; i++)
{
if (samples_.at(i) != 0)
{
top_block->disconnect(uhd_source_, i, valve_.at(i), 0);
LOG(INFO) << "UHD source disconnected";
if (dump_.at(i))
{
top_block->disconnect(valve_.at(i), 0, file_sink_.at(i), 0);
}
}
else
{
if (dump_.at(i))
{
top_block->disconnect(uhd_source_, i, file_sink_.at(i), 0);
}
}
}
}
@@ -294,9 +294,10 @@ gr::basic_block_sptr UhdSignalSource::get_left_block()
gr::basic_block_sptr UhdSignalSource::get_right_block()
{
return get_right_block(0);
return get_right_block(0);
}
gr::basic_block_sptr UhdSignalSource::get_right_block(int RF_channel)
{
if (samples_.at(RF_channel) != 0)